JPS63262807A - Joining method for superconductor - Google Patents

Joining method for superconductor

Info

Publication number
JPS63262807A
JPS63262807A JP9788387A JP9788387A JPS63262807A JP S63262807 A JPS63262807 A JP S63262807A JP 9788387 A JP9788387 A JP 9788387A JP 9788387 A JP9788387 A JP 9788387A JP S63262807 A JPS63262807 A JP S63262807A
Authority
JP
Japan
Prior art keywords
coating layer
oxide
substrate
superconductor
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9788387A
Other languages
Japanese (ja)
Other versions
JPH084043B2 (en
Inventor
Masayuki Tan
丹 正之
Michio Takaoka
道雄 高岡
Tsuneaki Motai
恒明 馬渡
Shotaro Yoshida
昭太郎 吉田
Shoichi Hasegawa
正一 長谷川
Hiroshi Yamanouchi
山之内 宏
Shigekazu Yokoyama
横山 繁嘉寿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP62097883A priority Critical patent/JPH084043B2/en
Publication of JPS63262807A publication Critical patent/JPS63262807A/en
Publication of JPH084043B2 publication Critical patent/JPH084043B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To form easily a superconductive pattern by removing one part of a coating layer thereafter by applying a pressure burning with the base line and coating layer and forming the coating layer consisting of the oxide superconductive material on the base line constituted of a normal conductor. CONSTITUTION:The powder of the oxide system superconductive material is applied to a linear base line 1 constituted of a normal conductor consisting of copper, aluminum, tin sulfide etc., to form a coating layer 2 by coating. A pressure is added to the base line 1 and coating layer 2 and are burned under the pressure. A cylindrical superconductor made from the powdery oxide superconductive material constituting the coating layer 2 is integrated with the coating layer 2 on the base line 1 as a unit. And, according to other method, a coating layer 4 made from the oxide superconductive materials is formed on a substrate 3 consisting of the conductor, and then a pressure burning is performed with these substrate 3 and a coating layer 4. After then, a superconductive pattern 5 is formed by removing one part of the coating layer 4 and the pattern 5 is formed by removing one part of the coating layer 4 and the pattern 5 is easily formed on the substrate 3.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、基体上に酸化物系超電導材料からなる超電
導層を接合する超電導体の接合方法に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a superconductor bonding method for bonding a superconducting layer made of an oxide-based superconducting material onto a substrate.

[従来の技術 I 従来より、超電導マグネットコイル等の超電導体の接合
方法として、例えばNb−Ti合金などの合金系超電導
材料からなる細線を常電導体からなる基体上に巻いて接
合する方法や、あるいはNb3Snなどの化合物系超電
導材を基体上に半田付けした後、この化合物系超電導材
を機械的に切削してコイル状に加工する方法などが知ら
れている。
[Prior Art I] Conventionally, as a method for joining superconductors such as superconducting magnet coils, there have been methods in which, for example, a thin wire made of an alloy superconducting material such as a Nb-Ti alloy is wound on a base made of a normal conductor and bonded; Alternatively, a method is known in which a compound superconducting material such as Nb3Sn is soldered onto a substrate, and then this compound superconducting material is mechanically cut into a coil shape.

ところで近時、臨界温度が50°に以上のLa−B a
−Cu−0系、Y −B a−Cu−0系等のいわゆる
A−B −Cu−0系(A :Sc、Y 、La−の周
期律表第ff1A族金属元素、B:Ba、Sr、Be・
・・のアルカリ土類金属)の酸化物系超電導体が次々と
見い出されつつある。これら酸化物系超電導体は、上記
の合金系あるいは化合物系超電導体に比べて臨界温度か
高く、液体窒素温度以上で超電導材料とされるなどの優
れた特性を有することから、超電導マグネットコイルへ
の適用、実用化が期待されている。
By the way, recently, La-B a whose critical temperature is 50° or higher
So-called A-B-Cu-0 series such as -Cu-0 series, Y-Ba a-Cu-0 series (A: Sc, Y, La- group ff1A metal elements of the periodic table, B: Ba, Sr) , Be・
Oxide-based superconductors of alkaline earth metals (...) are being discovered one after another. These oxide-based superconductors have superior properties such as a higher critical temperature than the alloy-based or compound-based superconductors mentioned above, and can be used as superconducting materials at temperatures above liquid nitrogen temperature, so they are suitable for use in superconducting magnet coils. Application and practical use are expected.

「発明が解決しようとする問題点」 しかしながら、これら酸化物系超電導体を超電導マグネ
ットコイルに適用するための存効な手段は未だ開発され
ていない。
"Problems to be Solved by the Invention" However, effective means for applying these oxide-based superconductors to superconducting magnet coils have not yet been developed.

「問題点を解決するための手段」 この発明において、その第1の発明では常電導体からな
る基体上に酸化物系超電導材料からなる被覆層を形成し
、次いでこれら基体および被覆層に加圧焼成を施するこ
とを、また第2の発明では常電導体からなる基体上に酸
化物系超電導材料からなる被覆層を形成し、次いでこれ
ら基体および被覆層に加圧焼成を施し、その後上記被覆
層の一部を除去して超電導パターンを形成することをそ
の解決手段とした。
"Means for Solving the Problems" In the first aspect of the present invention, a coating layer made of an oxide-based superconducting material is formed on a substrate made of a normal conductor, and then the substrate and coating layer are pressurized. In the second invention, a coating layer made of an oxide-based superconducting material is formed on a substrate made of a normal conductor, and then pressure baking is performed on the substrate and the coating layer, and then the coating layer is The solution was to remove part of the layer to form a superconducting pattern.

以下、本発明の第1の発明を図面を利用して詳しく説明
する。第1図および第2図はこの第1の発明を超電導線
の製造方法に適用した場合の一例を説明するための図で
ある。
Hereinafter, the first invention of the present invention will be explained in detail using the drawings. FIGS. 1 and 2 are diagrams for explaining an example of the case where the first invention is applied to a method of manufacturing a superconducting wire.

第1図および第2図に示した例では、まず第1図に示す
ように常雇導体からなる線状の基線1に酸化物系超電導
材料の粉末を塗布し被覆して被覆層2を形成する。ここ
で常電導体としては、銅、アルミニウム、硫化スズなど
が用いられる。また、酸化物系超電導材料としては、ア
ルカリ土類金属の炭酸塩粉末と周期律表第111A族金
属元素の酸化物粉末と酸化銅粉末とが適宜な比率で配合
されたものが用いられる。
In the example shown in FIGS. 1 and 2, first, as shown in FIG. 1, a linear base line 1 made of a regular conductor is coated with powder of an oxide superconducting material to form a coating layer 2. . Here, as the normal conductor, copper, aluminum, tin sulfide, etc. are used. Further, as the oxide-based superconducting material, a material in which an alkaline earth metal carbonate powder, an oxide powder of a group 111A metal element of the periodic table, and a copper oxide powder are blended in an appropriate ratio is used.

そして、この場合にアルカリ土類金属の炭酸塩粉末とし
ては、バリウム(I3a)、ストロンチウム(Sr)、
カルシウム(Ca)、ベリリウム(Be)などの炭酸塩
で、炭酸バリウム、炭酸ストロンチウム、炭酸カルシウ
ム、炭酸ベリリウムなどの粉末が用いられる。ここで炭
酸塩を用いるのは、アルカリ土類金属の酸化物では吸水
性を有しており不都合であるからである。また、周期律
表第1IrA族金属元素の酸化物粉末としては、スカン
ジウム(Sc)、イツトリウム(Y)、ランタン(La
)、Ce、Pr、Nd。
In this case, the alkaline earth metal carbonate powders include barium (I3a), strontium (Sr),
Carbonates such as calcium (Ca) and beryllium (Be), and powders such as barium carbonate, strontium carbonate, calcium carbonate, and beryllium carbonate are used. The reason why carbonates are used here is that alkaline earth metal oxides have water absorption properties, which is disadvantageous. In addition, oxide powders of metal elements in group 1 IrA of the periodic table include scandium (Sc), yttrium (Y), and lanthanum (La
), Ce, Pr, Nd.

P mSS m、E u、G d、T blD ySH
o、E rST m、Y b、L uなどのランタニド
を包含する第1IIA族金属元素の酸化物で、酸化スカ
ンジウム、酸化イツトリウム、酸化ランタンなどの粉末
が用いられる。さらに、酸化銅粉末としては、Cuo 
SCuto 、 CL130 tなどの酸化鋼の粉末が
用いられる。
P mSS m, E u, G d, T blD ySH
It is an oxide of a Group IIA metal element including lanthanides such as o, ErST m, Yb, and Lu, and powders such as scandium oxide, yttrium oxide, and lanthanum oxide are used. Furthermore, as the copper oxide powder, Cuo
Oxidized steel powders such as SCuto and CL130t are used.

これらの粉末の混合比は、得られる酸化物系超電導体に
よって異なるが、例えばY −B a−Cu−0系酸化
物超電導体では、元素重潰比でY:0.6、Ba:0.
4、Cu:1.O:3となるように配合される。
The mixing ratio of these powders varies depending on the oxide superconductor to be obtained, but for example, in a Y-Ba-Cu-0 oxide superconductor, the element weight ratio is Y: 0.6, Ba: 0.
4, Cu:1. The ratio is O:3.

次いで、上記基線」および被覆層2に圧力を印加しかつ
この加圧下で焼成する。すると、被覆層2を構成する粉
末状の酸化物系超電導材料は円筒状の超電導体となり、
かっこの被覆層2は基線1と一体に接合される。ここで
、加圧する際の圧力としては、1〜l0kg/mm”程
度の圧力が印加される。また、焼成条件としては、被覆
層2を構成する酸化物系超電導材料の上述した粉末の混
合比に応じた適宜な温度とされ、通常は加熱温度800
〜1100℃、加熱時間1〜100時間程度とされる。
Next, pressure is applied to the base line and the coating layer 2, and firing is performed under this pressure. Then, the powdered oxide-based superconducting material constituting the coating layer 2 becomes a cylindrical superconductor,
The bracket covering layer 2 is integrally joined to the base line 1. Here, as the pressure when pressurizing, a pressure of about 1 to 10 kg/mm" is applied. Also, the firing conditions include the above-mentioned mixing ratio of the powder of the oxide-based superconducting material constituting the coating layer 2. The heating temperature is usually 800°C.
~1100°C, and heating time is approximately 1 to 100 hours.

そして、焼成されて超電導体となった被覆層2は基線l
に強固に接合される。
Then, the coating layer 2, which has been fired and becomes a superconductor, is located at the base line l.
It is firmly bonded to the

このような超電導体の接合方法にあっては、被覆層2を
構成する酸化物系超電導材料が加圧焼成にようτ詔′M
蒐体になるとHB話に基線1zこ培合六れるため、超電
導体と基線lとの強固な接合強度が得られる。また、こ
の接合方法によって得られた超電導線にあっては、基線
lを構成する常電導体と被覆層2からなる酸化物系超電
導体との線膨張係数αが両者ともlo−5台とほぼ等し
く、よって温度変化による歪み等の不都合が防止される
In such a method of joining superconductors, the oxide-based superconducting material constituting the coating layer 2 is baked under pressure.
When it comes to the superconductor, the base line 1z is applied to the HB layer, so a strong bonding strength between the superconductor and the base line 1 can be obtained. In addition, in the superconducting wire obtained by this joining method, the linear expansion coefficient α of the normal conductor forming the base line l and the oxide superconductor forming the coating layer 2 are both approximately in the lo-5 range. Therefore, disadvantages such as distortion due to temperature changes are prevented.

第3図および第4図は本発明の第2の発明を超電導マグ
ネットコイルの製造方法に適用した例を説明するための
図である。ここで説明する例は円板状の超電導マグネッ
トコイルを作製する場合のもので、この超電導マグネッ
トコイルは複数枚積層されてマグネットコイルとして使
用されるものである。
3 and 4 are diagrams for explaining an example in which the second invention of the present invention is applied to a method of manufacturing a superconducting magnet coil. The example described here is a case where a disc-shaped superconducting magnet coil is manufactured, and a plurality of superconducting magnet coils are stacked and used as a magnet coil.

第3図および第4図に示した例では、まず第3図に示す
ように常電導体からなる円板状の基板3に酸化物系超電
導材料の粉末を塗布し被覆して被覆層4を形成する。こ
こで常電導体としては、表面が酸化された銅板が用いら
れる。銅板の表面を酸化した理由は、表面を酸化物とす
ることにより、この表面上に塗布された酸化物系超電導
材料が後述するように超電導体とされる際、酸化された
表面と超電導体となる酸化物系の被覆層4との接合の強
度を高めるためである。また、酸化物系超電導材料とし
ては、上述したアルカリ土類金属の炭酸塩粉末と周期律
表第1IIA族金属元素の酸化物粉末と酸化銅粉末とが
適宜な比率で配合されたものが用いられる。
In the example shown in FIGS. 3 and 4, first, as shown in FIG. 3, powder of an oxide superconducting material is coated on a disk-shaped substrate 3 made of a normal conductor to form a coating layer 4. Form. Here, a copper plate whose surface is oxidized is used as the normal conductor. The reason for oxidizing the surface of the copper plate is that by making the surface an oxide, when the oxide-based superconducting material coated on this surface becomes a superconductor as described later, the oxidized surface and the superconductor are separated. This is to increase the strength of the bond with the oxide-based coating layer 4. Further, as the oxide-based superconducting material, a material in which the above-mentioned alkaline earth metal carbonate powder, oxide powder of Group 1IIA metal element of the periodic table, and copper oxide powder are blended in an appropriate ratio is used. .

次いで、上記基板3および被覆層4に圧力を印加しかつ
この加圧下で焼成する。すると、被覆層4を構成する粉
末状の酸化物系超電導材料は円板状の超電導体となり、
かつこの被覆層4は基板3と一体に接合される。ここで
、加圧する際の圧力としては、1〜I Okg/ mm
’程度の圧力が印加される。また、焼成条件としては、
被覆層4を構成する酸化物系超電導材料の上述した粉末
の混合比に応じた適宜な温度とされ、通常は加熱温度8
00〜1100℃、加熱時間1−100時間程度とされ
る。また、焼成されて超電導体となった被覆層4は基板
3に強固に接合され6〜8kg/m+n’程度の接合強
度が得られる。
Next, pressure is applied to the substrate 3 and the covering layer 4 and fired under this pressure. Then, the powdered oxide superconducting material constituting the coating layer 4 becomes a disk-shaped superconductor,
Moreover, this coating layer 4 is integrally joined to the substrate 3. Here, the pressure when pressurizing is 1 to I Okg/mm.
A pressure of about ' is applied. In addition, the firing conditions are as follows:
The heating temperature is set to an appropriate temperature depending on the above-mentioned mixing ratio of the powder of the oxide superconducting material constituting the coating layer 4, and the heating temperature is usually 8.
The temperature is 00 to 1100°C and the heating time is about 1 to 100 hours. Further, the coating layer 4 which has been fired to become a superconductor is firmly bonded to the substrate 3, and a bonding strength of approximately 6 to 8 kg/m+n' is obtained.

その後、円板状に作製された酸化物系超電導体からなる
被覆層4より、その一部を除去して第4図に示すように
螺旋状の超電導パターン5を形成する。この場合の被覆
層4の部分的な除去手段としては、切削加工等の周知の
機械的手段、あるいはエツチング等の周知の化学的手段
などが用いられる。
Thereafter, a portion of the disk-shaped covering layer 4 made of an oxide superconductor is removed to form a spiral superconducting pattern 5 as shown in FIG. In this case, as means for partially removing the coating layer 4, known mechanical means such as cutting, known chemical means such as etching, etc. are used.

このような超電導体マグネットコイルの製造方法にあっ
ては、被覆層4を構成する酸化物系超電導材料が加圧焼
成によって超電導体になると同時に基板3に接合される
ため、超電導体と基板3との強固な接合強度が得られる
。また、この製造方法によって得られた超電導マグネッ
トコイルにあっては、基板3を構成する常電導体(この
例では銅)と超電導パターンを構成する酸化物系超電導
体との線膨張係数αが両者とも1O−5台とほぼ等しく
、よって温度変化による歪み等の不都合が防止される。
In this method of manufacturing a superconducting magnet coil, the oxide-based superconducting material constituting the coating layer 4 becomes a superconductor by pressure firing and is simultaneously bonded to the substrate 3, so that the superconductor and the substrate 3 are bonded to each other. Strong bonding strength can be obtained. In addition, in the superconducting magnet coil obtained by this manufacturing method, the linear expansion coefficient α of the normal conductor (copper in this example) constituting the substrate 3 and the oxide-based superconductor constituting the superconducting pattern is Both are approximately equal to 10-5 units, thus preventing problems such as distortion due to temperature changes.

第5図および第6図は本発明の第2の発明を超電導体マ
グネットコイルの製造方法に適用した場合の他の例を説
明するための図であり、ここで説明する例は一個のマグ
ネットコイルとなりうる円管状の超電導マグネットコイ
ルを作製する場合の例である。
FIGS. 5 and 6 are diagrams for explaining other examples in which the second invention of the present invention is applied to a method for manufacturing a superconductor magnet coil, and the example described here is for one magnet coil. This is an example of manufacturing a cylindrical superconducting magnet coil.

この例では、まず第5図に示すように常電導体からなる
円管状の基管6の外周面に酸化物系超電導材料を固着し
被覆して被覆層7を形成する。ここで常電導体としては
、表面が酸化された銅パイプか用いられる。この場合に
も銅パイプの表面を酸化した理由は、先の例と同様に表
面を酸化物とすることにより、この表面上に塗布された
酸化物系超電導材料が後述するように加圧焼成されて超
電導体とされる際、酸化された表面と超電導体となる酸
化物系の被覆層7との接合の強度を高めるためである。
In this example, first, as shown in FIG. 5, an oxide-based superconducting material is fixed and coated on the outer peripheral surface of a cylindrical base tube 6 made of a normal conductor to form a coating layer 7. Here, a copper pipe with an oxidized surface is used as the normal conductor. The reason why the surface of the copper pipe was oxidized in this case is that by making the surface an oxide as in the previous example, the oxide-based superconducting material coated on this surface can be pressure-fired as described later. This is to increase the strength of the bond between the oxidized surface and the oxide-based coating layer 7 that becomes the superconductor when the superconductor is made into a superconductor.

また、酸化物系超電導材料としては、先の例で示したア
ルカリ土類金属の炭酸塩粉末と周期律表第1A族金属元
素の酸化物粉末と酸化銅粉末とが配合されたものに水、
バインダー等が適宜加えられてペースト状に調整された
ものが用いられる。
In addition, the oxide-based superconducting material is a mixture of the alkaline earth metal carbonate powder shown in the previous example, the oxide powder of the Group 1A metal element of the periodic table, and the copper oxide powder, water,
A paste prepared by adding a binder or the like as appropriate is used.

次いで、被覆層7に圧力を印加しかつこの加圧下で基管
6および被覆層7を焼成する。すると、被覆層7を構成
する酸化物系超電導材料は円管状の超電導体となって基
管6と一体に接合される。
Next, pressure is applied to the coating layer 7, and the base tube 6 and the coating layer 7 are fired under this pressure. Then, the oxide-based superconducting material constituting the coating layer 7 becomes a cylindrical superconductor and is integrally joined to the base tube 6.

この場合の印加する圧力および焼成温度、焼成時間は先
の例とほぼ同一とされる。
The applied pressure, firing temperature, and firing time in this case are almost the same as in the previous example.

その後、円管状に成形された酸化物系超電導体からなる
被覆層7より、その一部を除去して第6図に示すように
コイル状の超電導パターン8を形成する。この場合の被
覆H7の部分的な除去手段としては、切削加工等の周知
の機械的手段、あるいはエツチング等の周知の化学的手
段などが用いられる。
Thereafter, a part of the covering layer 7 made of an oxide superconductor formed into a circular tube shape is removed to form a coil-shaped superconducting pattern 8 as shown in FIG. In this case, as means for partially removing the coating H7, known mechanical means such as cutting, or known chemical means such as etching are used.

この例にあっても、第3図および第4図に示した先の例
の場合と同様の作用効果が得られ、さらに複数枚を積層
してマグネットコイルとすることなく一個の独立した円
管状の超電導マグネットコイルを得ることができる。
In this example as well, the same effects as in the previous example shown in Figures 3 and 4 can be obtained, and in addition, instead of stacking multiple magnet coils to form a single independent circular tube shape. superconducting magnet coils can be obtained.

「発明の効果コ 以上説明したように、本発明の第1の発明の超電導体の
接合方法は、常電導体からなる基体上に酸化物系超電導
材料からなる被覆層を形成し、次いでこれら基体および
被覆層に加圧焼成を施す方法であるから、被覆層を構成
する酸化物系超電導材料が加圧焼成によって超電導体に
なると同時に基体に接合されるため、超電導体と基体と
の強固な接合強度を得ることかできる。また、この接合
方法によって得られた超電導体にあっては、基体を構成
する常電導体と被覆層からなる酸化物系超電導体との線
膨張係数αがほぼ等しくなり、よって温度変化による歪
み等の不都合を防止することができる。
``Effects of the Invention'' As explained above, the method for joining superconductors according to the first aspect of the present invention involves forming a coating layer made of an oxide-based superconducting material on a substrate made of a normal conductor, and then bonding these substrates together. Since this is a method in which the coating layer is subjected to pressure firing, the oxide-based superconducting material constituting the coating layer becomes a superconductor by pressure firing and is simultaneously bonded to the substrate, resulting in a strong bond between the superconductor and the substrate. In addition, in the superconductor obtained by this bonding method, the linear expansion coefficient α of the normal conductor forming the base and the oxide superconductor forming the coating layer is almost equal. Therefore, problems such as distortion due to temperature changes can be prevented.

また、第2の発明では、常電導体からなる基体上に酸化
物系超電導材料からなる被覆層を形成し、次いでこれら
基体および被覆層に加圧焼成を施し、その後上記被覆層
の一部を除去して超電導パターンを形成するものである
から、上記第1の発明と同様に超電導体と基体との強固
な接合強度を得ることかでき、さらに基体上に超電導パ
ターンを容易に形成することができる。
Further, in the second invention, a coating layer made of an oxide-based superconducting material is formed on a substrate made of a normal conductor, and then the substrate and the coating layer are subjected to pressure firing, and then a part of the coating layer is removed. Since the superconducting pattern is formed by removing the superconducting pattern, it is possible to obtain strong bonding strength between the superconductor and the substrate as in the first invention, and furthermore, it is possible to easily form the superconducting pattern on the substrate. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の超電導体の接合方法の第
1の発明の詳細な説明するための図であって、第1図は
基線上に被覆層を形成した状態を示す要部断面図、第2
図はこの第1の発明によって得られた超電導線の斜視図
、第3図および第4図は本発明の第2の発明の詳細な説
明するための図であって、第3図は基板上に被覆層を形
成した状態を示す斜視図、第4図は超電導回路パターン
を形成した状態を示す斜視図、第5図および第6図はこ
の第2の発明の詳細な説明するための図であって、第5
図は基管上に被覆層を形成した状態を示ず側断面図、第
6図は超電導回路パターンを形成した状態を示す要部断
面図である。 ■・・・・・・基線、2.4.7・・・・・・被覆層、
3・・・・・・基板、5.8・・・・・・超電導パター
ン、6・・・・・・基管
1 and 2 are diagrams for explaining in detail the first invention of the superconductor joining method of the present invention, and FIG. 1 shows the main part showing a state in which a coating layer is formed on the base line. Cross section, 2nd
FIG. 3 is a perspective view of a superconducting wire obtained by the first invention, FIGS. 3 and 4 are diagrams for explaining the second invention in detail, and FIG. FIG. 4 is a perspective view showing a state in which a superconducting circuit pattern is formed, and FIGS. 5 and 6 are diagrams for explaining the second invention in detail. Yes, the fifth
The figure is a side cross-sectional view showing a state in which a coating layer is formed on the base pipe, and FIG. 6 is a main part cross-sectional view showing a state in which a superconducting circuit pattern is formed. ■・・・Base line, 2.4.7・・・Coating layer,
3...Substrate, 5.8...Superconducting pattern, 6...Base tube

Claims (2)

【特許請求の範囲】[Claims] (1)常電導体からなる基体上に酸化物系超電導材料か
らなる被覆層を形成し、次いでこれら基体および被覆層
に加圧焼成を施すことを特徴とする超電導体の接合方法
(1) A method for joining superconductors, which comprises forming a coating layer made of an oxide-based superconducting material on a substrate made of a normal conductor, and then subjecting the substrate and coating layer to pressure firing.
(2)常電導体からなる基体上に酸化物系超電導材料か
らなる被覆層を形成し、次いでこれら基体および被覆層
に加圧焼成を施し、その後上記被覆層の一部を除去して
超電導パターンを形成することを特徴とする超電導体の
接合方法。
(2) A coating layer made of an oxide superconducting material is formed on a substrate made of a normal conductor, and then the substrate and coating layer are subjected to pressure firing, and then a part of the coating layer is removed to form a superconducting pattern. A method for joining superconductors, characterized by forming a superconductor.
JP62097883A 1987-04-21 1987-04-21 How to join superconductors Expired - Lifetime JPH084043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62097883A JPH084043B2 (en) 1987-04-21 1987-04-21 How to join superconductors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62097883A JPH084043B2 (en) 1987-04-21 1987-04-21 How to join superconductors

Publications (2)

Publication Number Publication Date
JPS63262807A true JPS63262807A (en) 1988-10-31
JPH084043B2 JPH084043B2 (en) 1996-01-17

Family

ID=14204145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62097883A Expired - Lifetime JPH084043B2 (en) 1987-04-21 1987-04-21 How to join superconductors

Country Status (1)

Country Link
JP (1) JPH084043B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63241818A (en) * 1987-03-27 1988-10-07 Sumitomo Electric Ind Ltd Manufacture of superconducting wire rod
JPS63245906A (en) * 1987-03-31 1988-10-13 Sumitomo Electric Ind Ltd Superconducting coil

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63241818A (en) * 1987-03-27 1988-10-07 Sumitomo Electric Ind Ltd Manufacture of superconducting wire rod
JPS63245906A (en) * 1987-03-31 1988-10-13 Sumitomo Electric Ind Ltd Superconducting coil

Also Published As

Publication number Publication date
JPH084043B2 (en) 1996-01-17

Similar Documents

Publication Publication Date Title
AU2006275564B2 (en) Architecture for high temperature superconductor wire
US5358929A (en) Method of joining superconducting wire using oxide high-temperature superconductor
EP0451864B1 (en) Superconducting conductor
US5173678A (en) Formed-to-shape superconducting coil
EP0467237B1 (en) Method of preparing oxide superconducting wire
EP0807994B2 (en) Connection structure for superconducting conductors
EP0631331B1 (en) Method of preparing high-temperature superconducting wire
JPH05283138A (en) Superconductive joint for superconductive oxide tape
JPS63262807A (en) Joining method for superconductor
JP2545403B2 (en) Superconductor
JPS63262808A (en) Joining structure of superconductor
JPS63241826A (en) Manufacture of superconducting wire
KR910009286B1 (en) Superconductive coil and making method thereof
JPH0261910A (en) Superconducting material wire and its manufacture
JPH01161705A (en) Laminated magnetic material
JP3448597B2 (en) Bismuth-based oxide superconducting composite and method for producing the same
JP2639513B2 (en) Oxide superconducting magnetic shield and manufacturing method thereof
JP2000348546A (en) Oxide superconducting wire and manufacture thereof
JPH04269471A (en) Joint part of superconducting wire
JPH0696942A (en) Oxide superconducting coil and its manufacture
JPS63259979A (en) Connection structure between oxide superconductor and normal conductor
JPH04301388A (en) Method for connecting superconducting wire
JPH02216712A (en) Oxide high temperature superconductor and manufacture thereof
JPH0817127B2 (en) Oxide superconducting coil
JPH03215372A (en) Composite material of bismuth-based superconductor and metal and its production