JPH07192837A - Connecting method for oxide superconducting wire material - Google Patents

Connecting method for oxide superconducting wire material

Info

Publication number
JPH07192837A
JPH07192837A JP7298793A JP7298793A JPH07192837A JP H07192837 A JPH07192837 A JP H07192837A JP 7298793 A JP7298793 A JP 7298793A JP 7298793 A JP7298793 A JP 7298793A JP H07192837 A JPH07192837 A JP H07192837A
Authority
JP
Japan
Prior art keywords
connection
oxide superconducting
conductive metal
oxide
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7298793A
Other languages
Japanese (ja)
Inventor
Kazuo Yamamoto
一生 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7298793A priority Critical patent/JPH07192837A/en
Publication of JPH07192837A publication Critical patent/JPH07192837A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)

Abstract

PURPOSE:To provide a connecting method by which oxide superconducting wire materials can be connected to each other in low connecting resistance without reducing a critical current. CONSTITUTION:In a connecting method for oxide superconducting wire materials 3 to be connected to each other in the superposed part by superposing a part of the oxide superconducting wire materials 3 formed by covering an outer peripheral surface of an oxide superconductor 1 with conductive metal 2 on each other, a thickness of at least either one conductive metal 2 in an opposing part is thinned and removed by 95% at its maximum by superposition of the oxide superconducting wire materials 3. Next, a paste layer which contains metal to form the conductive metal 2 and has a thickness not more than 200mum is laid and formed on a layer surface of the thinned and removed conductive metal 2. The oxide superconducting wire materials 3 are superposed on each other through the laid and formed paste layer, and heat treatment is applied after drying.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、線材の臨界電流を低下
させずに低い接続抵抗で、酸化物超電導線材同士を接続
し得る酸化物超電導線材の接続方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for connecting oxide superconducting wires, which is capable of connecting oxide superconducting wires with a low connection resistance without lowering the critical current of the wires.

【0002】[0002]

【従来の技術】周知のように、La系の酸化物超電導体
の出現以来、超電導材料の臨界温度が77.3Kの液体窒素
温度を超える至り、また、これらの酸化物超電導体は、
液体窒素冷却の状態において、所要の超電導特性が期待
されることから、液体ヘリウム冷却のために高度な極低
温技術を必要とする金属系超電導体に比べて、その応用
の範囲が格段に広がるものと注目されている。
2. Description of the Related Art As is well known, since the advent of La-based oxide superconductors, the critical temperature of superconducting materials has exceeded the liquid nitrogen temperature of 77.3K, and these oxide superconductors have
Since the required superconducting properties are expected in the state of being cooled by liquid nitrogen, the range of its application is significantly expanded compared to metal-based superconductors that require advanced cryogenic technology for cooling liquid helium. Is being noticed.

【0003】ところで、酸化物超電導体の応用分野とし
ては、たとえば電力・産業エレクトロニクス機器などが
あり、具体的には、たとえば送電ケーブルや高磁界を発
生するための超電導コイルなどが挙げられる。しかし、
いずれの場合も酸化物超電導体は、機械的な強度や特性
の安定性などの点を考慮して、一般的に金属との複合・
長尺化による線材の形態で使用されるため、酸化物超電
導体の線材化が注力される課題といえる。
By the way, the field of application of the oxide superconductor is, for example, electric power / industrial electronic equipment, and specifically, for example, a power transmission cable and a superconducting coil for generating a high magnetic field. But,
In either case, the oxide superconductor is generally a composite with a metal in consideration of mechanical strength and stability of characteristics.
Since it is used in the form of a wire rod by lengthening it, it can be said that the focus is on making the oxide superconductor wire rod.

【0004】酸化物超電導体線材の製造方法に関して
は、いろいろの手法が提案されており、現状では、図10
に製造工程をフローチャートで示す粉末法(パウダーイ
ンチューブ法)が一般的である。そして、この粉末法は
仮焼した酸化物超電導体、たとえばBi1.72Pb0.34
1.83Ca1.97Cu3.13x の粉末を、シースとなる金
属管、たとえば銀管中に充填し、次にスウェージングや
ドローイングなどの冷間減面加工によって伸線し、さら
に最終的な熱処理を行って、酸化物超電導体1の外周面
を導電性金属層2で被覆して成るテープ状の酸化物超電
導線材3化する方法である。
Various methods have been proposed for manufacturing oxide superconducting wire, and at present, as shown in FIG.
The powder method (powder in tube method) whose manufacturing process is shown in a flow chart is generally used. Then, this powder method is applied to a calcined oxide superconductor such as Bi 1.72 Pb 0.34 S.
r 1.83 Ca 1.97 Cu 3.13 O x powder is filled into a metal tube that serves as a sheath, for example, a silver tube, and then drawn by cold surface-reduction processing such as swaging and drawing, and further subjected to final heat treatment. This is a method of forming the tape-shaped oxide superconducting wire 3 by coating the outer peripheral surface of the oxide superconductor 1 with the conductive metal layer 2.

【0005】そして、前記超電導線材の接続は、金属系
の超電導体、酸化物系の超電導体を問わず、実用化にお
いて重要な課題であり、特に、MRIのような永久電流
モード通電を行う超電導コイルの場合は、電流減衰を防
ぐために、閉ループ回路を形成する際の接続部の抵抗を
可及的にゼロに近づける必要がある。この接続抵抗に関
しては、ニオブ−チタン線材を用いて構成したMRIマ
グネットの場合、フィラメントの固相拡散により接続を
形成し、10-8Ω以下の低い接続抵抗を得ている。一方、
酸化物超電導線材でMRIマグネットを作製するには、
同様の接続抵抗を実現しなければならないし、また送電
ケーブルや積層型の超電導コイルの構成では、接続抵抗
値についてMRIほど厳しい要求ではないものの、接続
により線材を長尺化したり、パンケーキコイルの間を接
続したりする際、いわゆる線材の接続技術が必要であ
る。
The connection of the superconducting wire is an important issue in practical use regardless of whether it is a metal-based superconductor or an oxide-based superconductor. In the case of a coil, it is necessary to make the resistance of the connection portion when forming a closed loop circuit as close to zero as possible in order to prevent current decay. Regarding this connection resistance, in the case of an MRI magnet configured by using a niobium-titanium wire, a connection is formed by solid-phase diffusion of filaments, and a low connection resistance of 10 -8 Ω or less is obtained. on the other hand,
To make an MRI magnet with oxide superconducting wire,
The same connection resistance must be realized, and in the configuration of power transmission cables and laminated superconducting coils, the connection resistance value is not as strict as MRI, but the length of the wire can be increased by the connection or the pancake coil When connecting between, so-called wire connecting technology is required.

【0006】このような要求に対応して、酸化物超電導
線材の接続方法もいろいろ試みられており、大別する
と、 (A)酸化物超電導体1を被覆している導電性金属層
(シース材)2を剥離して接続する方法、 (B)導電性金
属層2を剥離せずにそのまま接続する方法に分けられ
る。前者には、図11に斜視的に示すごとく、テープ状の
酸化物超電導線材3の片面の銀シース2を剥離・除去
し、露出した酸化物超電導体1同士を対向接触させて、
さらに、プレスと熱処理を繰り返して接続する方法(接
続法(a) )がある。また、後者には、テープ状の酸化物
超電導線材3同士をハンダ付けによって接続する方法
(接続法 (b-1))、テープ状の酸化物超電導線材3同士
を重ねて、熱処理によって固相拡散接続する方法(接続
法 (b-2))、および前記接続法 (b-2))において、プレ
スによりテープ状の酸化物超電導線材3同士を圧着、熱
処理する方法(接続法 (b-3))がある。
In response to such demands, various attempts have been made to connect oxide superconducting wire materials. Broadly speaking, (A) a conductive metal layer (sheath material) covering the oxide superconductor 1 is used. 2) a method of peeling and connecting 2), and (B) a method of directly connecting the conductive metal layer 2 without peeling. In the former, as shown in a perspective view in FIG. 11, the silver sheath 2 on one surface of the tape-shaped oxide superconducting wire 3 is peeled and removed, and the exposed oxide superconductors 1 are brought into contact with each other,
Further, there is a method of connecting by repeating pressing and heat treatment (connection method (a)). The latter is a method of connecting the tape-shaped oxide superconducting wires 3 by soldering (connection method (b-1)), overlapping the tape-shaped oxide superconducting wires 3 with each other, and performing solid phase diffusion by heat treatment. In the connection method (connection method (b-2)) and the connection method (b-2), the tape-shaped oxide superconducting wires 3 are pressure-bonded and heat-treated by a press (connection method (b-3)). ).

【0007】ここで、前記接続方法の優劣を考えるに当
たり、 (1)接続抵抗が小さいこと、(2)線材を流れる臨
界電流(Ic)が接続箇所近傍で劣化しないことなどが重
要なポイントとなる。特に、 (2)の点に関しては接続作
業に伴って、酸化物超電導体が溶融したり、分解したり
する化学的な劣化、および機械的加工によるクラックの
発生など、機械的な劣化を引き起こさないことを要す
る。
Here, in considering the superiority or inferiority of the connection method, (1) the connection resistance is small, (2) the critical current (Ic) flowing through the wire is not deteriorated near the connection point, etc. . In particular, regarding the point (2), mechanical deterioration such as chemical deterioration such as melting or decomposition of oxide superconductor and cracking due to mechanical processing is not caused with connection work. Requires that.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上述の
接続法 (a),(b-1),(b-2),(b-3)のいずれの場合
も、前記 (1)および (2)の条件を同時に満たすことはで
きない。たとえば、接続法(a) の場合には、接続抵抗を
ほぼ完全にゼロにできるものの、前記図11に展開して斜
視的に示すように、A、A´の部分にクラックを生じて
臨界電流Icが劣化する。つまり、この接続法(a) では、
A、A´の部分で酸化物超電導体層の厚さが不連続とな
っているため、テープ状の酸化物超電導線材3同士を重
ねてプレスする際、過大な剪断応力の集中が起こりクラ
ックを生じるものと考えられる。また、接続法 (b-3)の
場合にも、臨界電流Icの劣化の度合いは接続法(a) の場
合に比べて小さいものの、同じように応力集中が起こり
易い。
However, in any of the above connection methods (a), (b-1), (b-2), and (b-3), the above (1) and (2) It is not possible to satisfy both conditions at the same time. For example, in the case of the connection method (a), although the connection resistance can be almost completely reduced to zero, as shown in the perspective view developed in FIG. Ic deteriorates. So in this connection method (a),
Since the thickness of the oxide superconducting layer is discontinuous in the portions A and A ', when the tape-shaped oxide superconducting wire rods 3 are stacked and pressed, excessive shear stress is concentrated and cracks occur. It is thought to occur. Also, in the case of the connection method (b-3), although the degree of deterioration of the critical current Ic is smaller than that of the connection method (a), stress concentration is likely to occur similarly.

【0009】一方、前記接続法 (b-1)や (b-2)の場合
は、臨界電流Icの劣化がほとんど見られないものの、接
続抵抗値が相対的に大きい。たとえば接続法 (b-1)の半
田付けの場合には、接続抵抗が半田固有の抵抗率(Pb-6
3 %Sn系では20℃,14.8μΩcmで、銀の約10倍)によっ
て左右されており、たとえば 2.8× 5mmの接続面積で
は、図12に示すように、〜10-6Ω程度の接続抵抗しか得
られない。また、接続法 (b-2)の場合は、図13 (a)に模
式的に、さらに図14 (a)に顕微鏡写真で、それぞれに接
続部の断面組織を示すごとく、シース材層を成す上下の
銀層2,2の間に空隙4が残留し、図15に示すように〜
10-6Ω程度の接続抵抗しか得られないのが現状である。
On the other hand, in the case of the connection methods (b-1) and (b-2), although the deterioration of the critical current Ic is hardly seen, the connection resistance value is relatively large. For example, in the case of soldering with connection method (b-1), the connection resistance is the resistivity (Pb-6
20 ° C. in 3% Sn system, in 14.8Myuomega cm, are governed by about 10-fold) of silver, in the connection area of for example 2.8 × 5 mm, as shown in FIG. 12, the order to 10 -6 Omega connection resistance I can only get it. In the case of the connection method (b-2), a sheath material layer is formed as shown in FIG. 13 (a) schematically and in FIG. 14 (a) with a micrograph showing the cross-sectional structure of the connection portion. A void 4 remains between the upper and lower silver layers 2 and 2, as shown in FIG.
At present, only connection resistance of about 10 -6 Ω can be obtained.

【0010】本発明は上記事情に対処してなされたもの
で、臨界電流を低下させることなく、低い接続抵抗で酸
化物超電導線材線材の長尺化など容易に達成し得る酸化
物超電導線材線材の接続方法の提供を目的とする。
The present invention has been made in consideration of the above circumstances, and provides an oxide superconducting wire rod which can be easily achieved such as lengthening of the oxide superconducting wire rod with a low connection resistance without lowering the critical current. The purpose is to provide a connection method.

【0011】[0011]

【課題を解決するための手段】本発明に係る酸化物超電
導線材の接続方法は、酸化物超電導体の外周面を導電性
金属層で被覆して成る酸化物超電導線材同士の一部を重
ね合わせ、その重ね合わせ部で接続する酸化物超電導線
材の接続方法において、前記酸化物超電導線材の重ね合
わせにより対接する部分の、少なくともいずれか一方の
導電性金属層の厚さを最大95%減肉・除去する工程、前
記減肉・除去した導電性金属層面に、前記導電性金属層
を形成する金属を含む厚さ 200μm 以下のペースト層を
被着形成する工程、および前記被着形成したペースト層
を介して酸化物超電導線材を重ね合わせ、乾燥後、熱処
理を施す工程を具備することを特徴とする。
A method of connecting oxide superconducting wires according to the present invention is a method in which oxide superconducting wires formed by coating an outer peripheral surface of an oxide superconductor with a conductive metal layer are partially overlapped with each other. , In the connecting method of the oxide superconducting wire to be connected at the overlapping portion, at least one of the portions of the conductive metal layer facing each other due to the superposition of the oxide superconducting wire is reduced in thickness by up to 95%. The step of removing, the step of depositing a paste layer having a thickness of 200 μm or less containing the metal forming the conductive metal layer on the surface of the thinned / removed conductive metal layer, and the paste layer formed by the deposition. It is characterized by comprising a step of superposing the oxide superconducting wires through the layer, drying and then heat treating.

【0012】本発明に係る酸化物超電導線材の接続方法
は、互いに対接・接続する酸化物超電導体層間に薄い常
電導性金属層を配置し、擬超電導接続を形成する方法で
あり、中間の常電導層の抵抗をできるだけ小さくするこ
とによって、実用上、超電導接続とみなせる接続特性を
得るようにしたものである。ここで、接続のため重ね合
わせる部分(領域)の導電性金属層を減肉・除去する目
的は、中間の常電導体層の厚さを薄くすることにあり、
減肉・除去の方法としては、たとえばサンドペーパーや
グラインダーなどを利用する機械的な方法、あるいは酸
(硫酸、硝酸など)で溶解、電解エッチングする化学的
な方法が例示される。そして、減肉・除去する部分の厚
さd1 は、元のシース厚さd0 に対してd1 /d0 ≦0.
95、望ましくは0.1 ≦d1 /d0 ≦0.95、より望ましく
は0.5 ≦d1 /d0 ≦0.8 である。実験的にはd1 が0
に近似していても、導電性金属表面に付着した油脂や塩
分などを除去するだけで接続抵抗低減に効果がある。さ
らに、前記中間の導電性金属層の厚さを薄くしていく
と、より低い接続抵抗を得ることが可能である。一方、
1 /d0 が0.95を超えると、エッチングむらなどのた
めに部分的に酸化物超電導体層が酸中に露出して劣化す
る恐れがある。
The method for connecting oxide superconducting wires according to the present invention is a method for forming a pseudo superconducting connection by arranging a thin normal conductive metal layer between oxide superconductor layers that are in contact with each other and connected. By making the resistance of the normal-conducting layer as small as possible, it is possible to obtain connection characteristics that can be regarded as superconducting connection in practical use. Here, the purpose of thinning / removing the conductive metal layer in the overlapping portion (region) for connection is to reduce the thickness of the intermediate normal conductor layer,
Examples of the method of thinning / removing include a mechanical method using sandpaper, a grinder or the like, or a chemical method of dissolving and electrolytically etching with an acid (sulfuric acid, nitric acid, etc.). Then, the thickness d 1 of the portion of wall thinning and removal is, d 1 / d 0 ≦ 0 the original sheath thickness d 0.
95, preferably 0.1 ≦ d 1 / d 0 ≦ 0.95, more preferably 0.5 ≦ d 1 / d 0 ≦ 0.8. Experimentally, d 1 is 0
Even if it is close to the above, it is effective in reducing the connection resistance only by removing oils and fats and salts attached to the surface of the conductive metal. Furthermore, if the thickness of the intermediate conductive metal layer is reduced, it is possible to obtain a lower connection resistance. on the other hand,
If d 1 / d 0 exceeds 0.95, the oxide superconductor layer may be partially exposed to the acid and deteriorate due to uneven etching.

【0013】次に、被覆材として機能している導電性金
属と同種の金属を含むペーストを、前記酸化物超電導線
材を重ね合わせる面間に介在させる目的は、薄くした導
電性金属層同士の接触をできるだけ面接触に近い状態に
することにある。たとえば図1に斜視的に示すごとく、
テープ状の酸化物超電導線材を重ね合わせるときに、導
電性金属層2,2間に介在するものがない場合、換言す
ると前記接続法 (b-3)に相当する場合は両者の接触は点
接触となって、図13 (b)に模式的に、さらに図14 (b)に
顕微鏡写真で、それぞれに接続部の断面組織を示すごと
く、次の熱処理の工程で十分な一体化が起こらない。つ
まり、この接続方法で接続した場合の電圧電流特性は、
図15に示すごとくであり、特性的に満足し得ない状況に
ある。しかしながら、前記ペーストを塗布(被着)し、
介在させることにより、ペースト材中に含まれる微細な
導電性金属粒子(通常数μm 以下)が、導電性金属シー
スの表面の凹凸を埋めて、両者を面接触に近い状態で接
触させることが可能となる。つまり、ペースト層厚を 2
00μm以下に塗布した後、流動性を呈する段階で導電性
金属層同士を圧着して、そのまま乾燥させることにより
緻密な接続組織の形成が可能となる。ここで、塗布する
ペーストの厚さは、塗りムラのない限り薄いほど好まし
く、 200μm を超えるとハンダ接続の場合よりも接続抵
抗が大きくなる。
Next, the purpose of interposing a paste containing a metal of the same kind as the conductive metal functioning as a coating material between the surfaces on which the oxide superconducting wire is superposed is to contact the thinned conductive metal layers. To make the surface contact as close as possible. For example, as shown in perspective in FIG.
When there is nothing intervening between the conductive metal layers 2 and 2 when superposing the tape-shaped oxide superconducting wires, in other words, when they correspond to the connection method (b-3), the contact between them is point contact. As a result, as shown schematically in FIG. 13 (b) and in the micrograph in FIG. 14 (b), which show the cross-sectional structure of the connection portion, sufficient integration does not occur in the subsequent heat treatment step. In other words, the voltage-current characteristic when connecting with this connection method is
As shown in FIG. 15, the situation is such that the characteristics cannot be satisfied. However, applying (adhering) the paste,
By interposing, the fine conductive metal particles (usually a few μm or less) contained in the paste material can fill the irregularities on the surface of the conductive metal sheath and bring them into close contact with each other. Becomes In other words, the paste layer thickness is 2
After application to a thickness of 00 μm or less, the conductive metal layers are pressure-bonded to each other at the stage of exhibiting fluidity and dried as it is, whereby a dense connection structure can be formed. Here, the thickness of the applied paste is preferably as thin as possible so long as there is no coating unevenness, and if it exceeds 200 μm, the connection resistance becomes larger than that in the case of solder connection.

【0014】さらに、前記被着形成したペースト層を介
して、被接続部を成す導電性金属シース同士を固相反応
によって一体化するための熱処理条件(温度,時間な
ど)は、シース材を成す導電性金属の種類,減肉・除去
後の厚さなどによって適宜、選択設定され、たとえばシ
ース材が銀で、減肉・除去後の厚さが 6〜15μm 程度の
場合、 820〜 850℃,10〜50時間程度でよい。
Furthermore, the heat treatment conditions (temperature, time, etc.) for integrating the conductive metal sheaths forming the connected portions by solid-phase reaction via the paste layer formed by the deposition form the sheath material. It is appropriately selected and set according to the type of conductive metal and the thickness after thinning / removing. For example, when the sheath material is silver and the thickness after thinning / removing is about 6 to 15 μm, 820 to 850 ℃, 10 to 50 hours is enough.

【0015】本発明において対象となる酸化物超電導体
としては、Y系に代表される希土類元素含有の酸化物超
電導体、La−Sr−Cu−O系、Bi−Sr−Ca−
Cu−O系、Tl−Ba−Ca−Cu−O系、Nd−C
e−Cu−O系の酸化物超電導体など、各種の酸化物超
電導体が挙げられる。上記希土類元素含有の酸化物超電
導体は、超電導状態を実現できるものであればよく、た
とえばReM2 Cu37-δ(Reは、Y、La、S
c、Nd、Sm、Eu、Gd、Dy、Ho、Er、T
m、Yb、Luなどの希土類元素から選ばれた少なくと
も1種の元素、MはBi、Sr、Caから選ばれた少な
くとも1種の元素、δは酸素欠陥を表し通常1以下の
数、Cuの一部はTi、V、Cr、Mn、Fe、Co、
Ni、Znなどで置換可能)で表される酸化物などが例
示される。
The oxide superconductors to which the present invention is applicable include rare earth element-containing oxide superconductors represented by Y system, La-Sr-Cu-O system, and Bi-Sr-Ca- system.
Cu-O system, Tl-Ba-Ca-Cu-O system, Nd-C
Various oxide superconductors, such as an e-Cu-O-based oxide superconductor, may be mentioned. The rare earth element-containing oxide superconductor may be any one as long as it can realize a superconducting state. For example, ReM 2 Cu 3 O 7-δ (Re is Y, La, S
c, Nd, Sm, Eu, Gd, Dy, Ho, Er, T
At least one element selected from rare earth elements such as m, Yb, and Lu, M is at least one element selected from Bi, Sr, and Ca, δ is an oxygen defect, usually a number of 1 or less, Cu Some are Ti, V, Cr, Mn, Fe, Co,
Examples thereof include oxides represented by (which can be replaced by Ni, Zn, etc.).

【0016】また、Bi系の酸化物超電導体は、化学
式:Bi2 Sr2 Ca2 Cu3 x 、:Bi2 (Sr,
Ca)3 Cu2 x などで表されるものであり、さら
に、Tl系の酸化物超電導体は、化学式:Tl2 Ba2
Ca2 Cu3 y、:Tl2 (Sr,Ca)3 Cu2
y などで実質的に表されるものであり、これらの酸化物
超電導体に銀を添加したものを使用してもよい。
The Bi-based oxide superconductor has the chemical formula: Bi 2 Sr 2 Ca 2 Cu 3 O x ,: Bi 2 (Sr,
Ca) 3 Cu 2 O x and the like, and the Tl-based oxide superconductor has a chemical formula: Tl 2 Ba 2
Ca 2 Cu 3 O y,: Tl 2 (Sr, Ca) 3 Cu 2 O
It is substantially represented by y and the like, and silver oxide superconductors to which silver is added may be used.

【0017】一方、酸化物超電導線材の導電性金属シー
ス材としては、室温、高温( 800〜1000℃の熱処理温
度)を問わず、内部の(埋め込む)酸化物超電導体によ
って酸化されない材料であることが必要であるととも
に、超電導が破れたときに流れている電流をバイパスで
きるように、電気的に良導体でなくてはならない。具体
的には、銀、金、白金、パラジウム、銅およびそれらの
合金が好ましく、より好ましくは銀である。そして、シ
ース材として銀または銀合金をもちいた場合は、ペース
トも銀ペーストが選択される。さらに、導電性金属シー
ス材の機械的強度を向上させる目的で、微量の金属酸化
物(酸化スズ、酸化亜鉛、酸化アルミニウムなど)を添
加した複合材も使用可能である。また、接続部分に熱処
理前、もしくは熱処理後において、図2に斜視的に要部
を示すごとく、上記シース材と同種の金属製副木5によ
って補強することも可能である。
On the other hand, the conductive metal sheath material of the oxide superconducting wire is a material which is not oxidized by the internal (embedding) oxide superconductor at room temperature or high temperature (heat treatment temperature of 800 to 1000 ° C.). And must be electrically good conductors so that they can bypass the current flowing when the superconductivity is broken. Specifically, silver, gold, platinum, palladium, copper and alloys thereof are preferable, and silver is more preferable. When silver or silver alloy is used as the sheath material, silver paste is selected as the paste. Further, for the purpose of improving the mechanical strength of the conductive metal sheath material, a composite material to which a trace amount of metal oxide (tin oxide, zinc oxide, aluminum oxide, etc.) is added can be used. Further, before or after the heat treatment, the connecting portion can be reinforced with a metal splint 5 of the same kind as the sheath material, as shown in a perspective view in FIG.

【0018】[0018]

【作用】本発明によれば、互いに重ね合わせる被接続部
の導電性金属シース面が、減肉・除去などにより実質的
に清浄化されている一方、対向・対接面間にペースト層
を介在した形での固相反応によって一体化する。そし
て、前記微細な金属粒子を含むペースト層によって、対
向・対接する被接続部の導電性金属シース面は、一様な
面接触を呈して固相反応が行われるため、空隙部など残
存することなく緻密な一体化が達成される。たとえば図
3 (a)に模式的に、さらに図3 (b)に顕微鏡写真で、そ
れぞれに接続部の断面組織を示すごとく、シース材層を
成す上下の銀層2,2間は一様で緻密な低抵抗な接続部
を容易、かつ確実に形成することが可能である。つま
り、本発明の接続方法によれば、一般的な半田接続法よ
りも1桁以上接続抵抗が小さく、かつ接続箇所も十分な
強度をもち、また臨界電流(Ic)が接続部近傍で劣化を
起こさない線材の提供(長尺化した線材の提供)が可能
となる。
According to the present invention, the conductive metal sheath surfaces of the connecting portions to be superposed on each other are substantially cleaned by thinning / removing, while the paste layer is interposed between the facing and facing surfaces. Integral by solid-state reaction in the form The conductive metal sheath surface of the connected portion facing and confronting with each other by the paste layer containing the fine metal particles exhibits uniform surface contact and a solid-phase reaction is performed, so that a void or the like remains. A precise integration is achieved. For example, as shown schematically in Fig. 3 (a) and in a micrograph in Fig. 3 (b), the cross-sectional structure of the connecting portion is shown respectively, and the upper and lower silver layers 2 and 2 forming the sheath material layer are uniform. It is possible to easily and surely form a precise and low resistance connecting portion. That is, according to the connection method of the present invention, the connection resistance is smaller than that of a general solder connection method by one digit or more, the connection location has sufficient strength, and the critical current (Ic) deteriorates in the vicinity of the connection section. It is possible to provide a wire rod that does not wake up (provide a long wire rod).

【0019】[0019]

【実施例】以下本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.

【0020】実施例1 シュウ酸塩共沈法によって調製し、IPC分析の結果、
Bi:Pb:Sr:Ca:Cu=1.72: 0.34:1.83:1.9
7:3.13 の組成を有する粉末を用意した。この粉末 100
gをMgO製の試料皿に収容し、大気中 800℃で20時間
仮焼を行った後、径 1〜10μm に粉砕して仮焼粉を得
た。この仮焼粉の相をX線回折によって調べたところ、
(Bi,Pb)2 Sr2 CaCu2 x (低Tc相)
と、Ca2 PbO4 ,CuOとの混合相であった。
Example 1 Prepared by the oxalate coprecipitation method, the result of IPC analysis was as follows:
Bi: Pb: Sr: Ca: Cu = 1.72: 0.34: 1.83: 1.9
A powder having a composition of 7: 3.13 was prepared. This powder 100
The g was stored in a MgO sample dish, calcined in the air at 800 ° C. for 20 hours, and then pulverized to a diameter of 1 to 10 μm to obtain a calcined powder. When the phase of this calcined powder was examined by X-ray diffraction,
(Bi, Pb) 2 Sr 2 CaCu 2 O x (low Tc phase)
And a mixed phase of Ca 2 PbO 4 and CuO.

【0021】前記仮焼粉を外径 6mm,内径 5mmの銀管内
に充填し、引き抜き加工(ドローイング)および圧延加
工(ローリング)によって幅 2.5mm,厚さ0.15mmのテー
プ材とした。その後、酸素を 7.7%−アルゴン(バラン
ス)系の雰囲気中で、 835℃,50時間熱処理し、再度、
2次圧延加工を施して幅 2.8mm,厚さ0.13mmのテープ状
酸化物超電導線材を得た。すなわち、Pbを添加したB
i系の(Bi,Pb)2 Sr2 Ca2 Cu3 x (高T
c相)の銀シーステープ線材を、いわゆる粉末法(パウ
ダーインチューブ法)で製造した。
The calcined powder was filled in a silver tube having an outer diameter of 6 mm and an inner diameter of 5 mm, and a tape material having a width of 2.5 mm and a thickness of 0.15 mm was obtained by drawing (drawing) and rolling (rolling). After that, oxygen was heat-treated at 835 ° C for 50 hours in an atmosphere of 7.7% -argon (balance) system, and again,
Secondary rolling was applied to obtain a tape-shaped oxide superconducting wire with a width of 2.8 mm and a thickness of 0.13 mm. That is, B added with Pb
i-based (Bi, Pb) 2 Sr 2 Ca 2 Cu 3 O x (high T
The c-phase) silver sheath tape wire was manufactured by the so-called powder method (powder in tube method).

【0022】前記のテープ線材を長さ20mmに切断し、接
続部に相当する部分を、たとえば図4に模式的に示すご
とく、ビーカ中に収容した濃度20%の硝酸(市販濃硝酸
の3倍希釈品)6中に浸漬した後、白金電極7を陰極
(−)、テープ線材片8を陽極(+)として100mA 、t
秒間の直流通電を行いエッチング処理をした。この通電
時間t秒間を、 0、10、30、60、 120、 180と変えてエ
ッチング処理をした後、数秒間水洗いして硝酸を除去し
てから乾燥した。前記エッチングの結果、銀シース表面
の酸化膜や汚れは完全に除去され、また、銀シースの厚
さは、はじめの30μm から表1に示す厚さの割合でそれ
ぞれ減少していた。図5は前記エッチングによって銀シ
ース2が減肉・除去された状態を断面的に示したもので
あり、また表1でd0 はエッチング前の値,d1 はエッ
チング後の値である。 次に、前記エッチング処理したテープ線材片を2本ず
つ、図6に斜視的に示すごとく、互いに向き合わせ、重
なり合う部分(領域)に銀ペーストを10μm 厚さに塗布
し、重ねしろ 5mmとして重ね合わせ、乾燥させた後に炉
に収容配置し、大気中、 840℃で50時間の熱処理をおこ
ない相互を接続一体化した。前記熱処理で一体化した試
料を炉から取り出し、接続領域を含む部分と、接続領域
を含まない部分とに電圧端子を配置して、4端子抵抗法
により、液体窒素、ゼロ磁界中での臨界電流(Ic)測定
を行ったところ、そのときの接続抵抗値はそれぞれ表1
に併せて示すごとくであった。なお、図7は前記接続方
法で接続した接続部における電圧−電流特性例を示した
ものである。
The tape wire was cut to a length of 20 mm, and the portion corresponding to the connecting portion was stored in a beaker and had a concentration of 20% nitric acid (3 times that of commercially available concentrated nitric acid), as schematically shown in FIG. (Diluted product) 6 and then the platinum electrode 7 is used as a cathode (-) and the tape wire piece 8 is used as an anode (+) at 100 mA, t
A direct current was applied for 2 seconds to perform etching treatment. The energization time t seconds was changed to 0, 10, 30, 60, 120, 180, and etching treatment was performed, followed by washing with water for several seconds to remove nitric acid and then drying. As a result of the etching, the oxide film and the dirt on the surface of the silver sheath were completely removed, and the thickness of the silver sheath was reduced from the initial 30 μm at the rate of the thickness shown in Table 1. FIG. 5 is a cross-sectional view showing a state where the silver sheath 2 is thinned / removed by the etching, and in Table 1, d 0 is a value before etching and d 1 is a value after etching. Next, as shown in a perspective view in FIG. 6, two pieces of the above-mentioned etched tape wire rods are faced to each other, and silver paste is applied in a thickness of 10 μm on the overlapping portions (areas), and the overlapping margin is set to 5 mm. After drying, they were placed in a furnace and heat-treated in the air at 840 ° C for 50 hours to connect and integrate them. The sample integrated by the heat treatment is taken out of the furnace, the voltage terminals are arranged in the portion including the connection region and the portion not including the connection region, and the critical current in liquid nitrogen and zero magnetic field is measured by the 4-terminal resistance method. (Ic) When measured, the connection resistance values at that time are shown in Table 1.
It was as shown together with. Note that FIG. 7 shows an example of voltage-current characteristics in the connection portion connected by the connection method.

【0023】また、比較のため、前記と同様に20mm長に
切断したテープ片を先に熱処理してから、重ねしろをい
ずれの場合も 5mmとし、硝酸エッチング処理を行ってか
ら半田付け接続した場合(比較例1)、エッチングをせ
ずにそのまま半田付けで接続した場合(比較例2)とに
ついて、上記と同様の条件で接続抵抗など測定した結果
を表2に示す。 表1および表2にから分かるように、本発明に係る接続
方法の場合は、比較例の場合に比べていずれも接続抵抗
が低く、特に比較例2の場合に比べて2桁以上小さい接
続抵抗を実現できる。また、エッチング量が大きいほ
ど、接続抵抗を低減できることが分かる。
For comparison, when a tape piece cut into a length of 20 mm is heat treated in the same manner as described above, the overlap margin is set to 5 mm in any case, and nitric acid etching treatment is performed before solder connection. Table 2 shows the results of measuring the connection resistance and the like under the same conditions as above (Comparative Example 1) and the case of connecting by soldering without etching (Comparative Example 2). As can be seen from Table 1 and Table 2, in the case of the connection method according to the present invention, the connection resistance is lower than that of the comparative example, and in particular, the connection resistance is two or more orders of magnitude lower than that of the comparative example 2. Can be realized. Further, it can be seen that the connection resistance can be reduced as the etching amount increases.

【0024】実施例2 実施例1で製造したテープ線材から切り出した長さ20mm
のテープ線材片を、120秒間硝酸エッチング処理し、銀
ペーストの塗布層厚さdp を、 5,10,20,50,100,200μm
と変化させて、実施例1の場合と同様にテープ線材片
を接続し、接続抵抗を調べた結果を表3に示す。なお、
ペースト塗布層の厚さが 200μm のときの接続抵抗は、
半田付けによる接続の場合とほぼ同じである。 実施例3 実施例1で製造したテープ線材から切り出した長さ20mm
のテープ線材片を、120秒間硝酸エッチング処理し、銀
ペーストの塗布層厚さdp を10μm と設定し、重ねしろ
l(mm) を 5,10,15mmと変化させて、実施例1の場合と
同様にテープ線材片を接続し、接続抵抗を調べた結果を
表4に示す。接続抵抗は接続面積に反比例して小さくな
っていることが分かる。
Example 2 Length 20 mm cut from the tape wire produced in Example 1
The tape wire piece of No. 1 was subjected to a nitric acid etching treatment for 120 seconds, and the coating layer thickness d p of the silver paste was 5, 10, 20, 50, 100, 200 μm.
Table 3 shows the results of examining the connection resistance by connecting the tape wire rod pieces in the same manner as in Example 1 by changing the above. In addition,
The connection resistance when the thickness of the paste coating layer is 200 μm is
It is almost the same as the case of connection by soldering. Example 3 Length 20 mm cut out from the tape wire produced in Example 1
The piece of tape wire of No. 1 was subjected to nitric acid etching for 120 seconds, and the thickness d p of the coating layer of silver paste was set to 10 μm.
Table 4 shows the results of examining the connection resistance by changing the l (mm) to 5, 10, 15 mm, connecting the tape wire pieces in the same manner as in Example 1. It can be seen that the connection resistance decreases in inverse proportion to the connection area.

【0025】実施例4 実施例1で製造したテープ線材を用いて、図8に斜視的
に示すような、直径 8cmの1ターンコイルを作製した。
すなわちテープ線材を予め所要の長さに切断し、接合部
を成す銀シース領域においては、互いに対向する面側の
みをエッチングするように、反対側の面にパラフィンを
塗布してから(マスキング)、硝酸に浸して60秒間エッ
チング処理を行い、その後、アセトンによってパラフィ
ンを除去してから、重ねしろを20mmとして、実施例1の
場合と同様にテープ線材片3′を接続し、1ターンコイ
ルを作製した。この場合には、エッチングされずに残留
した片側のシース材によって強度が保たれるので、強度
を余り減少させずに低抵抗接続を形成し得る。
Example 4 Using the tape wire material produced in Example 1, a one-turn coil having a diameter of 8 cm was produced as shown in a perspective view in FIG.
That is, the tape wire is cut in advance to a required length, and in the silver sheath region forming the joint, paraffin is applied to the opposite surface so that only the surfaces facing each other are etched (masking), After immersion in nitric acid for 60 seconds for etching, after removing paraffin with acetone, the overlap margin is set to 20 mm, the tape wire piece 3'is connected in the same manner as in Example 1, and one turn coil is produced. did. In this case, since the strength is maintained by the one-side sheath material that remains without being etched, a low resistance connection can be formed without significantly reducing the strength.

【0026】前記製作した1ターンコイルの接続抵抗を
評価するため、コイルを液体窒素中に浸した状態で電磁
誘導によってループ電流を流し、その減衰を調べたとこ
ろ、減衰の時定数 126sec を得た。コイルのインダクタ
ンスは10μH 程度であることから、接続部の抵抗を求め
ると10-7Ω程度と推定される。同様のコイルを、ハンダ
接続によって作製したところ(比較例3)、減衰の時定
数は26マイクロ秒で、接続抵抗は 3.5×10-4Ωの値しか
得られなかった。
In order to evaluate the connection resistance of the one-turn coil manufactured as described above, a loop current was caused to flow by electromagnetic induction while the coil was immersed in liquid nitrogen, and its decay was examined. As a result, a decay time constant of 126 sec was obtained. . Since the inductance of the coil is about 10 µH, the resistance of the connection is estimated to be about 10 -7 Ω. When a similar coil was produced by solder connection (Comparative Example 3), the decay time constant was 26 microseconds, and the connection resistance was only 3.5 × 10 −4 Ω.

【0027】実施例5 実施例1で製造したテープ線材を用いて、図9に斜視的
に示すような、外径35mm,内径20mm,高さ15mmのダブル
パンケーキコイルを作製した。すなわちテープ線材を長
さ4mに切断し、円筒上の巻枠9に巻装してから巻線の最
終段階で、最外周の1ターンで接合する構成とし、先ず
接合部を成す銀シース領域においては、互いに対向する
面側のみをエッチングするように、反対側の面にパラフ
ィンを塗布してから、硝酸に浸して 120秒間エッチング
処理を行い、その後、アセトンによってパラフィンを除
去してから、重ねしろを 4cmとして、この重ねしろ部に
銀ペーストを厚さ10μm 塗布してから、被接合面を銀ペ
ースト層を介して重ね仮接合させた後、大気中, 840℃
で50時間熱処理して、ダブルパンケーキコイルを作製し
た。
Example 5 Using the tape wire produced in Example 1, a double pancake coil having an outer diameter of 35 mm, an inner diameter of 20 mm and a height of 15 mm, as shown in a perspective view in FIG. 9, was produced. That is, the tape wire is cut into a length of 4 m, wound on a cylindrical winding frame 9, and then joined at one outermost turn at the final stage of winding. First, in the silver sheath region forming the joined portion. Apply paraffin to the opposite surface so that only the surfaces facing each other are etched, dip it in nitric acid and perform an etching treatment for 120 seconds, remove the paraffin with acetone, and then stack it. To 4 cm, apply a silver paste to the overlap area to a thickness of 10 μm, and then temporarily superimpose the surfaces to be joined via a silver paste layer and then in the air at 840 ° C.
It was heat-treated for 50 hours to prepare a double pancake coil.

【0028】前記製作したダブルパンケーキコイルに、
樹脂の含浸処理を施し絶縁処理した後、前記実施例4の
場合と同様に、液体窒素中に浸した状態で電磁誘導によ
ってループ電流を流し、その減衰を調べたところ、減衰
の時定数 226秒であり、この値から接続部抵抗 6.0×10
-8Ωが求められた。
In the double pancake coil produced above,
After the resin impregnation treatment and the insulation treatment, a loop current was caused to flow by electromagnetic induction in the state of being immersed in liquid nitrogen as in the case of Example 4, and the decay was examined. The decay time constant was 226 seconds. From this value, the connection resistance is 6.0 × 10
-8 Ω was required.

【0029】[0029]

【発明の効果】上記の説明から分かるように、本発明に
係る酸化物超電導線材の接続方法によれば、半田付け接
続の場合よりも1〜2桁低い接続抵抗での接続が可能
で、さらに、線材の臨界電流や強度が接続箇所の周辺で
劣化することもなく、すぐれた接続を実現することがで
きる。つまり、MRIなどの永久電流モード通電を必要
とする応用にも道を拓くものである。一方、この接続方
法によって、酸化物超電導線材を接続・長尺化して構成
した送電ケーブルでは送電ロスを低減することができ、
また構成された超電導コイルでは通電時の発熱を低減で
きる。いずれにせよ、本発明に係る接続方法は、すぐれ
た特性面から、多くの関心が払われている酸化物超電導
線材の実用化に大きく寄与するものといえる。
As can be seen from the above description, the method of connecting oxide superconducting wires according to the present invention enables connection with a connection resistance that is 1 to 2 orders of magnitude lower than that in the case of soldering connection. It is possible to realize an excellent connection without the critical current and strength of the wire material being deteriorated around the connection point. In other words, it also opens the way to applications requiring permanent current mode energization such as MRI. On the other hand, by this connection method, it is possible to reduce power transmission loss in the power transmission cable configured by connecting and lengthening the oxide superconducting wire.
In addition, the superconducting coil configured can reduce heat generation during energization. In any case, it can be said that the connection method according to the present invention greatly contributes to the practical application of the oxide superconducting wire, which has received much attention from the viewpoint of excellent characteristics.

【0030】[0030]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る接続方法の実施態様例の説明に用
いる斜視図。
FIG. 1 is a perspective view used for explaining an example of an embodiment of a connection method according to the present invention.

【図2】本発明に係る接続方法の実施態様例を示す模式
的な斜視図。
FIG. 2 is a schematic perspective view showing an embodiment example of a connection method according to the present invention.

【図3】本発明に係る接続方法による接続部の断面組織
例を示すもので、 (a)は模式図、 (b)は顕微鏡写真。
3A and 3B show an example of a cross-sectional structure of a connecting portion by the connecting method according to the present invention, in which FIG. 3A is a schematic diagram and FIG.

【図4】本発明に係る接続方法における被接続部を処理
する実施態様例を示す模式図。
FIG. 4 is a schematic diagram showing an example of an embodiment for processing a connected portion in the connection method according to the present invention.

【図5】本発明に係る接続方法において被接続部を処理
した後状態を模式的に示す断面図。
FIG. 5 is a cross-sectional view schematically showing a state after processing a connected portion in the connecting method according to the present invention.

【図6】本発明に係る接続方法の他の実施態様例を示す
模式的な斜視図。
FIG. 6 is a schematic perspective view showing another embodiment example of the connection method according to the present invention.

【図7】本発明に係る接続方法で接続した線材の電圧電
流特性例図。
FIG. 7 is a diagram showing an example of voltage-current characteristics of a wire connected by the connecting method according to the present invention.

【図8】本発明に係る接続方法の応用例を示す1ターン
コイルの斜視図。
FIG. 8 is a perspective view of a one-turn coil showing an application example of the connection method according to the present invention.

【図9】本発明に係る接続方法の他の応用例を示すダブ
ルパンケーキコイルの斜視図。
FIG. 9 is a perspective view of a double pancake coil showing another application example of the connection method according to the present invention.

【図10】粉末法による酸化物超電導テープ線材の作製
プロセスを示すフローチャート。
FIG. 10 is a flowchart showing a manufacturing process of an oxide superconducting tape wire by a powder method.

【図11】従来の接続方法の実施態様例を示す模式的な
斜視図。
FIG. 11 is a schematic perspective view showing an example of an embodiment of a conventional connecting method.

【図12】従来の第1の接続方法で接続した線材の電圧
電流特性図。
FIG. 12 is a voltage-current characteristic diagram of wires connected by the first conventional connecting method.

【図13】(a), (b)はそれぞれ異なる従来の接続方法
による接続部の断面組織例を示す模式図。
13 (a) and 13 (b) are schematic views showing examples of cross-sectional structures of connecting portions by different conventional connecting methods.

【図14】(a), (b)はそれぞれ異なる従来の接続方法
による接続部の断面組織例を示す顕微鏡写真。
14 (a) and 14 (b) are photomicrographs showing examples of the cross-sectional structure of a connecting portion by different conventional connecting methods.

【図15】従来の第2の接続方法で接続した線材の電圧
電流特性図。
FIG. 15 is a voltage-current characteristic diagram of wires connected by a second conventional connecting method.

【図16】従来の第3の接続方法で接続した線材の電圧
電流特性図。
FIG. 16 is a voltage-current characteristic diagram of wires connected by a third conventional connecting method.

【符号の説明】[Explanation of symbols]

1…酸化物超電導体 2…導電性金属層(シース材)
3…酸化物超電導線材 3′…酸化物超電導線材
片 4…空隙部 5…金属製副木 6…硝酸(エ
ッチング液) 7…白金電極 8…テープ状線材片
9…巻枠
1 ... Oxide superconductor 2 ... Conductive metal layer (sheath material)
3 ... Oxide superconducting wire 3 '... Oxide superconducting wire piece 4 ... Void part 5 ... Metal splint 6 ... Nitric acid (etching liquid) 7 ... Platinum electrode 8 ... Tape-shaped wire piece 9 ... Winding frame

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年11月18日[Submission date] November 18, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項1[Name of item to be corrected] Claim 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】発明の詳細な説明[Name of item to be amended] Detailed explanation of the invention

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、線材の臨界電流を低下
させずに低い接続抵抗で、酸化物超電導線材同士を接続
し得る酸化物超電導線材の接続方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for connecting oxide superconducting wires, which is capable of connecting oxide superconducting wires with a low connection resistance without lowering the critical current of the wires.

【0002】[0002]

【従来の技術】周知のように、La系の酸化物超電導体
の出現以来、超電導材料の臨界温度が77.3Kの液体
窒素温度を超える至り、また、これらの酸化物超電導体
は、液体窒素冷却の状態において、所要の超電導特性が
期待されることから、液体ヘリウム冷却のために高度な
極低温技術を必要とする金属系超電導体に比べて、その
応用の範囲が格段に広がるものと注目されている。
2. Description of the Related Art As is well known, since the advent of La-based oxide superconductors, the critical temperature of superconducting materials has exceeded the liquid nitrogen temperature of 77.3 K, and these oxide superconductors have liquid nitrogen. In the cooled state, the expected superconducting properties are expected, so it should be noted that the range of its application will be much wider than that of metal-based superconductors that require advanced cryogenic technology for cooling liquid helium. Has been done.

【0003】ところで、酸化物超電導体の応用分野とし
ては、たとえば電力・産業エレクトロニクス機器などが
あり、具体的には、たとえば送電ケーブルや高磁界を発
生するための超電導コイルなどが挙げられる。しかし、
いずれの場合も酸化物超電導体は、機械的な強度や特性
の安定性などの点を考慮して、一般的に金属との複合・
長尺化による線材の形態で使用されるため、酸化物超電
導体の線材化が注力される課題といえる。
By the way, the field of application of the oxide superconductor is, for example, electric power / industrial electronic equipment, and specifically, for example, a power transmission cable and a superconducting coil for generating a high magnetic field. But,
In either case, the oxide superconductor is generally a composite with a metal in consideration of mechanical strength and stability of characteristics.
Since it is used in the form of a wire rod by lengthening it, it can be said that the focus is on making the oxide superconductor wire rod.

【0004】酸化物超電導体線材の製造方法に関して
は、いろいろの手法が提案されており、現状では、図1
0に製造工程をフローチャートで示す粉末法(パウダー
インチューブ法)が一般的である。そして、この粉末法
は仮焼した酸化物超電導体、たとえばBi1.72Pb
0.34Sr1.83Ca1.97Cu3.13
粉末を、シースとなる金属管、たとえば銀管中に充填
し、次にスウェージングやドローイングなどの冷間減面
加工によって伸線し、さらに最終的な熱処理を行って、
酸化物超電導体1の外周面を導電性金属層2で被覆して
成るテープ状の酸化物超電導線材3化する方法である。
Various methods have been proposed for manufacturing oxide superconducting wire, and at present, as shown in FIG.
The powder method (powder in tube method) whose manufacturing process is shown in FIG. And this powder method is based on a calcined oxide superconductor such as Bi 1.72 Pb.
A powder of 0.34 Sr 1.83 Ca 1.97 Cu 3.13 O x is filled in a metal tube that serves as a sheath, for example, a silver tube, and then expanded by cold surface-reduction processing such as swaging and drawing. Line, and then perform the final heat treatment,
This is a method of forming a tape-shaped oxide superconducting wire 3 in which the outer peripheral surface of the oxide superconductor 1 is covered with a conductive metal layer 2.

【0005】そして、前記超電導線材の接続は、金属系
の超電導体、酸化物系の超電導体を問わず、実用化にお
いて重要な課題であり、特に、MRIのような永久電流
モード通電を行う超電導コイルの場合は、電流減衰を防
ぐために、閉ループ回路を形成する際の接続部の抵抗を
可及的にゼロに近づける必要がある。この接続抵抗に関
しては、ニオブ−チタン線材を用いて構成したMRIマ
グネットの場合、フィラメントの固相拡散により接続を
形成し、10−8Ω以下の低い接続抵抗を得ている。一
方、酸化物超電導線材でMRIマグネットを作製するに
は、同様の接続抵抗を実現しなければならないし、また
送電ケーブルや積層型の超電導コイルの構成では、接続
抵抗値についてMRIほど厳しい要求ではないものの、
接続により線材を長尺化したり、パンケーキコイルの間
を接続したりする際、いわゆる線材の接続技術が必要で
ある。
The connection of the superconducting wire is an important issue in practical use regardless of whether it is a metal-based superconductor or an oxide-based superconductor. In the case of a coil, it is necessary to make the resistance of the connection portion when forming a closed loop circuit as close to zero as possible in order to prevent current decay. Regarding this connection resistance, in the case of an MRI magnet constructed by using a niobium-titanium wire, a connection is formed by solid-phase diffusion of filaments, and a low connection resistance of 10 −8 Ω or less is obtained. On the other hand, in order to manufacture an MRI magnet with an oxide superconducting wire, the same connection resistance must be realized, and in the structure of a power transmission cable or a laminated superconducting coil, the connection resistance value is not as strict as MRI. Though
A so-called wire connecting technique is required when a wire is lengthened by connection or when pancake coils are connected.

【0006】このような要求に対応して、酸化物超電導
線材の接続方法もいろいろ試みられており、大別する
と、(A)酸化物超電導体1を被覆している導電性金属
層(シース材)2を剥離して接続する方法、(B)導電
性金属層2を剥離せずにそのまま接続する方法に分けら
れる。前者には、図11に斜視的に示すごとく、テープ
状の酸化物超電導線材3の片面の銀シース2を剥離・除
去し、露出した酸化物超電導体1同士を対向接触させ
て、さらに、プレスと熱処理を繰り返して接続する方法
(接続法(a))がある。また、後者には、テープ状の
酸化物超電導線材3同士をハンダ付けによって接続する
方法(接続法(b−1))、テープ状の酸化物超電導線
材3同士を重ねて、熱処理によって固相拡散接続する方
法(接続法(b−2))、および前記接続法(b−
2))において、プレスによりテープ状の酸化物超電導
線材3同士を圧着、熱処理する方法(接続法(b−
3))がある。
In response to such demands, various methods for connecting oxide superconducting wires have been attempted. Broadly speaking, (A) a conductive metal layer (sheath material) covering the oxide superconductor 1 is used. 2) a method of peeling and connecting 2), and (B) a method of directly connecting the conductive metal layer 2 without peeling. In the former case, as shown in a perspective view in FIG. 11, the silver sheath 2 on one surface of the tape-shaped oxide superconducting wire 3 is peeled off and removed, and the exposed oxide superconductors 1 are brought into contact with each other, and further pressed. And a method of connecting by repeating heat treatment (connection method (a)). Further, on the latter, a method of connecting the tape-shaped oxide superconducting wires 3 with each other by soldering (connection method (b-1)), overlapping the tape-shaped oxide superconducting wires 3 with each other, and performing solid phase diffusion by heat treatment. Connection method (connection method (b-2)), and the connection method (b-
2)), a method in which the tape-shaped oxide superconducting wire rods 3 are pressure-bonded and heat-treated by a press (connection method (b-
There is 3)).

【0007】ここで、前記接続方法の優劣を考えるに当
たり、(1)接続抵抗が小さいこと、(2)線材を流れ
る臨界電流(Ic)が接続箇所近傍で劣化しないことな
どが重要なポイントとなる。特に、(2)の点に関して
は接続作業に伴って、酸化物超電導体が溶融したり、分
解したりする化学的な劣化、および機械的加工によるク
ラックの発生など、機械的な劣化を引き起こさないこと
を要する。
Here, in considering the superiority or inferiority of the connection method, (1) the connection resistance is small, (2) the critical current (Ic) flowing through the wire is not deteriorated in the vicinity of the connection point, and so on. . In particular, regarding the point (2), mechanical deterioration such as chemical deterioration such as melting or decomposition of the oxide superconductor and generation of cracks due to mechanical processing are not caused with connection work. Requires that.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上述の
接続法(a),(b−1),(b−2),(b−3)の
いずれの場合も、前記(1)および(2)の条件を同時
に満たすことはできない。たとえば、接続法(a)の場
合には、接続抵抗をほぼ完全にゼロにできるものの、前
記図11に展開して斜視的に示すように、A、A´の部
分にクラックを生じて臨界電流Icが劣化する。つま
り、この接続法(a)では、A、A´の部分で酸化物超
電導体層の厚さが不連続となっているため、テープ状の
酸化物超電導線材3同士を重ねてプレスする際、過大な
剪断応力の集中が起こりクラックを生じるものと考えら
れる。また、接続法(b−3)の場合にも、臨界電流I
cの劣化の度合いは接続法(a)の場合に比べて小さい
ものの、同じように応力集中が起こり易い。
However, in any of the connection methods (a), (b-1), (b-2), and (b-3) described above, the above (1) and (2) are used. It is not possible to satisfy both conditions at the same time. For example, in the case of the connection method (a), although the connection resistance can be almost completely reduced to zero, as shown in the developed and perspective view of FIG. Ic deteriorates. That is, in this connection method (a), since the thickness of the oxide superconducting layer is discontinuous in the portions A and A ′, when the tape-shaped oxide superconducting wires 3 are stacked and pressed, It is considered that excessive shear stress concentration causes cracks. In the case of the connection method (b-3), the critical current I
Although the degree of deterioration of c is smaller than that of the connection method (a), stress concentration is likely to occur similarly.

【0009】一方、前記接続法(b−1)や(b−2)
の場合は、臨界電流Icの劣化がほとんど見られないも
のの、接続抵抗値が相対的に大きい。たとえば接続法
(b−1)の半田付けの場合には、接続抵抗が半田固有
の抵抗率(Pb−63%Sn系では20℃,14.8μ
Ωcmで、銀の約10倍)によって左右されており、た
とえば2.8×5mmの接続面積では、図12に示すよ
うに、〜10−6Ω程度の接続抵抗しか得られない。ま
た、接続法(b−2)の場合は、図13(a)に模式的
に、さらに図14(a)に顕微鏡写真で、それぞれに接
続部の断面組織を示すごとく、シース材層を成す上下の
銀層2,2の間に空隙4が残留し、図15に示すように
〜10−6Ω程度の接続抵抗しか得られないのが現状で
ある。
On the other hand, the connection methods (b-1) and (b-2)
In the case of 1, the deterioration of the critical current Ic is hardly seen, but the connection resistance value is relatively large. For example, in the case of soldering in the connection method (b-1), the connection resistance is a resistivity peculiar to the solder (Pb-63% Sn system, 20 ° C., 14.8 μ
Ω cm, which is about 10 times that of silver). For example, a connection area of 2.8 × 5 mm gives a connection resistance of about 10 −6 Ω as shown in FIG. In the case of the connection method (b-2), a sheath material layer is formed as shown in FIG. 13 (a) schematically and in FIG. 14 (a) with a photomicrograph, showing the cross-sectional structure of each connection portion. At present, the void 4 remains between the upper and lower silver layers 2 and 2, and as shown in FIG. 15, only a connection resistance of about 10 −6 Ω can be obtained.

【0010】本発明は上記事情に対処してなされたもの
で、臨界電流を低下させることなく、低い接続抵抗で酸
化物超電導線材線材の長尺化など容易に達成し得る酸化
物超電導線材線材の接続方法の提供を目的とする。
The present invention has been made in consideration of the above circumstances, and provides an oxide superconducting wire rod which can be easily achieved such as lengthening of the oxide superconducting wire rod with a low connection resistance without lowering the critical current. The purpose is to provide a connection method.

【0011】[0011]

【課題を解決するための手段】本発明に係る酸化物超電
導線材の接続方法は、酸化物超電導体の外周面を導電性
金属層で被覆して成る酸化物超電導線材同士の一部を重
ね合わせ、その重ね合わせ部で接続する酸化物超電導線
材の接続方法において、前記酸化物超電導線材の重ね合
わせにより対接する部分の、少なくともいずれか一方の
導電性金属層の厚さを最大95%減肉・除去する工程、
前記減肉・除去した導電性金属層面に、前記導電性金属
層を形成する金属を含む厚さ200μm以下のペースト
層を被着形成する工程、および前記被着形成したペース
ト層を介して酸化物超電導線材を重ね合わせ、乾燥後、
熱処理を施す工程を具備することを特徴とする。
A method of connecting oxide superconducting wires according to the present invention is a method in which oxide superconducting wires formed by coating an outer peripheral surface of an oxide superconductor with a conductive metal layer are partially overlapped with each other. In the method of connecting oxide superconducting wires connected at the overlapping portion, the thickness of at least one of the conductive metal layers in the contacting portion due to the overlapping of the oxide superconducting wires is reduced by up to 95%. Removal process,
A step of depositing a paste layer having a thickness of 200 μm or less containing a metal forming the conductive metal layer on the surface of the thinned / removed conductive metal layer, and an oxide through the paste layer formed by the deposition. After superposing the superconducting wires and drying,
It is characterized by including a step of performing heat treatment.

【0012】本発明に係る酸化物超電導線材の接続方法
は、互いに対接・接続する酸化物超電導体層間に薄い常
電導性金属層を配置し、擬超電導接続を形成する方法で
あり、中間の常電導層の抵抗をできるだけ小さくするこ
とによって、実用上、超電導接続とみなせる接続特性を
得るようにしたものである。ここで、接続のため重ね合
わせる部分(領域)の導電性金属層を減肉・除去する目
的は、中間の常電導体層の厚さを薄くすることにあり、
減肉・除去の方法としては、たとえばサンドペーパーや
グラインダーなどを利用する機械的な方法、あるいは酸
(硫酸、硝酸など)で溶解、電解エッチングする化学的
な方法が例示される。そして、減肉・除去する部分の厚
さdは、元のシース厚さdに対してd/d
0.95、望ましくは0.1≦d/d≦0.95、
より望ましくは0.5≦d/d≦0.8である。実
験的にはdが0に近似していても、導電性金属表面に
付着した油脂や塩分などを除去するだけで接続抵抗低減
に効果がある。さらに、前記中間の導電性金属層の厚さ
を薄くしていくと、より低い接続抵抗を得ることが可能
である。一方、d/dが0.95を超えると、エッ
チングむらなどのために部分的に酸化物超電導体層が酸
中に露出して劣化する恐れがある。
The method for connecting oxide superconducting wires according to the present invention is a method for forming a pseudo superconducting connection by arranging a thin normal conductive metal layer between oxide superconductor layers that are in contact with each other and connected. By making the resistance of the normal-conducting layer as small as possible, it is possible to obtain connection characteristics that can be regarded as superconducting connection in practical use. Here, the purpose of thinning / removing the conductive metal layer in the overlapping portion (region) for connection is to reduce the thickness of the intermediate normal conductor layer,
Examples of the method of thinning / removing include a mechanical method using sandpaper, a grinder or the like, or a chemical method of dissolving and electrolytically etching with an acid (sulfuric acid, nitric acid, etc.). The thickness d 1 of the portion to be thinned / removed is d 1 / d 0 ≦ the original sheath thickness d 0 .
0.95, preferably 0.1 ≦ d 1 / d 0 ≦ 0.95,
More preferably, 0.5 ≦ d 1 / d 0 ≦ 0.8. Experimentally, even if d 1 is close to 0, it is effective in reducing the connection resistance only by removing oils and fats and salt adhering to the surface of the conductive metal. Furthermore, if the thickness of the intermediate conductive metal layer is reduced, it is possible to obtain a lower connection resistance. On the other hand, if d 1 / d 0 exceeds 0.95, the oxide superconductor layer may be partially exposed to the acid and deteriorate due to uneven etching.

【0013】次に、被覆材として機能している導電性金
属と同種の金属を含むペーストを、前記酸化物超電導線
材を重ね合わせる面間に介在させる目的は、薄くした導
電性金属層同士の接触をできるだけ面接触に近い状態に
することにある。たとえば図1に斜視的に示すごとく、
テープ状の酸化物超電導線材を重ね合わせるときに、導
電性金属層2,2間に介在するものがない場合、換言す
ると前記接続法(b−3)に相当する場合は両者の接触
は点接触となって、図13(b)に模式的に、さらに図
14(b)に顕微鏡写真で、それぞれに接続部の断面組
織を示すごとく、次の熱処理の工程で十分な一体化が起
こらない。つまり、この接続方法で接続した場合の電圧
電流特性は、図15に示すごとくであり、特性的に満足
し得ない状況にある。しかしながら、前記ペーストを塗
布(被着)し、介在させることにより、ペースト材中に
含まれる微細な導電性金属粒子(通常数μm以下)が、
導電性金属シースの表面の凹凸を埋めて、両者を面接触
に近い状態で接触させることが可能となる。つまり、ペ
ースト層厚を200μm以下に塗布した後、流動性を呈
する段階で導電性金属層同士を圧着して、そのまま乾燥
させることにより緻密な接続組織の形成が可能となる。
ここで、塗布するペーストの厚さは、塗りムラのない限
り薄いほど好ましく、200μmを超えるとハンダ接続
の場合よりも接続抵抗が大きくなる。
Next, the purpose of interposing a paste containing a metal of the same kind as the conductive metal functioning as a coating material between the surfaces on which the oxide superconducting wire is superposed is to contact the thinned conductive metal layers. To make the surface contact as close as possible. For example, as shown in perspective in FIG.
When the tape-shaped oxide superconducting wires are superposed, if there is nothing interposed between the conductive metal layers 2 and 2, in other words, if they correspond to the connection method (b-3), the contact between them is point contact. As a result, as shown schematically in FIG. 13 (b) and in the micrograph in FIG. 14 (b), which show the cross-sectional structure of the connecting portion, sufficient integration does not occur in the subsequent heat treatment step. That is, the voltage-current characteristics when the connection is made by this connection method are as shown in FIG. 15, and the characteristics cannot be satisfied. However, when the paste is applied (deposited) and interposed, fine conductive metal particles (usually several μm or less) contained in the paste material are
It becomes possible to fill the irregularities on the surface of the conductive metal sheath and bring them into contact with each other in a state close to surface contact. That is, after the paste layer is applied to a thickness of 200 μm or less, the conductive metal layers are pressure-bonded to each other at the stage of exhibiting fluidity and dried as it is, whereby a dense connection structure can be formed.
Here, the thickness of the paste to be applied is preferably as thin as possible so long as there is no coating unevenness, and if it exceeds 200 μm, the connection resistance becomes larger than in the case of solder connection.

【0014】さらに、前記被着形成したペースト層を介
して、被接続部を成す導電性金属シース同士を固相反応
によって一体化するための熱処理条件(温度,時間な
ど)は、シース材を成す導電性金属の種類,減肉・除去
後の厚さなどによって適宜、選択設定され、たとえばシ
ース材が銀で、減肉・除去後の厚さが6〜15μm程度
の場合、820〜850℃,10〜50時間程度でよ
い。
Furthermore, the heat treatment conditions (temperature, time, etc.) for integrating the conductive metal sheaths forming the connected portions by solid-phase reaction via the paste layer formed by the deposition form the sheath material. It is appropriately selected and set according to the type of the conductive metal, the thickness after thinning / removing, and the like. For example, when the sheath material is silver and the thickness after thinning / removing is about 6 to 15 μm, 820 to 850 ° C. It may be about 10 to 50 hours.

【0015】本発明において対象となる酸化物超電導体
としては、Y系に代表される希土類元素含有の酸化物超
電導体、La−Sr−Cu−O系、Bi−Sr−Ca−
Cu−O系、Tl−Ba−Ca−Cu−O系、Nd−C
e−Cu−O系の酸化物超電導体など、各種の酸化物超
電導体が挙げられる。上記希土類元素含有の酸化物超電
導体は、超電導状態を実現できるものであればよく、た
とえばReMCu7−δ(Reは、Y、La、S
c、Nd、Sm、Eu、Gd、Dy、Ho、Er、T
m、Yb、Luなどの希土類元素から選ばれた少なくと
も1種の元素、MはBi、Sr、Caから選ばれた少な
くとも1種の元素、δは酸素欠陥を表し通常1以下の
数、Cuの一部はTi、V、Cr、Mn、Fe、Co、
Ni、Znなどで置換可能)で表される酸化物などが例
示される。
The oxide superconductors to which the present invention is applicable include rare earth element-containing oxide superconductors represented by Y system, La-Sr-Cu-O system, and Bi-Sr-Ca- system.
Cu-O system, Tl-Ba-Ca-Cu-O system, Nd-C
Various oxide superconductors, such as an e-Cu-O-based oxide superconductor, may be mentioned. The rare earth element-containing oxide superconductor may be any one that can realize a superconducting state, and for example, ReM 2 Cu 3 O 7-δ (Re is Y, La, S.
c, Nd, Sm, Eu, Gd, Dy, Ho, Er, T
At least one element selected from rare earth elements such as m, Yb, and Lu, M is at least one element selected from Bi, Sr, and Ca, δ is an oxygen defect, usually a number of 1 or less, Cu Some are Ti, V, Cr, Mn, Fe, Co,
Examples thereof include oxides represented by (which can be replaced by Ni, Zn, etc.).

【0016】また、Bi系の酸化物超電導体は、化学
式:BiSrCaCu、:Bi(Sr,
Ca)Cuなどで表されるものであり、さら
に、Tl系の酸化物超電導体は、化学式:TlBa
CaCu、:Tl(Sr,Ca)Cu
などで実質的に表されるものであり、これらの酸化物
超電導体に銀を添加したものを使用してもよい。
The Bi-based oxide superconductor has the chemical formula: Bi 2 Sr 2 Ca 2 Cu 3 O x ,: Bi 2 (Sr,
Ca) 3 Cu 2 O x or the like, and the Tl-based oxide superconductor has a chemical formula: Tl 2 Ba 2
Ca 2 Cu 3 O y,: Tl 2 (Sr, Ca) 3 Cu 2 O
It is substantially represented by y or the like, and silver oxide superconductors to which silver is added may be used.

【0017】一方、酸化物超電導線材の導電性金属シー
ス材としては、室温、高温(800〜1000℃の熱処
理温度)を問わず、内部の(埋め込む)酸化物超電導体
によって酸化されない材料であることが必要であるとと
もに、超電導が破れたときに流れている電流をバイパス
できるように、電気的に良導体でなくてはならない。具
体的には、銀、金、白金、パラジウム、銅およびそれら
の合金が好ましく、より好ましくは銀である。そして、
シース材として銀または銀合金をもちいた場合は、ペー
ストも銀ペーストが選択される。さらに、導電性金属シ
ース材の機械的強度を向上させる目的で、微量の金属酸
化物(酸化スズ、酸化亜鉛、酸化アルミニウムなど)を
添加した複合材も使用可能である。また、接続部分に熱
処理前、もしくは熱処理後において、図2に斜視的に要
部を示すごとく、上記シース材と同種の金属製副木5に
よって補強することも可能である。
On the other hand, the conductive metal sheath material of the oxide superconducting wire is a material which is not oxidized by the internal (embedding) oxide superconductor at room temperature or high temperature (heat treatment temperature of 800 to 1000 ° C.). And must be electrically good conductors so that they can bypass the current flowing when the superconductivity is broken. Specifically, silver, gold, platinum, palladium, copper and alloys thereof are preferable, and silver is more preferable. And
When silver or silver alloy is used as the sheath material, silver paste is selected as the paste. Further, for the purpose of improving the mechanical strength of the conductive metal sheath material, a composite material to which a trace amount of metal oxide (tin oxide, zinc oxide, aluminum oxide, etc.) is added can be used. Further, before or after the heat treatment, the connecting portion can be reinforced with a metal splint 5 of the same kind as the sheath material, as shown in a perspective view in FIG.

【0018】[0018]

【作用】本発明によれば、互いに重ね合わせる被接続部
の導電性金属シース面が、減肉・除去などにより実質的
に清浄化されている一方、対向・対接面間にペースト層
を介在した形での固相反応によって一体化する。そし
て、前記微細な金属粒子を含むペースト層によって、対
向・対接する被接続部の導電性金属シース面は、一様な
面接触を呈して固相反応が行われるため、空隙部など残
存することなく緻密な一体化が達成される。たとえば図
3(a)に模式的に、さらに図3(b)に顕微鏡写真
で、それぞれに接続部の断面組織を示すごとく、シース
材層を成す上下の銀層2,2間は一様で緻密な低抵抗な
接続部を容易、かつ確実に形成することが可能である。
つまり、本発明の接続方法によれば、一般的な半田接続
法よりも1桁以上接続抵抗が小さく、かつ接続箇所も十
分な強度をもち、また臨界電流(Ic)が接続部近傍で
劣化を起こさない線材の提供(長尺化した線材の提供)
が可能となる。
According to the present invention, the conductive metal sheath surfaces of the connecting portions to be superposed on each other are substantially cleaned by thinning / removing, while the paste layer is interposed between the facing and facing surfaces. Integral by solid-state reaction in the form The conductive metal sheath surface of the connected portion facing and confronting with each other by the paste layer containing the fine metal particles exhibits uniform surface contact and a solid-phase reaction is performed, so that a void or the like remains. A precise integration is achieved. For example, as shown schematically in FIG. 3 (a) and in a micrograph in FIG. 3 (b), the upper and lower silver layers 2 and 2 forming the sheath material layer are uniform as shown in the cross-sectional structure of the connecting portion. It is possible to easily and surely form a precise and low resistance connecting portion.
That is, according to the connection method of the present invention, the connection resistance is smaller than that of a general solder connection method by one digit or more, the connection portion has sufficient strength, and the critical current (Ic) deteriorates in the vicinity of the connection portion. Providing wire rods that do not wake up (providing long wire rods)
Is possible.

【0019】[0019]

【実施例】以下本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.

【0020】実施例1 シュウ酸塩共沈法によって調製し、IPC分析の結果、
Bi:Pb:Sr:Ca:Cu=1.72:0.34:
1.83:1.97:3.13の組成を有する粉末を用
意した。この粉末100gをMgO製の試料皿に収容
し、大気中800℃で20時間仮焼を行った後、径1〜
10μmに粉砕して仮焼粉を得た。この仮焼粉の相をX
線回折によって調べたところ、(Bi,Pb)Sr
CaCu(低Tc相)と、CaPbO,Cu
Oとの混合相であった。
Example 1 Prepared by the oxalate coprecipitation method, the result of IPC analysis was as follows:
Bi: Pb: Sr: Ca: Cu = 1.72: 0.34:
A powder having a composition of 1.83: 1.97: 3.13 was prepared. 100 g of this powder was housed in a MgO sample dish and calcined in the atmosphere at 800 ° C. for 20 hours, and then the diameter of 1 to 1
It was pulverized to 10 μm to obtain a calcined powder. The phase of this calcined powder is X
When examined by line diffraction, (Bi, Pb) 2 Sr 2
CaCu 2 O x (low Tc phase), Ca 2 PbO 4 , Cu
It was a mixed phase with O.

【0021】前記仮焼粉を外径6mm,内径5mmの銀
管内に充填し、引き抜き加工(ドローイング)および圧
延加工(ローリング)によって幅2.5mm,厚さ0.
15mmのテープ材とした。その後、酸素を7.7%−
アルゴン(バランス)系の雰囲気中で、835℃,50
時間熱処理し、再度、2次圧延加工を施して幅2.8m
m,厚さ0.13mmのテープ状酸化物超電導線材を得
た。すなわち、Pbを添加したBi系の(Bi,Pb)
SrCaCu(高Tc相)の銀シーステー
プ線材を、いわゆる粉末法(パウダーインチューブ法)
で製造した。
The calcined powder was filled in a silver tube having an outer diameter of 6 mm and an inner diameter of 5 mm, and the width was 2.5 mm and the thickness was 0.1 mm by drawing (drawing) and rolling (rolling).
A 15 mm tape material was used. After that, 7.7% oxygen
In an atmosphere of argon (balance) system, 835 ° C, 50
2.8m in width after heat treatment for 2 hours and secondary rolling again
A tape-shaped oxide superconducting wire having a thickness of 0.13 mm and a thickness of 0.13 mm was obtained. That is, the Bi-based (Bi, Pb) added with Pb
A 2 Sr 2 Ca 2 Cu 3 O x (high Tc phase) silver sheath tape wire is so-called powder method (powder in tube method).
Manufactured in.

【0022】前記のテープ線材を長さ20mmに切断
し、接続部に相当する部分を、たとえば図4に模式的に
示すごとく、ビーカ中に収容した濃度20%の硝酸(市
販濃硝酸の3倍希釈品)6中に浸漬した後、白金電極7
を陰極(−)、テープ線材片8を陽極(+)として10
0mA、t秒間の直流通電を行いエッチング処理をし
た。この通電時間t秒間を、0、10、30、60、1
20、180と変えてエッチング処理をした後、数秒間
水洗いして硝酸を除去してから乾燥した。前記エッチン
グの結果、銀シース表面の酸化膜や汚れは完全に除去さ
れ、また、銀シースの厚さは、はじめの30μmから表
1に示す厚さの割合でそれぞれ減少していた。図5は前
記エッチングによって銀シース2が減肉・除去された状
態を断面的に示したものであり、また表1でdはエッ
チング前の値,dはエッチング後の値である。 次に、前記エッチング処理したテープ線材片を2本ず
つ、図6に斜視的に示すごとく、互いに向き合わせ、重
なり合う部分(領域)に銀ペーストを10μm厚さに塗
布し、重ねしろ5mmとして重ね合わせ、乾燥させた後
に炉に収容配置し、大気中、840℃で50時間の熱処
理をおこない相互を接続一体化した。前記熱処理で一体
化した試料を炉から取り出し、接続領域を含む部分と、
接続領域を含まない部分とに電圧端子を配置して、4端
子抵抗法により、液体窒素、ゼロ磁界中での臨界電流
(Ic)測定を行ったところ、そのときの接続抵抗値は
それぞれ表1に併せて示すごとくであった。なお、図7
は前記接続方法で接続した接続部における電圧−電流特
性例を示したものである。
The above tape wire was cut into a length of 20 mm, and the portion corresponding to the connection portion was nitric acid (concentration of 3 times that of commercially available concentrated nitric acid) contained in a beaker, as shown schematically in FIG. Diluted) 6 and then platinum electrode 7
10 as the cathode (-) and the tape wire piece 8 as the anode (+).
An etching treatment was carried out by applying a direct current of 0 mA for t seconds. This energization time t seconds is 0, 10, 30, 60, 1,
After changing the etching process to 20, 180, it was washed with water for several seconds to remove nitric acid and then dried. As a result of the etching, the oxide film and stains on the surface of the silver sheath were completely removed, and the thickness of the silver sheath was reduced from the initial 30 μm at the rate of the thickness shown in Table 1. FIG. 5 is a sectional view showing a state in which the silver sheath 2 is thinned / removed by the etching, and in Table 1, d 0 is a value before etching and d 1 is a value after etching. Next, as shown in a perspective view in FIG. 6, two pieces of the tape wire rods subjected to the etching treatment are opposed to each other, and a silver paste is applied to the overlapping portion (area) to a thickness of 10 μm, and the overlapping margin is set to 5 mm. After drying, they were placed in a furnace and heat-treated in the atmosphere at 840 ° C. for 50 hours to connect and integrate them. The sample integrated by the heat treatment is taken out from the furnace, and a portion including a connection region,
When a voltage terminal was arranged in a portion not including a connection region and a critical current (Ic) was measured in liquid nitrogen and zero magnetic field by a four-terminal resistance method, the connection resistance values at that time are shown in Table 1. It was as shown together with. Note that FIG.
Shows an example of voltage-current characteristics in the connection portion connected by the connection method.

【0023】また、比較のため、前記と同様に20mm
長に切断したテープ片を先に熱処理してから、重ねしろ
をいずれの場合も5mmとし、硝酸エッチング処理を行
ってから半田付け接続した場合(比較例1)、エッチン
グをせずにそのまま半田付けで接続した場合(比較例
2)とについて、上記と同様の条件で接続抵抗など測定
した結果を表2に示す。 表1および表2にから分かるように、本発明に係る接続
方法の場合は、比較例の場合に比べていずれも接続抵抗
が低く、特に比較例2の場合に比べて2桁以上小さい接
続抵抗を実現できる。また、エッチング量が大きいほ
ど、接続抵抗を低減できることが分かる。
For comparison, the same as the above, 20 mm
When the tape pieces cut into long lengths are first heat-treated, then the overlap margin is 5 mm in any case, and nitric acid etching treatment is performed before solder connection (Comparative Example 1), soldering is performed without etching. Table 2 shows the results of measuring the connection resistance and the like under the same conditions as described above for the case of connection in Comparative Example 2 (Comparative Example 2). As can be seen from Table 1 and Table 2, in the case of the connection method according to the present invention, the connection resistance is lower than that of the comparative example, and in particular, the connection resistance is two or more orders of magnitude lower than that of the comparative example 2. Can be realized. Further, it can be seen that the connection resistance can be reduced as the etching amount increases.

【0024】実施例2 実施例1で製造したテープ線材から切り出した長さ20
mmのテープ線材片を、120秒間硝酸エッチング処理
し、銀ペーストの塗布層厚さdを、5,10,20,
50,100,200μmと変化させて、実施例1の場
合と同様にテープ線材片を接続し、接続抵抗を調べた結
果を表3に示す。なお、ペースト塗布層の厚さが200
μmのときの接続抵抗は、半田付けによる接続の場合と
ほぼ同じである。 実施例3 実施例1で製造したテープ線材から切り出した長さ20
mmのテープ線材片を、120秒間硝酸エッチング処理
し、銀ペーストの塗布層厚さdを10μmと設定し、
重ねしろ1(mm)を5,10,15mmと変化させ
て、実施例1の場合と同様にテープ線材片を接続し、接
続抵抗を調べた結果を表4に示す。接続抵抗は接続面積
に反比例して小さくなっていることが分かる。
Example 2 A length 20 cut from the tape wire produced in Example 1
mm piece of tape wire rod is subjected to nitric acid etching treatment for 120 seconds, and the coating layer thickness d p of the silver paste is 5, 10, 20,
Table 3 shows the results of examining the connection resistance by connecting the tape wire pieces in the same manner as in Example 1 while changing the thickness to 50, 100, and 200 μm. The thickness of the paste coating layer is 200
The connection resistance when μm is almost the same as that in the case of connection by soldering. Example 3 Length 20 cut out from the tape wire produced in Example 1
mm piece of tape wire material was subjected to nitric acid etching treatment for 120 seconds, and the coating layer thickness d p of the silver paste was set to 10 μm,
Table 4 shows the results of examining the connection resistance by connecting the tape wire rod pieces in the same manner as in Example 1 while changing the overlap margin 1 (mm) to 5, 10, and 15 mm. It can be seen that the connection resistance decreases in inverse proportion to the connection area.

【0025】実施例4 実施例1で製造したテープ線材を用いて、図8に斜視的
に示すような、直径8cmの1ターンコイルを作製し
た。すなわちテープ線材を予め所要の長さに切断し、接
合部を成す銀シース領域においては、互いに対向する面
側のみをエッチングするように、反対側の面にパラフィ
ンを塗布してから(マスキング)、硝酸に浸して60秒
間エッチング処理を行い、その後、アセトンによってパ
ラフィンを除去してから、重ねしろを20mmとして、
実施例1の場合と同様にテープ線材片3′を接続し、1
ターンコイルを作製した。この場合には、エッチングさ
れずに残留した片側のシース材によって強度が保たれる
ので、強度を余り減少させずに低抵抗接続を形成し得
る。
Example 4 Using the tape wire material produced in Example 1, a one-turn coil having a diameter of 8 cm as shown in a perspective view in FIG. 8 was produced. That is, the tape wire is cut in advance to a required length, and in the silver sheath region forming the joint, paraffin is applied to the opposite surface so that only the surfaces facing each other are etched (masking), Immerse in nitric acid and perform etching for 60 seconds, remove paraffin with acetone, and then set the overlap margin to 20 mm.
Similar to the case of the first embodiment, the tape wire rod pieces 3 ′ are connected and
A turn coil was produced. In this case, since the strength is maintained by the one-side sheath material that remains without being etched, a low resistance connection can be formed without significantly reducing the strength.

【0026】前記製作した1ターンコイルの接続抵抗を
評価するため、コイルを液体窒素中に浸した状態で電磁
誘導によってループ電流を流し、その減衰を調べたとこ
ろ、減衰の時定数126secを得た。コイルのインダ
クタンスは10μH程度であることから、接続部の抵抗
を求めると10−7Ω程度と推定される。同様のコイル
を、ハンダ接続によって作製したところ(比較例3)、
減衰の時定数は26マイクロ秒で、接続抵抗は3.5×
10−4Ωの値しか得られなかった。
In order to evaluate the connection resistance of the one-turn coil manufactured as described above, a loop current was caused to flow by electromagnetic induction while the coil was immersed in liquid nitrogen, and its decay was examined. As a result, a decay time constant of 126 sec was obtained. . Since the inductance of the coil is about 10 μH, the resistance of the connection part is estimated to be about 10 −7 Ω. When a similar coil was produced by soldering (Comparative Example 3),
The decay time constant is 26 microseconds and the connection resistance is 3.5 x
Only a value of 10 −4 Ω was obtained.

【0027】実施例5 実施例1で製造したテープ線材を用いて、図9に斜視的
に示すような、外径35mm,内径20mm,高さ15
mmのダブルパンケーキコイルを作製した。すなわちテ
ープ線材を長さ4mに切断し、円筒上の巻枠9に巻装し
てから巻線の最終段階で、最外周の1ターンで接合する
構成とし、先ず接合部を成す銀シース領域においては、
互いに対向する面側のみをエッチングするように、反対
側の面にパラフィンを塗布してから、硝酸に浸して12
0秒間エッチング処理を行い、その後、アセトンによっ
てパラフィンを除去してから、重ねしろを4cmとし
て、この重ねしろ部に銀ペーストを厚さ10μm塗布し
てから、被接合面を銀ペースト層を介して重ね仮接合さ
せた後、大気中,840℃で50時間熱処理して、ダブ
ルパンケーキコイルを作製した。
Example 5 Using the tape wire produced in Example 1, as shown in a perspective view in FIG. 9, the outer diameter is 35 mm, the inner diameter is 20 mm, and the height is 15.
mm double pancake coil was made. That is, the tape wire is cut into a length of 4 m, wound on the winding frame 9 on the cylinder, and then joined at the outermost one turn at the final stage of winding. First, in the silver sheath region forming the joined portion. Is
Apply paraffin to the opposite surface so that only the surfaces facing each other are etched, and then dip it in nitric acid.
After performing an etching treatment for 0 second and then removing paraffin with acetone, the overlapping margin is set to 4 cm, and a silver paste having a thickness of 10 μm is applied to the overlapping margin, and then the surface to be bonded is inserted through the silver paste layer. After lap-temporary joining, heat treatment was performed at 840 ° C. for 50 hours in the atmosphere to produce a double pancake coil.

【0028】前記製作したダブルパンケーキコイルに、
樹脂の含浸処理を施し絶縁処理した後、前記実施例4の
場合と同様に、液体窒素中に浸した状態で電磁誘導によ
ってループ電流を流し、その減衰を調べたところ、減衰
の時定数226秒であり、この値から接続部抵抗6.0
×10−8Ωが求められた。
In the double pancake coil produced above,
After the resin impregnation treatment and the insulation treatment, a loop current was caused to flow by electromagnetic induction in a state of being immersed in liquid nitrogen in the same manner as in the case of Example 4, and its decay was examined. The decay time constant was 226 seconds. From this value, the connection resistance 6.0
× 10 −8 Ω was obtained.

【0029】[0029]

【発明の効果】上記の説明から分かるように、本発明に
係る酸化物超電導線材の接続方法によれば、半田付け接
続の場合よりも1〜2桁低い接続抵抗での接続が可能
で、さらに、線材の臨界電流や強度が接続箇所の周辺で
劣化することもなく、すぐれた接続を実現することがで
きる。つまり、MRIなどの永久電流モード通電を必要
とする応用にも道を拓くものである。一方、この接続方
法によって、酸化物超電導線材を接続・長尺化して構成
した送電ケーブルでは送電ロスを低減することができ、
また構成された超電導コイルでは通電時の発熱を低減で
きる。いずれにせよ、本発明に係る接続方法は、すぐれ
た特性面から、多くの関心が払われている酸化物超電導
線材の実用化に大きく寄与するものといえる。
As can be seen from the above description, the method of connecting oxide superconducting wires according to the present invention enables connection with a connection resistance that is 1 to 2 orders of magnitude lower than that in the case of soldering connection. It is possible to realize an excellent connection without the critical current and strength of the wire material being deteriorated around the connection point. In other words, it also opens the way to applications requiring permanent current mode energization such as MRI. On the other hand, by this connection method, it is possible to reduce power transmission loss in the power transmission cable configured by connecting and lengthening the oxide superconducting wire.
In addition, the superconducting coil configured can reduce heat generation during energization. In any case, it can be said that the connection method according to the present invention greatly contributes to the practical application of the oxide superconducting wire, which has received much attention from the viewpoint of excellent characteristics.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図3[Name of item to be corrected] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図3】本発明に係る接続方法による接続部の断面組織
例を示すもので、(a)は模式図、(b)はセラミック
接続部の材料組成の顕微鏡写真。
3A and 3B show an example of a cross-sectional structure of a connection portion by a connection method according to the present invention, FIG. 3A is a schematic diagram, and FIG. 3B is a micrograph of a material composition of a ceramic connection portion.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図14[Name of item to be corrected] Fig. 14

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図14】(a),(b)はそれぞれ異なる従来の接続
方法によるセラミック接続部組成の接続部の材料組成を
示す顕微鏡写真。
14 (a) and 14 (b) are micrographs showing the material composition of the connection part of the ceramic connection part composition by different conventional connection methods.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 酸化物超電導体の外周面を導電性金属層
で被覆して成る酸化物超電導線材同士の一部を重ね合わ
せ、その重ね合わせ部で接続する酸化物超電導線材の接
続方法において、 前記酸化物超電導線材の重ね合わせにより対接する部分
の、少なくともいずれか一方の導電性金属層の厚さを最
大95%減肉・除去する工程、 前記減肉・除去した導電性金属層面に、前記導電性金属
層を形成する金属を含む厚さ 200μm 以下のペースト層
を被着形成する工程、および前記被着形成したペースト
層を介して酸化物超電導線材を重ね合わせ、乾燥後、熱
処理を施す工程を具備して成ることを特徴とする酸化物
超電導線材の接続方法。
1. A method for connecting oxide superconducting wires, wherein oxide superconducting wires formed by coating an outer peripheral surface of an oxide superconductor with a conductive metal layer are partly overlapped with each other, and the superposed parts are connected with each other. A portion of the oxide superconducting wire that is in contact with each other by superposition, at least one of the steps of thinning / removing the thickness of at least one conductive metal layer, the thinning / removing conductive metal layer surface, A step of depositing a paste layer having a thickness of 200 μm or less containing a metal forming a conductive metal layer, and a step of stacking oxide superconducting wires through the paste layer deposited, drying and then heat treating A method for connecting an oxide superconducting wire, comprising:
JP7298793A 1993-03-08 1993-03-08 Connecting method for oxide superconducting wire material Withdrawn JPH07192837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7298793A JPH07192837A (en) 1993-03-08 1993-03-08 Connecting method for oxide superconducting wire material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7298793A JPH07192837A (en) 1993-03-08 1993-03-08 Connecting method for oxide superconducting wire material

Publications (1)

Publication Number Publication Date
JPH07192837A true JPH07192837A (en) 1995-07-28

Family

ID=13505263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7298793A Withdrawn JPH07192837A (en) 1993-03-08 1993-03-08 Connecting method for oxide superconducting wire material

Country Status (1)

Country Link
JP (1) JPH07192837A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002056318A1 (en) * 2001-01-16 2002-07-18 Nippon Steel Corporation Low resistance conductor, method of producing the same, and electric component using the same
CN100452250C (en) * 2001-01-16 2009-01-14 新日本制铁株式会社 Low resistance conductors, processes of production thereof, and electrical members using same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002056318A1 (en) * 2001-01-16 2002-07-18 Nippon Steel Corporation Low resistance conductor, method of producing the same, and electric component using the same
US7126060B2 (en) 2001-01-16 2006-10-24 Nippon Steel Corporation Low resistance conductors, processes of production thereof, and electrical members using same
US7138581B2 (en) 2001-01-16 2006-11-21 Nippon Steel Corporation Low resistance conductor, processes of production thereof, and electrical members using same
CN100452250C (en) * 2001-01-16 2009-01-14 新日本制铁株式会社 Low resistance conductors, processes of production thereof, and electrical members using same

Similar Documents

Publication Publication Date Title
US7684839B2 (en) Connecting structure for magnesium diboride superconducting wire and a method of connecting the same
AU2006275564B2 (en) Architecture for high temperature superconductor wire
US5051397A (en) Joined body of high-temperature oxide superconductor and method of joining oxide superconductors
AU2006346993A1 (en) High temperature superconducting wires and coils
JP3386942B2 (en) Oxide superconducting coil and manufacturing method thereof
US6414244B1 (en) Connection structure for superconducting conductors including stacked conductors
JP3521182B2 (en) Oxide superconducting wire and superconducting device
US6440904B1 (en) High-temperature superconductor arrangement
JPH05283138A (en) Superconductive joint for superconductive oxide tape
JP2009016253A (en) Connection structure of superconducting wire rod as well as connecting method of superconductive apparatus and superconducting wire rod
JPH07192837A (en) Connecting method for oxide superconducting wire material
JP3018534B2 (en) High temperature superconducting coil
EP0409150B1 (en) Superconducting wire
JPS63236218A (en) Superconductive wire
JPH06139848A (en) Manufacture of oxide high-temperature superconducting wire rod
JP3143932B2 (en) Superconducting wire manufacturing method
US6387525B1 (en) Self insulating substrate tape
JP2001283660A (en) Connection structure for superconducting wire
JP3088833B2 (en) Oxide superconductor for current leads
JPH05114313A (en) Superconducting current limiting wire and its manufacture
JPH01123405A (en) Manufacture of superconducting power lead
JP2005510016A (en) Method of applying electrical resistance layer on oxide superconducting material, oxide superconducting material having electrical resistance layer and method of using the same
JP2020053354A (en) Connection body of high temperature superconducting wire material and connection method
JPH05109323A (en) Superconductive assembled conductor
JPH04301388A (en) Method for connecting superconducting wire

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000509