JPH0817127B2 - Oxide superconducting coil - Google Patents

Oxide superconducting coil

Info

Publication number
JPH0817127B2
JPH0817127B2 JP5026713A JP2671393A JPH0817127B2 JP H0817127 B2 JPH0817127 B2 JP H0817127B2 JP 5026713 A JP5026713 A JP 5026713A JP 2671393 A JP2671393 A JP 2671393A JP H0817127 B2 JPH0817127 B2 JP H0817127B2
Authority
JP
Japan
Prior art keywords
oxide
coil
superconducting
superconducting coil
superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5026713A
Other languages
Japanese (ja)
Other versions
JPH06244017A (en
Inventor
吉田  隆
恒行 金井
広幸 赤田
友一 加茂
Original Assignee
超電導発電関連機器・材料技術研究組合
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 超電導発電関連機器・材料技術研究組合 filed Critical 超電導発電関連機器・材料技術研究組合
Priority to JP5026713A priority Critical patent/JPH0817127B2/en
Publication of JPH06244017A publication Critical patent/JPH06244017A/en
Publication of JPH0817127B2 publication Critical patent/JPH0817127B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、支持基板上に酸化物系
超電導体を有する酸化物系超電導コイルに係わり、特
に強磁場を発生させるに好適なヘリコイド面を有する
化物系超電導コイルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxide superconducting coil having an oxide superconducting layer on a supporting substrate, and particularly to an oxide having a helicoid surface suitable for generating a strong magnetic field. System superconducting coil.

【0002】[0002]

【従来の技術】1986年、高い臨界温度を持つLa−
Ba−Cu−Oペロブスカイト系構造の超電導体(特開
昭63−260853号公報)、さらに翌年Y−Ba
−Cu−O系(M.K.Wu,J.R.Ashburn,C.
J.Torng,Y.Q.Wand and C.W.Chu:Phy
s.Rev.Lett.,58(1987)908)液体窒
素を冷媒とする90K級の超電導体が発見された。
2. Description of the Related Art La-having a high critical temperature in 1986
A superconductor having a Ba—Cu—O perovskite structure (Japanese Patent Laid-Open No. 63-260853) was further developed in the next year by Y-Ba.
-Cu-O system (M.K.Wu, JR Ashburn, C.I.
J. Torng, Y. Q. Wand and C. W. Chu: Phy
s. Rev. Lett. , 58 (1987) 908) , a 90K-class superconductor using liquid nitrogen as a refrigerant was discovered.

【0003】さらに臨界温度の高いBi−Sr−Ca−
Cu−O系(Tc:110K,H.Maeda,Y.Tanak
a,M.Fukutomi and T.Asano:Jpn.J.Appl.
Phys.27(1988)L209),Tl−Ba−C
a−Cu−O系(Tc:120K,Z.Z.Sheng and
A.M.Hermann:Nature 322(1988)5
5)が発見され、超電導体の研究成果には目覚ましいも
のがあった。
Bi-Sr-Ca- having a higher critical temperature
Cu-O system (Tc: 110K, H. Maeda, Y. Tanak
a, M. Fukutomi and T.F. Asano: Jpn. J. Appl.
Phys. 27 (1988) L209), Tl-Ba-C.
a-Cu-O system (Tc: 120K, ZZ Sheng and
A. M. Hermann: Nature 322 (1988) 5
5) was discovered, and the research results of superconductors were remarkable.

【0004】こうした新材料の発見とともに、高温超電
導体を超電導コイル等に応用するための線材の開発も進
められた。その中で、これらの高温超電導体を線材に加
工する方法として、単なる線引き或いは押し出し等の加
工方法では高臨界電流密度(Jc)線材が得られないこ
とが分かってきた。高Jc線材を実現する方法として、
圧延あるいはプレス等を行うことにより、単尺線で高い
Jcを有する線材が得られることが知られている。
Along with the discovery of such new materials, the development of wire rods for applying high-temperature superconductors to superconducting coils and the like was also promoted. Among them, it has been found that a high critical current density (Jc) wire cannot be obtained by a processing method such as simple drawing or extrusion as a method of processing these high-temperature superconductors into a wire. As a method to realize high Jc wire,
It is known that a wire having a high Jc can be obtained with a single-sized wire by rolling or pressing.

【0005】金属シース線材にこの手法を用いるとシー
ス断面が偏平となるので、ソレノイド状に線材を卷く方
法に対してパンケーキ状に作製する方法が用いられてい
る。また、これらのコイル作製方法以外にヘリコイド面
を有する酸化物系超電導コイル構造なども提案されてい
る。
When this method is used for a metal sheath wire rod, the sheath cross section becomes flat. Therefore, a method of making a wire rod in a pancake shape is used instead of a method of winding the wire rod in a solenoid shape. In addition to these coil manufacturing methods, oxide superconducting coil structures having a helicoid surface have also been proposed.

【0006】[0006]

【発明が解決しようとする課題】上記のヘリコイド面を
有する酸化物系超電導コイルは、ヘリコイド面の面積が
大きいので大電流を流すことができると云う利点があ
る。しかし、その反面コイル内側と外側との間で不均一
な磁場が発生し、強い磁場のかかるコイル内側で超電導
体がクエンチしてしまうために大きな磁場を発生する酸
化物系超電導コイルとして問題があることが分かった。
このようなヘリコイド面を有する酸化物系超電導コイル
の実用化に当っては、該コイル内側と外側の磁場の不均
一性の解決が必要である。
The oxide-based superconducting coil having the above-mentioned helicoid surface has an advantage that a large current can flow because the area of the helicoid surface is large. However, on the other hand, a non-uniform magnetic field is generated between the inside and outside of the coil, and the superconductor is quenched inside the coil where a strong magnetic field is applied, so there is a problem as an oxide superconducting coil that generates a large magnetic field. I found out.
In order to put the oxide superconducting coil having such a helicoid surface into practical use, it is necessary to solve the nonuniformity of the magnetic field inside and outside the coil.

【0007】本発明の目的は、上記に鑑み、特に、臨界
温度が高く磁場中での臨界電流密度の高い超電導体を提
供することにある。
In view of the above, an object of the present invention is to provide a superconductor having a high critical temperature and a high critical current density in a magnetic field.

【0008】[0008]

【課題を解決するための手段】本発明者ら前記課題を解
決するためにいろいろな角度から検討を重ね、本発明に
至った。本発明の要旨は次のとおりである。
Means for Solving the Problems The inventors of the present invention have conducted various studies from various angles in order to solve the above problems, and have reached the present invention. The gist of the present invention is as follows.

【0009】なくとも表面層が電気絶縁性である支持
基板と、該支持基板上に酸化物系超電導体層が形成され
たヘリコイド面を有するディスク状の超電導コイルであ
って、前記酸化物系超電導体層の厚さがコイルの中央部
から端部に向かって減少するように形成されていること
を特徴とする酸化物系超電導コイル。
[0009] and the support substrate surface layer is an electrically insulating the at no small, oxide superconductor layer on the support substrate is formed
A disk-shaped superconducting coil having a helicoid surface , wherein the thickness of the oxide-based superconducting layer is a central part of the coil .
The oxide-based superconducting coil is formed so as to decrease from the end to the end .

【0010】前記酸化物系超電導体層の厚さがコイルの
中央部から端部に向かって減少するように形成すること
により、その断面を微少な部分に分割したときにその微
少部分の断面積(△S)と、その臨界電流密度(△J
c)との積(△Jc×△S)は、超電導体層の微少な部分
の断面内の電流値△Icとなる。従って、電流値Icの断
面内の分布を一定にすることにより発生磁場の均一度を
向上することができる。これにより発生磁場の不均一に
基づくコイルのクエンチを防ぐことができる。
The thickness of the oxide-based superconductor layer is
Form so that it decreases from the center to the edges
When the cross section is divided into minute parts,
The cross-sectional area (ΔS) of a small part and its critical current density (ΔJ
The product of (c) and (ΔJc × ΔS) is the minute part of the superconductor layer.
The current value ΔIc in the cross section becomes. Therefore, disconnection of the current value Ic
The uniformity of the generated magnetic field can be improved by keeping the in-plane distribution constant.
Can be improved. This makes the generated magnetic field non-uniform
Quenching of the based coil can be prevented.

【0011】図1は本発明の超電導コイルの模式断面図
である。超電導コイルの内側の厚さがコイル外側の厚さ
に比べ厚くなっている。このコイル構造においては、コ
イル内側と外側の磁場の不均一性に基づくコイル内側で
の超電導体のクエンチを防ぐことができ、実用的な高磁
場の発生に極めて優れている。
FIG. 1 is a schematic sectional view of a superconducting coil of the present invention. The inner thickness of the superconducting coil is thicker than the outer thickness of the coil. In this coil structure, quenching of the superconductor inside the coil due to inhomogeneity of the magnetic field inside and outside the coil can be prevented, and it is extremely excellent in generating a practical high magnetic field.

【0012】酸化物系超電導体を支持する基板として
は、銀,金,ニッケル基合金(ハステロイ:米国 Hay
nes Stelite Co.の商品名)またはセラミックスあ
るいは可撓性のイットリア安定化ジルコニア(YSZ)
を用いることができる。場合によっては、これらの基板
に超電導体との反応を防ぐため、あるいは基板と酸化物
系超電導体との熱膨張差を緩和するためにバッファ層を
形成することができる。
Substrates for supporting oxide-based superconductors include silver, gold and nickel based alloys (Hastelloy: USA Hay
nes Stelite Co. Brand name) or ceramics or flexible yttria-stabilized zirconia (YSZ)
Can be used. In some cases, a buffer layer can be formed on these substrates in order to prevent reaction with the superconductor or to reduce the difference in thermal expansion between the substrate and the oxide-based superconductor.

【0013】酸化物系超電導体としては、(Y、Ba、
Cu、O)、(Bi、Sr、Ca、Cu、O)、(T
l、Ba、Ca、Cu、O)あるいは(Tl、Pb、S
r、Ca、Cu)を主な構成元素として、La、Nd等
を含む酸化物系超電導体が用いられる。
As the oxide-based superconductor, (Y, Ba,
Cu, O), (Bi, Sr, Ca, Cu, O), (T
l, Ba, Ca, Cu, O) or (Tl, Pb, S
An oxide superconductor containing La, Nd, etc. as a main constituent element is used.

【0014】前記酸化物系超電導体は、原料組成である
前記各成分が均質に混合されていればその混合方法には
特に制限はなく、例えば、原料物質を直接粉砕,混合す
ることができる。上記の混合粉末は、そのまゝあるいは
ペレット状に成形し、500℃以上で焼成することによ
って合成できる。その際、より高い超電導特性を得るた
め、原料組成に応じて酸素、空気、アルゴン、窒素等の
雰囲気が選ばれる。
The oxide superconductor is not particularly limited in its mixing method as long as each of the components constituting the raw material composition is homogeneously mixed. For example, the raw material can be directly pulverized and mixed. The above-mentioned mixed powder can be synthesized by molding it as it is or in the form of pellets and firing it at 500 ° C. or higher. At that time, in order to obtain higher superconducting properties, an atmosphere of oxygen, air, argon, nitrogen or the like is selected according to the composition of the raw material.

【0015】また、このような焼成体を再粉砕,再混合
を繰り返すことにより、均質で体積率が高く、超電導特
性の優れた超電導体を得ることができる。なお、このよ
うにして作製された粉末は超電導膜に形成して用いるこ
ともできる。
Further, by repeatedly pulverizing and remixing such a fired body, it is possible to obtain a superconductor which is homogeneous, has a high volume ratio, and has excellent superconducting properties. The powder produced in this way can also be used after being formed into a superconducting film.

【0016】酸化物系超電導体または超電導厚膜は、支
持基板の片面または両面に形成する、あるいはシース内
に含める等の目的に応じて形成することができる。
The oxide-based superconductor or the superconducting thick film can be formed on one side or both sides of the supporting substrate, or can be formed depending on the purpose such as inclusion in the sheath.

【0017】上記支持基板上に形成する方法としては、
原料粉末のスラリーを用いドクターブレードによる塗
布、ディップ塗布、あるいは原料粉末をプラズマ溶射す
る等、公知の厚膜成膜法を用い、支持基板上に厚さ10
μm以上の厚膜を形成してヘリコイド面を有するデイス
ク状単層コイルとする。その際、図2に示すように、単
層コイル3は、そのコイル端部の表面に少なくとも0.
5mmは超電導体層を形成せず、単層コイルの支持基板
2に露出部4を形成する。さらに、厚膜形成法によりコ
イル内側の厚さが外側のそれに比べ厚くなるよう被覆す
る。その際の厚膜形成法は最初に形成した厚膜の形成法
と同じでも異なっていてもよい。
As a method for forming on the supporting substrate,
A known thick film forming method such as coating with a doctor blade using a slurry of raw material powder, dip coating, or plasma spraying of the raw material powder is used to form a film having a thickness of 10
A thick film of μm or more is formed to obtain a disk-shaped single layer coil having a helicoid surface. At this time, as shown in FIG. 2, the single-layer coil 3 has at least 0.1 on the surface of the coil end portion.
In the case of 5 mm, the superconductor layer is not formed, and the exposed portion 4 is formed on the supporting substrate 2 of the single layer coil. Further, a thick film forming method is used to cover the coil so that the inner thickness of the coil is thicker than that of the outer side. The thick film forming method at that time may be the same as or different from the method of forming the thick film formed first.

【0018】強磁場を必要とする超電導コイルは、上記
単層コイル3を複数積層して用いる。その際は、単層コ
イル3の基板表面の露出部4を合わせて積層し、各単層
コイルを接続する。
For the superconducting coil which requires a strong magnetic field, a plurality of the single layer coils 3 are laminated and used. In that case, the exposed portions 4 on the substrate surface of the single-layer coils 3 are laminated together and the respective single-layer coils are connected.

【0019】上記超電導コイルは、高性能な超電導応用
装置およびシステムを実用化することができ、特に、強
磁場を必要とするMRI、NMR等の医療用機器や理化
学用機器に用いることができる。
The above-mentioned superconducting coil can be put to practical use as a high-performance superconducting application device and system, and can be used particularly in medical instruments such as MRI and NMR and physicochemical instruments which require a strong magnetic field.

【0020】[0020]

【作用】本発明のヘリコイド面を有したデイスク状コイ
ルの酸化物系超電導体層の厚さがコイルの中央部から端
部に向かって減少するように形成されているために、磁
場の不均一性によるコイルのクエンチを防ぐことができ
る。
[Action] end from the central portion thickness of the oxide superconductor layer of the disk-shaped coil having an f Rikoido surface of the coil of the present invention
Since it is formed so as to decrease toward the portion, quenching of the coil due to inhomogeneity of the magnetic field can be prevented.

【0021】[0021]

【実施例】本発明を実施例により具体的に説明する。EXAMPLES The present invention will be specifically described with reference to examples.

【0022】〔実施例1〕酸化物系超電導体原料とし
て、Bi23,SrCO3,CaCO3,CuOのそれぞ
れのモル比がBi:Sr:Ca:Cu=2.4:2.0:
1.0:2.0になるよう配合し、これをメノウ製乳鉢を
備えたライカイ機により約20分混合粉砕した。
Example 1 As an oxide superconductor raw material, the molar ratio of Bi 2 O 3 , SrCO 3 , CaCO 3 , and CuO was Bi: Sr: Ca: Cu = 2.4: 2.0:
It was blended so as to be 1.0: 2.0, and this was mixed and pulverized for about 20 minutes by a raikai machine equipped with an agate mortar.

【0023】次に、上記粉末を磁性アルミナルツボにと
り、大気中で850℃、20時間焼成した。ふるいによ
り粒度調整を行い酸化物系超電導体の溶射粉末を得た。
Next, the above powder was placed in a magnetic alumina crucible and fired in the atmosphere at 850 ° C. for 20 hours. The particle size was adjusted with a sieve to obtain thermal spray powder of oxide superconductor.

【0024】内径20mm×外径50mmのヘリコイド
面を有したデイスク型Ag基板の中心より図2に示すよ
うに2mm幅の切込み部5を径方向に入れ、その切込み
部の両サイド1mmをマスクする。この基板上に前記溶
射粉末を用いて、大気中プラズマ溶射装置で図1で示す
ような断面形状の溶射膜を成膜した。基板の内径側の膜
厚:150μm、外径側の膜厚:100μmとなるよう
基板面に対して傾斜を有する溶射膜を形成した。なお、
溶射条件は、出力:50kW、プラズマ電流:800
A、溶射時間:200分で、プラズマガスにはAr、2
次ガスにはH2を用いた。
As shown in FIG. 2, a notch 5 having a width of 2 mm is made in the radial direction from the center of a disk type Ag substrate having a helicoid surface having an inner diameter of 20 mm and an outer diameter of 50 mm, and 1 mm on both sides of the notch is masked. . A thermal spray coating having a cross-sectional shape as shown in FIG. 1 was formed on this substrate by using the above thermal spray powder with an atmospheric plasma spray apparatus. A sprayed film having an inclination with respect to the substrate surface was formed so that the film thickness on the inner diameter side of the substrate was 150 μm and the film thickness on the outer diameter side was 100 μm. In addition,
Thermal spraying conditions are: output: 50 kW, plasma current: 800
A, spraying time: 200 minutes, plasma gas is Ar, 2
H 2 was used as the next gas.

【0025】以上のようにして作製した100枚のデイ
スク型単層コイルの前記マスクを剥がし、Ag基板の端
部をAgロウで接続した。さらに上記と同様の溶射条件
でコイル内側の接続部には150μm、外側の接続部に
は100μmの溶射膜を形成した。
The masks of the 100 disc type single layer coils produced as described above were peeled off, and the ends of the Ag substrates were connected with Ag solder. Further, under the same thermal spraying conditions as above, a sprayed film having a thickness of 150 μm was formed on the connection portion inside the coil and 100 μm on the connection portion outside the coil.

【0026】以上のようにして作製した積層コイルを部
分溶融処理することによって超電導体とした。なお、部
分溶融処理は、885℃まで3時間かけて昇温し、10
分間保持後、815℃まで降温して10時間保持し、そ
の後3時間かけて室温まで冷却した。
The laminated coil produced as described above was partially melted to obtain a superconductor. In the partial melting treatment, the temperature was raised to 885 ° C over 3 hours, and 10
After the temperature was maintained for 1 minute, the temperature was lowered to 815 ° C., the temperature was maintained for 10 hours, and then the temperature was cooled to room temperature over 3 hours.

【0027】こうして得られたら旋状連続面の面間に外
径50mm×内径10mmのデイスク状の円板の一部
を、径方向切り込みを入れた厚さ0.1mmのアルミナ
シートを絶縁シートとして1枚ずつ挿入してヘリコイド
面の絶縁を図った。
When thus obtained, a part of a disk-shaped disc having an outer diameter of 50 mm and an inner diameter of 10 mm was formed between the surfaces of the spiral continuous surface, and a 0.1 mm-thick alumina sheet having radial cuts was used as an insulating sheet. We inserted them one by one to insulate the helicoid surface.

【0028】さらに、Ag基板上の酸化物系超電導体に
クラックが生じない程度に500g/cm2の力を中心
軸方向に加えて圧縮し、この状態を保持したまゝエポキ
シ樹脂を真空含侵して、図3に示すような酸化物系超電
導コイルを製造した。
Further, a force of 500 g / cm 2 was applied in the direction of the central axis so that the oxide-based superconductor on the Ag substrate was not cracked and compressed, and the epoxy resin was vacuum impregnated while maintaining this state. Thus, an oxide superconducting coil as shown in FIG. 3 was manufactured.

【0029】このコイルは、液体窒素の沸点77Kにお
いて、Ic=100Aが流れ、0.3Tの最大磁場が発
生した。
In this coil, at the boiling point of liquid nitrogen of 77K, Ic = 100A was flown and a maximum magnetic field of 0.3T was generated.

【0030】一方、液体ヘリウムの沸点4.2Kにおい
ては、Ic=800Aが流れ、2.0Tの最大磁場が発
生した。
On the other hand, at the boiling point of liquid helium of 4.2 K, Ic = 800 A flows, and a maximum magnetic field of 2.0 T is generated.

【0031】〔実施例2〕酸化物系超電導体原料とし
て、Y23,BaO,CuOのそれぞれのモル比がY:
Ba:Cu=1.0:2.0:3.0になるよう配合し、
実施例1と同様にして溶射粉末を得た。
Example 2 As an oxide superconductor raw material, the molar ratio of Y 2 O 3 , BaO and CuO was Y:
Blended so that Ba: Cu = 1.0: 2.0: 3.0,
A thermal spray powder was obtained in the same manner as in Example 1.

【0032】該溶射粉末を用いて、実施例1と同様にデ
イスク型単層コイルを作製し、これを100枚積層し
た。
A disk type single layer coil was prepared in the same manner as in Example 1 using the thermal spraying powder, and 100 of these were laminated.

【0033】このようにして作製された100枚のデイ
スク型単層コイル同様に熱処理し、エポキシ樹脂を真空
含侵した酸化物系超電導コイルを製造した。
Heat treatment was carried out in the same manner as the 100 disk type single layer coils thus produced to produce an oxide type superconducting coil which was impregnated with epoxy resin under vacuum.

【0034】このコイルは、77Kにおいて、Ic=7
0Aが流れ、0.12Tの最大磁場が発生した。一方、
4.2Kにおいては、Ic=600Aが流れ、1.0Tの
最大磁場が発生した。
This coil has Ic = 7 at 77K.
0A flowed and a maximum magnetic field of 0.12T was generated. on the other hand,
At 4.2K, Ic = 600A flows and a maximum magnetic field of 1.0T is generated.

【0035】〔実施例3〕酸化物系超電導体原料とし
て、BaO,SrO,CaO,CuOのそれぞれのモル
比がBa:Sr:Ca:Cu=1.6:0.4:2.0:
3.0になるよう配合し、メノウ製乳鉢を備えたライカ
イ機で約20分混合粉砕した。
Example 3 As an oxide superconductor raw material, the molar ratio of BaO, SrO, CaO, CuO was Ba: Sr: Ca: Cu = 1.6: 0.4: 2.0:
The ingredients were blended so as to be 3.0, and mixed and pulverized for about 20 minutes with a raikai machine equipped with an agate mortar.

【0036】上記粉末を磁性アルミナルツボにとり、大
気中880℃、20時間焼成した。ふるいにより粒度調
整を行い酸化物系超電導体の溶射粉末を得た。
The above powder was placed in a magnetic alumina crucible and fired in the air at 880 ° C. for 20 hours. The particle size was adjusted with a sieve to obtain thermal spray powder of oxide superconductor.

【0037】実施例1と同様に溶射して作製した100
枚のデイスク型単層コイルを、Tl雰囲気中840℃ま
で3時間で昇温し、20時間保持した後、3時間で室温
まで冷却した。
100 prepared by thermal spraying in the same manner as in Example 1.
The disc type single layer coil was heated to 840 ° C. in a Tl atmosphere for 3 hours, kept for 20 hours, and then cooled to room temperature for 3 hours.

【0038】こうして得た、ら旋状連続面の面間に実施
例1と同様にしてエポキシ樹脂を真空含侵した酸化物系
超電導コイルを製造した。
In the same manner as in Example 1, an oxide superconducting coil obtained by vacuum-impregnating an epoxy resin between the surfaces of the spiral continuous surfaces thus obtained was manufactured.

【0039】このコイルは77Kにおいて、Ic=10
0Aが流れ、0.2Tの最大磁場が発生した。
This coil has Ic = 10 at 77K.
0A flowed and a maximum magnetic field of 0.2T was generated.

【0040】〔比較例1〕酸化物系超電導体原料とし
て、Bi23,SrCO3,CaCO3,CuOのそれぞ
れのモル比がBi:Sr:Ca:Cu=2.4:2.0:
1.0:2.0になるよう配合し、これを実施例1と同様
にして溶射粉末を得た。
Comparative Example 1 As an oxide-based superconductor raw material, the molar ratio of Bi 2 O 3 , SrCO 3 , CaCO 3 , and CuO was Bi: Sr: Ca: Cu = 2.4: 2.0:
The blending ratio was set to 1.0: 2.0, and this was treated in the same manner as in Example 1 to obtain a sprayed powder.

【0041】実施例1と同様にして溶射し、酸化物系超
電導体層の厚さが全面均一(膜厚150μm)な100
枚のディスク型単層コイルを作製し、これを885℃ま
で3時間で昇温し、10分間保持し後、815℃まで
降温して10時間保持し、その後3時間かけて室温まで
冷却した。
Thermal spraying was performed in the same manner as in Example 1 to obtain an oxide-based
100 with uniform thickness of the conductor layer (film thickness 150 μm)
To prepare a disc-type single-layer coil, which was heated for 3 hours to 885 ° C., it was maintained for 10 minutes, and held for 10 hours and cooled to 815 ° C., and cooled to room temperature over 3 hours .

【0042】こうして得た、ら旋状連続面の面間に実施
例1と同様にしてエポキシ樹脂を真空含侵した酸化物系
超電導コイルを製造した。
An oxide superconducting coil obtained by vacuum-impregnating an epoxy resin between the thus obtained spiral continuous surfaces was manufactured in the same manner as in Example 1.

【0043】このコイルは77KにおけるIc=30A
で、最大磁場0.05Tであった。
This coil has Ic = 30A at 77K.
The maximum magnetic field was 0.05T.

【0044】[0044]

【発明の効果】本発明のヘリコイド面を有したデイスク
状コイルの酸化物系超電導体層の厚さがコイルの中央部
から端部に向かって減少するように形成したことによ
り、コイルの磁場の不均一性に基づく超電導特性の低下
を改善することができる。
The thickness of the oxide superconductor layer of the disk-shaped coil having the helicoid surface of the present invention is the central portion of the coil.
Since it is formed so as to decrease from the end portion to the end portion, it is possible to improve the deterioration of the superconducting property due to the non-uniformity of the magnetic field of the coil.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の酸化物系超電導コイルの模式断面図で
ある。
FIG. 1 is a schematic cross-sectional view of an oxide superconducting coil of the present invention.

【図2】本発明の単層の酸化物系超電導コイルの斜視図
である。
FIG. 2 is a perspective view of a single-layer oxide superconducting coil of the present invention.

【図3】本発明の積層型酸化物系超電導コイルの斜視図
である。
FIG. 3 is a perspective view of a laminated oxide-based superconducting coil of the present invention.

【符号の説明】[Explanation of symbols]

1…酸化物系超電導体、2…支持基板、3…単層コイ
ル、4…露出部、5…切込み部。
DESCRIPTION OF SYMBOLS 1 ... Oxide superconductor, 2 ... Support substrate, 3 ... Single layer coil, 4 ... Exposed part, 5 ... Cut part.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加茂 友一 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所 日立研究所内 (56)参考文献 特開 昭63−293801(JP,A) 特開 昭60−53003(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yuichi Kamo 7-1, 1-1 Omika-cho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi Research Laboratory (56) Reference JP-A-63-293801 (JP, A) ) JP-A-60-53003 (JP, A)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】なくとも表面層が電気絶縁性である支
持基板と、該支持基板上に酸化物系超電導体層が形成さ
れたヘリコイド面を有するディスク状の超電導コイルで
あって、前記酸化物系超電導体層の厚さがコイルの中央
部から端部に向かって減少するように形成されている
とを特徴とする酸化物系超電導コイル。
1. A supporting substrate surface layer is an electrically insulating the at no small, oxide superconductor layer on the support substrate is of form
A disk-shaped superconducting coil having a curved helicoid surface , wherein the thickness of the oxide-based superconducting layer is the center of the coil .
An oxide-based superconducting coil, characterized in that it is formed so as to decrease from the end to the end .
【請求項2】 前記酸化物系超電導体層が(Y、Ba、
Cu、O),(Bi、Sr、Ca、Cu、O),(T
l、Ba、Ca、Cu、O)または(Tl、Pb、S
r、Ca、Cu、O)を主な構成元素とし、Laまたは
/およびNdを含む請求項1に記載の酸化物系超電導コ
イル。
2. The oxide-based superconductor layer comprises (Y, Ba,
Cu, O), (Bi, Sr, Ca, Cu, O), (T
1, Ba, Ca, Cu, O) or (Tl, Pb, S
r, Ca, Cu, O) as main constituent elements, and La or
The oxide-based superconducting co- alloy according to claim 1, which contains / and Nd
Ile.
【請求項3】 前記支持基板が銀,金,ニッケル基合金
またはセラミックスあるいは可撓性のイットリア安定化
ジルコニア(YSZ)から選ばれる請求項1に記載の酸
化物系超電導コイル。
3. The support substrate is silver, gold or nickel based alloy
Or ceramics or flexible yttria stabilization
The acid according to claim 1, which is selected from zirconia (YSZ).
Compound superconducting coil.
【請求項4】 前記超電導コイルが複数層積層されてい
る請求項1〜4のいずれかに記載の酸化物系超電導コイ
ル。
4. The superconducting coil is laminated in a plurality of layers.
The oxide-based superconducting carp according to any one of claims 1 to 4.
Le.
JP5026713A 1993-02-16 1993-02-16 Oxide superconducting coil Expired - Fee Related JPH0817127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5026713A JPH0817127B2 (en) 1993-02-16 1993-02-16 Oxide superconducting coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5026713A JPH0817127B2 (en) 1993-02-16 1993-02-16 Oxide superconducting coil

Publications (2)

Publication Number Publication Date
JPH06244017A JPH06244017A (en) 1994-09-02
JPH0817127B2 true JPH0817127B2 (en) 1996-02-21

Family

ID=12201004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5026713A Expired - Fee Related JPH0817127B2 (en) 1993-02-16 1993-02-16 Oxide superconducting coil

Country Status (1)

Country Link
JP (1) JPH0817127B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4634908B2 (en) * 2005-10-24 2011-02-16 株式会社東芝 High temperature superconducting coil

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6053003A (en) * 1983-09-02 1985-03-26 Toshiba Corp Superconductive solenoid coil
JP2508722B2 (en) * 1987-05-26 1996-06-19 日立電線株式会社 Superconducting coil

Also Published As

Publication number Publication date
JPH06244017A (en) 1994-09-02

Similar Documents

Publication Publication Date Title
EP0401461B1 (en) Oxide superconductor and method of manufacturing the same
US6226858B1 (en) Method of manufacturing an oxide superconductor wire
EP0451864B1 (en) Superconducting conductor
EP0356969B1 (en) Method of producing oxide superconductor
EP0467237B1 (en) Method of preparing oxide superconducting wire
EP0631331B1 (en) Method of preparing high-temperature superconducting wire
US4908346A (en) Crystalline rare earth alkaline earth copper oxide thick film circuit element with superconducting onset transition temperature in excess of 77%
EP0385485A2 (en) Oxide superconductor, superconducting wire and coil using the same, and method of production thereof
EP0356722B1 (en) Oxide superconductor and method of producing the same
JP3089294B2 (en) Manufacturing method of superconducting tape material
EP0301958A2 (en) Superconducting material and a method for preparing the same
US5389603A (en) Oxide superconductors, and devices and systems comprising such a superconductor
JPH0817127B2 (en) Oxide superconducting coil
US4983571A (en) Method of producing YBa2 Cu3 O6+x superconductors with high transition temperatures
JP2920497B2 (en) Manufacturing method of superconducting tape material
JP2877367B2 (en) Superconducting wire
EP0304076B1 (en) Method of manufacturing superconductive products
JPH06196314A (en) Manufacture of oxide group superconductor coil
JPH06275146A (en) Composite superconducting wire
JP2813287B2 (en) Superconducting wire
JPH0696942A (en) Oxide superconducting coil and its manufacture
JPH11329118A (en) Oxide superconducting composite material and its manufacture
JPH01161806A (en) Superconductor coil
EP0734081A1 (en) Oxide superconducting wire and manufacturing method
JPH03192615A (en) Oxide superconducting structural body and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees