JPS6053003A - Superconductive solenoid coil - Google Patents

Superconductive solenoid coil

Info

Publication number
JPS6053003A
JPS6053003A JP16146383A JP16146383A JPS6053003A JP S6053003 A JPS6053003 A JP S6053003A JP 16146383 A JP16146383 A JP 16146383A JP 16146383 A JP16146383 A JP 16146383A JP S6053003 A JPS6053003 A JP S6053003A
Authority
JP
Japan
Prior art keywords
turn
coil
superconductive
radial direction
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16146383A
Other languages
Japanese (ja)
Other versions
JPH0464164B2 (en
Inventor
Kazunori Kitamura
喜多村 和憲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP16146383A priority Critical patent/JPS6053003A/en
Publication of JPS6053003A publication Critical patent/JPS6053003A/en
Publication of JPH0464164B2 publication Critical patent/JPH0464164B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor

Abstract

PURPOSE:To obtain a safe-in-strength, compact and economic superconductive solenoid coil by varying the radial direction thickness of each turn coil or each turn member according to electromagnetic force effected to each turn coil. CONSTITUTION:When only an insulation spacer 22 is installed between turn coils made of superconductive material 21, the radial direction thickness ti of each superconductive member 21 is determined by a formula (8). Here, Pi is electromagnetic pressure, ri is the radius of the superconductive member, te is the thickness in radial direction of the insulation spacer 22 and deltaa is the allowed stress of the superconductive material. If the superconductive coil wherein the radial direction thickness is determined in this way is effected by electromagnetic force Fr, the superconductive member 21 of each turn is displaced nearly equally to the direction of the radius and the circumferential stress generated by electromagnetic force also shows equal value within the allowed limit. Consequently, a sufficiently safe in strength and in stability of superconductivity and reliable superconductive solenoid coil can be obtained.

Description

【発明の詳細な説明】 本発明は、極低温で使用される円形の超電導ソレノイド
コイルの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in circular superconducting solenoid coils used at cryogenic temperatures.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、円形の超電導ソレノイドコイルとして第1図(a
) 、 (b)および第2図のととく朽成されたものが
ある。第1図(、) 、 (b)は複数個の超電嗜一体
lをそれぞれ成形して半径の異なるターンコイルを我数
個得、これらを複数段(ここでは3毘)の同心円状にす
るとともに、ターンコイル相互間に、ターン部材例えば
強化プラスチック( FRP )からなり、後述する電
磁力Frを半径方向に伝達する役目をj旦う絶縁スペー
サ2を周方向3に断続的にi!i.2置し、各ターンコ
イルを電気的に接続したものである。この揚台、絶縁ス
ペーサ2の相互間には泡抜き用通路4が形成されている
Conventionally, a circular superconducting solenoid coil as shown in Figure 1 (a
), (b) and the one shown in Figure 2 is particularly dilapidated. Figures 1 (,) and (b) show that multiple superelectric coils are each molded to obtain a number of turn coils with different radii, and these are formed into concentric circles in multiple stages (in this case, 3 coils). At the same time, insulating spacers 2, which are made of turn members such as reinforced plastic (FRP) and have the role of transmitting electromagnetic force Fr (to be described later) in the radial direction, are installed intermittently in the circumferential direction 3 between the turn coils. i. There are two turn coils and each turn coil is electrically connected. A bubble removal passage 4 is formed between the platform and the insulating spacer 2.

第2図は第1図の超電導ソレノイドコイルと巳頂似して
いるが、半径方向のターンコイル相互間の絶縁スペーサ
2の代りに、例えばステンレステーゾからなる補強iμ
材5とこの両41川に絶縁スペーサ2からなるターン部
材を配置iT Lだ点が異なる。
FIG. 2 is similar to the superconducting solenoid coil in FIG. 1, but instead of the insulating spacer 2 between the radial turn coils, reinforcement iμ made of, for example, stainless steel
The difference is that a turn member made of an insulating spacer 2 is placed between the material 5 and both 41.

このように第1図および第2図のように構成された従来
の超電導ソレノイドコイルを通電することにより、各タ
ーンコイルにはコイル半径方向6の電磁力(以下半径方
向11ム磁力と称す)F’r(第1図の12に相当する
)の他に、コイル1111方向7に電磁力(以下軸方向
電磁力と称す)Fz(第2図の13に相消する)が作用
する。この場合、超電導ソレノイドコイルの強度上は、
一般に半径方向電磁力Frの方が支配的であり、従って
、超電導ソレノイドコイルの機織的強度を検討するとき
には半径方向霜、磁力Frのみを考えればよい。
By energizing the conventional superconducting solenoid coil configured as shown in FIGS. 1 and 2, each turn coil receives an electromagnetic force in the radial direction of the coil (hereinafter referred to as a radial direction of 11 mm) F. In addition to 'r (corresponding to 12 in FIG. 1), an electromagnetic force (hereinafter referred to as axial electromagnetic force) Fz (which cancels out 13 in FIG. 2) acts in the direction 7 of the coil 1111. In this case, the strength of the superconducting solenoid coil is
Generally, the radial electromagnetic force Fr is more dominant, and therefore, when considering the mechanical strength of a superconducting solenoid coil, only the radial frost and magnetic force Fr need to be considered.

第3図は超電導体lに半径方向に市:磁圧方円(第3図
の8に相当する)が作用したときの半径方向変位量δr
i (第3図の9に相凸する)、周方向応力σqjを模
式的に示しだものであり、これら1d次式のように表わ
ぜる。
Figure 3 shows the amount of radial displacement δr when a magnetic pressure square (corresponding to 8 in Figure 3) acts on the superconductor l in the radial direction.
i (convex to 9 in FIG. 3) and circumferential stress σqj, which are expressed as a 1d-order equation.

1−Pi2 δri=□ ・・・■ 1−ti ここで、rは、超電導体の半径(第3図の10に相当す
る)、tlは、超電導体の半径方向内Jl(第3図の1
1に相当する)−。
1-Pi2 δri=□...■ 1-ti Here, r is the radius of the superconductor (corresponding to 10 in Figure 3), and tl is the radius of the superconductor Jl (corresponding to 1 in Figure 3).
1)-.

ECは超電導体のヤング率を示す。又、深手1は内側か
ら1番目のターンを表わしている。一般に、円形ソレノ
イドコイルでは、電磁圧ブJPiは、内側が大きく、外
側が小さいので、行31図、第2図の場合のように超電
導体lの断面形状および半径方向厚さtiがすべて同一
のもので11次のような問題が起こる。
EC indicates Young's modulus of the superconductor. Also, deep 1 represents the first turn from the inside. Generally, in a circular solenoid coil, the electromagnetic pressure block JPi is large on the inside and small on the outside, so the cross-sectional shape and radial thickness ti of the superconductor l are all the same as in the case of row 31 and FIG. The following problems occur in the 11th order.

(1)Pi−r、2〉P1+1・r、+12のときここ
で添字;、i+1はl布目、1+1香目のターンr表わ
している・謂に、Pi ”i > Pi+1 + ri
+1だから(ri> ri+1故)σ0.〉σ0.+1
となる。
(1) When Pi−r, 2>P1+1・r, +12, here the subscript;, i+1 represents the turn r of the 1st and 1st+1st stitches. So-called, Pi ”i > Pi+1 + ri
+1 (because ri> ri+1) σ0. 〉σ0. +1
becomes.

11、IEっで、最内層のターンの応力σq1nf:♂
l各L5ツノσ に抑えると、外側のターンは輝度上安
全であるが、強度上過剰な構造をもつことになる。単独
のソレノイドコイルは、外側のターンでは、電磁圧力P
。U、は負になり、即ち、超TJ、’(、;、Q体1を
内1111に縮めようとする力となるので、」二11己
、)局側4M造の点はIすます、頓着になる。又、設置
11上、不縁術なコイル設計となる。
11. In IE, the stress of the innermost turn σq1nf: ♂
If each L5 horn is suppressed to σ, the outer turns will be safe in terms of brightness, but will have an excessive structure in terms of strength. A single solenoid coil, in its outer turns, has an electromagnetic pressure P
. U becomes negative, that is, super TJ,'(, ;, since it becomes a force that tries to shrink Q body 1 into 1111, '211self,) the point of 4M structure on the local side is I, Be complacent. Moreover, due to the installation 11, the coil design is unconventional.

コイル設置寸法が限定されている場合は、半径方向コイ
ル寸法が、大きくなり、設計上大きな問題となる。
When the coil installation dimensions are limited, the radial coil dimensions become large, which poses a major design problem.

(ii) Pl−r12< Pl−Ht −ri+12
o ト@゛と1?にδr1<δr1+1となシ、外側の
ター ン変11≦が太きい。これは、コイル励磁の度に
、各超電ノ、!↓体1d分殖挙動を示すことになシ、I
l’r(?Ij、導体、スに一す間に丑さつ力を生じ、
これが外乱となって、クエンチ現象(超電導体が常電導
体に転位すること)の発生となって超電辱コ・イルの破
壊へつながる可能性がある。
(ii) Pl-r12< Pl-Ht-ri+12
o To @ ゛ and 1? In this case, δr1<δr1+1, and the outer turn change 11≦ is large. This means that every time the coil is energized, each superelectric,! ↓There is no need to show body 1d division behavior, I
l'r(?Ij, conductor, generates a crushing force in the space,
This may become a disturbance and cause a quench phenomenon (the transposition of a superconductor to a normal conductor), leading to the destruction of the superconductor.

〔発明の目的〕[Purpose of the invention]

本発明は、上記、’US ’l’Frにがんがみてなさ
れたもので、強度上安全で、且つコンバクI・で経(J
1的な11賃’l1L24Zソレノイドコイルを抗11
(することを[]的とする。
The present invention was developed in response to cancer in the above-mentioned 'US 'l'Fr, and is safe in terms of strength, and is effective in combating I.
11 resistance 'l1L24Z solenoid coil
(The aim is to [])

〔発明の概要〕[Summary of the invention]

本発明は上記目的を達成するために、各ターンコイルの
応力を許容値内に抑え各ターンコイルの半径方向変位が
ほぼ均一になるように、各ターンコイルおよびターン部
材のいずれか一方の半径方向の肉厚寸法を、各ターンコ
イルに加わる電磁力に応じて変化させたものである6、
〔発明の実施例〕 以下、本発明について図面に示す実施例を参がして説明
するが、はじめに第4図によυ本発明の第1の実施例を
説明する。第4図は超電導体2ノによって形成されたタ
ーンコイル4目互間に絶縁スペーサ22のみが設けられ
たものであり、各超電導体21の半径方向の肉厚を以下
のようにしてめた値となっている。
In order to achieve the above object, the present invention is designed to suppress stress in each turn coil within a permissible value and to make radial displacement of each turn coil substantially uniform. The wall thickness of the coil is changed according to the electromagnetic force applied to each turn coil6.
[Embodiments of the Invention] Hereinafter, the present invention will be explained with reference to embodiments shown in the drawings.First, a first embodiment of the present invention will be explained with reference to FIG. Figure 4 shows an example in which only insulating spacers 22 are provided between four turn coils formed by two superconductors, and the thickness of each superconductor 21 in the radial direction is determined as follows. It becomes.

すなわち、前述■、■式より、最内層の超電導体21の
周方向応力σQinを許容応力σaにすると、最内層の
超電W1体21の肉厚ttnkJ、Plnorin tin=□ ・・・■ σa ここでrinは、最内層の超′屯尋体21の半径、添字
inは最内層ターンを表わしている。一方、J:β電ζ
7コイルの安定性より各ターンの超電導体2ノの半径方
向変位δr は δr1≧δr1+1 ・・・■ でなければならない。ここで添字i、i+1は各々1番
目、1→−1番目のターンを表わす。
That is, from the above formulas (■) and (■), if the circumferential stress σQin of the innermost layer superconductor 21 is the allowable stress σa, then the thickness ttnkJ of the innermost layer superconductor W1 body 21, Plnorin tin=□ ...■ σa Here Here, rin represents the radius of the innermost super-tuned body 21, and the subscript in represents the innermost turn. On the other hand, J: β electric ζ
In view of the stability of the seven coils, the radial displacement δr of the superconductor 2 in each turn must satisfy δr1≧δr1+1...■. Here, the subscripts i and i+1 represent the 1st and 1→-1th turns, respectively.

■式を0式へ代入して、最内層の超電導体21の変位量
δFinは ■式でX6r=6 −δrinとすると、0式よl P
++1 す、1拮目の超’1iff等体21の半径方向の肉厚t
1は以下のように表わされる。
Substituting the formula (■) into the formula 0, the amount of displacement δFin of the innermost layer superconductor 21 is given by formula (■) as X6r=6 -δrin, then according to the formula 0, l P
++1 Thickness t in the radial direction of the first antagonist super'1iff isobody 21
1 is expressed as follows.

絶縁スペーサ22の半径方向の肉ノI7をt4.(一定
)とするとI奇目の超電導体21の半径r1’1ま、従
って、各超電導体210半径方向の肉厚tiは0式にの
っとって決める。第4図の例としてPin = 0.3
kgf/r+n + Pout := 0.031(q
f/mm + rtn =300wn、te=1調ター
ン数n二10.σa−10kgf/vn2の場合の導体
構成を示す。超電導体板厚t1と0式から決めると、t
in=9−+tout==134爺となる。コイル外径
寸法は367.97調となる。
The radial thickness I7 of the insulating spacer 22 is set at t4. (constant), the radius r1'1 of the I-odd superconductor 21, and therefore the thickness ti of each superconductor 210 in the radial direction is determined according to the formula 0. As an example in Figure 4, Pin = 0.3
kgf/r+n + Pout := 0.031(q
f/mm + rtn = 300wn, te = 1 key turn number n 2 10. The conductor configuration in the case of σa-10 kgf/vn2 is shown. Determining from the superconductor plate thickness t1 and formula 0, t
in=9-+tout==134. The outer diameter of the coil is 367.97 mm.

ここで添字outは最外層ターンを表わしている。Here, the subscript "out" represents the outermost layer turn.

以上述べたように0式によって、各超電導体21の半径
方向の肉厚寸法が決められた超電導コイルは、電磁力F
rが作用しても、各ターンの超電導体21は、半径方向
にほぼ均一に変位し、且つ、電磁力によって、発生ずる
周方向応力も許容応力値以内の均一な値を示す。従って
、強度的にも、超電導安定性の面からも十分安全で、信
頼性のある超電導ソレノイドコイルとなる。
As described above, the superconducting coil whose radial wall thickness dimension of each superconductor 21 is determined by Equation 0 is created by the electromagnetic force F
Even when r acts, the superconductor 21 of each turn is displaced almost uniformly in the radial direction, and the generated circumferential stress due to the electromagnetic force also exhibits a uniform value within the allowable stress value. Therefore, the superconducting solenoid coil is sufficiently safe and reliable in terms of strength and superconducting stability.

又、コイル全体の半径方向寸法もコンパクト々ものに収
まシ、超電導ソレノイドコイル全体としては、半径方向
ス4−スを無駄なくイコ効に活用出来る。
Moreover, the radial dimension of the entire coil can be kept compact, and the radial space of the entire superconducting solenoid coil can be utilized efficiently and efficiently.

次に本発明の第2の実施例について第5図を参照して説
明する。第5図は第4図とは異り、超電導体2)によシ
形成されるターンコイル相互間に、ターンh−材を設け
たものである。このターン部材は、ステンレステーン0
からなるi+li (:riii:ii利23と、この
両側に絶縁ス波−ヤー22に設けたものである。”この
場合、補強部材23の半径方向の内厚を以下のようにし
てきめたものである。い才、超電導体21の半径方向の
肉厚をtc、電磁圧力をPi、絶縁スペーサの半fで方
向の白丸−’te +コイル最内層の内径rin、J刀
′屯う、1“ダ体のヤング率Ec、補強飾利23のヤン
グ率Es、超′1a層一体の許容応力をσaとすると、
補強V小才423の半径方向の肉厚tgiは0式のよう
になる。
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 5 differs from FIG. 4 in that a turn h-material is provided between the turn coils formed by the superconductor 2). This turn member is made of stainless steel
In this case, the inner thickness of the reinforcing member 23 in the radial direction is determined as follows. The thickness of the superconductor 21 in the radial direction is tc, the electromagnetic pressure is Pi, the half f of the insulating spacer is the white circle in the direction -'te + the inner diameter of the innermost layer of the coil rin, J'ton is 1 "If the Young's modulus Ec of the body, the Young's modulus Es of the reinforcing decoration 23, and the allowable stress of the super'1a layer as a whole are σa,
The wall thickness tgi in the radial direction of the reinforcing V shank 423 is expressed by the formula 0.

さらに、本発明の第3の実施例について第6図を参照し
て説明する。超電導体としては撚線構造の超電導線25
を数本、ステンレス芯26を芯にしてスパイラルに巻き
つけたものを、周方向に巻きこんだ構造のものである。
Furthermore, a third embodiment of the present invention will be described with reference to FIG. As a superconductor, a stranded superconducting wire 25
It has a structure in which several wires are spirally wound around a stainless steel core 26 and wound in the circumferential direction.

この場合ステンレス芯26の半径方向の肉J’7.ts
cを一定にして、この外側にステンレステープのごとく
補強部材27を巻込む場合であり、1d@力をP++1
だミ線径をdsc 、絶縁スペーサ22の半径方向の肉
厚をte、コイル最内層の径をr11+ステンレス芯2
6の許容応力σaとすると、各ターンの補強部材の半径
方向の肉厚は0式のようになる。
In this case, the radial thickness of the stainless steel core 26 J'7. ts
This is a case where the reinforcing member 27 is wrapped around the outside like a stainless steel tape while c is constant, and 1d@force is P++1.
The radius wire diameter is dsc, the radial thickness of the insulating spacer 22 is te, and the diameter of the innermost layer of the coil is r11 + stainless steel core 2.
Assuming that the allowable stress σa is 6, the thickness of the reinforcing member in each turn in the radial direction is as shown in equation 0.

この0式にもとづいて補強部材の半径方向の肉厚がきめ
られる。
The thickness of the reinforcing member in the radial direction is determined based on this formula 0.

次に本発明の第4の実施例について第7図を参照して説
明する。この場合、超′riLi’fi体としては撚線
構造の超電導線25を数本、ヌテンレス芯26を芯にし
てス・ぐイラルに巻きつけたものを、周方向に巻きこん
だ構造のものである。
Next, a fourth embodiment of the present invention will be described with reference to FIG. In this case, the super'riLi'fi body has a structure in which several stranded superconducting wires 25 are wound around a wire around a nutless core 26 in the circumferential direction. be.

このような燃線構造の超電導線は周方向には、t”+’
l性をもたないと考えられるから、ステンレス芯26が
補強部材になる。ステンレス芯26の半径方向の肉厚を
ti、電磁力をPi、撚線径をdsc 、絶縁スペーサ
22の半径方向の肉厚をte。
In the circumferential direction, a superconducting wire with such a flaming wire structure has a temperature of t"+'
Since it is considered that the stainless steel core 26 does not have lactic properties, the stainless steel core 26 serves as a reinforcing member. The radial thickness of the stainless steel core 26 is ti, the electromagnetic force is Pi, the twisted wire diameter is dsc, and the radial thickness of the insulating spacer 22 is te.

コイル最内層の径をrln +ステンレス芯26の許容
応力σaとすると0式のようになる。
If the diameter of the innermost layer of the coil is rln + the allowable stress σa of the stainless steel core 26, then the equation 0 is obtained.

0式f’:t i 番目のステンレス芯26の半径方向
の白馬jtiを示している。
0 type f': shows the white horse jti in the radial direction of the ti-th stainless steel core 26.

〔発明の効果〕〔Effect of the invention〕

以上述べた本発明によれd:、強度上安全で、イ1;頼
tLが高く、全体の牛後方向寸法もコン・ぐクトで経済
的な超電々′1ソレノ・イドコイルを4.い惧できる。
According to the present invention described above, a superelectric solenoid coil is provided which is safe in terms of strength, 1) has a high reliability tL, has a compact overall rear direction dimension, and is economical. I can be worried.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、(b)は従来の超電導ソレノイドの一例
の一溝を示す斜視図および平面図、第2図は従来の超電
導ソレノイドの他の例の一部を示す斜視図、第3図は第
1図、第2図の超1Lカ体に電磁力が作用したときの半
径方向変位拓と周方向応力を模式的に示す図、第4図は
本発明の超電導ソレノイドの第1の実施例の一部を示す
斜視図、第5図〜第7図は本発明の超電導ソレノイドの
第2〜第4の実施例の−b5を示す斜視図である。 21・・超電導体、22・・・絶縁スペーサ、25・・
愁線構造の超電導線、26・・・ステンレス芯、27・
・・補強部材。 出、願人代理人 弁理士 鈴 江 武 彦第1図 (a) 第2図 第3図 第4図 第5図
1(a) and 1(b) are a perspective view and a plan view showing one groove of an example of a conventional superconducting solenoid, FIG. 2 is a perspective view showing a part of another example of a conventional superconducting solenoid, and FIG. The figure schematically shows the radial displacement and circumferential stress when an electromagnetic force acts on the super 1L body of Figures 1 and 2, and Figure 4 shows the first superconducting solenoid of the present invention. 5 to 7 are perspective views showing -b5 of second to fourth embodiments of the superconducting solenoid of the present invention. 21...Superconductor, 22...Insulating spacer, 25...
Superconducting wire with closed wire structure, 26...Stainless steel core, 27.
...Reinforcement member. Patent attorney Takehiko Suzue Figure 1 (a) Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 複数個の超電導導体をそれぞれ成形して半径の異なる円
形のターンコイルを複数個得、これらを同心円状にする
とともに、ターンコイル相互間にターン部材を設けて各
ターンコイル相互間を絶f’+L、かつ各ターンコイル
を電気的に接続した超電導ソレノイドコイルにおいて、
前記ターンコイルおよびターン都月のいずれが一方であ
って半径方向の各々の肉厚寸法を各ターンコイルに加わ
る電磁力に応じて変化させ、各ターンコイルの応力を許
容応力値内に抑え、かつターンコイルの半径方向変位が
ほぼ均一になるようにしたことを特徴とする超電導ソレ
ノイドコイル。
A plurality of superconducting conductors are individually molded to obtain a plurality of circular turn coils with different radii, and these are made into concentric circles, and turn members are provided between the turn coils to isolate each turn coil from each other. , and in a superconducting solenoid coil in which each turn coil is electrically connected,
Either the turn coil or the turn coil is one, and each wall thickness in the radial direction is changed in accordance with the electromagnetic force applied to each turn coil, and the stress of each turn coil is suppressed within an allowable stress value, and A superconducting solenoid coil characterized in that the radial displacement of the turn coil is almost uniform.
JP16146383A 1983-09-02 1983-09-02 Superconductive solenoid coil Granted JPS6053003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16146383A JPS6053003A (en) 1983-09-02 1983-09-02 Superconductive solenoid coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16146383A JPS6053003A (en) 1983-09-02 1983-09-02 Superconductive solenoid coil

Publications (2)

Publication Number Publication Date
JPS6053003A true JPS6053003A (en) 1985-03-26
JPH0464164B2 JPH0464164B2 (en) 1992-10-14

Family

ID=15735577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16146383A Granted JPS6053003A (en) 1983-09-02 1983-09-02 Superconductive solenoid coil

Country Status (1)

Country Link
JP (1) JPS6053003A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02309611A (en) * 1989-05-24 1990-12-25 Japan Atom Energy Res Inst Superconducting magnet
US5319333A (en) * 1989-07-15 1994-06-07 Bruker Analytische Messtechnik Gmbh Superconducting homogeneous high field magnetic coil
JPH06244017A (en) * 1993-02-16 1994-09-02 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Oxide series superconducting coil
JP2006313923A (en) * 2006-06-26 2006-11-16 Toshiba Corp High temperature superconducting coil and high temperature superconducting magnet using the same
JP2008124081A (en) * 2006-11-08 2008-05-29 Kyoto Univ Superconducting coil and method for manufacturing same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02309611A (en) * 1989-05-24 1990-12-25 Japan Atom Energy Res Inst Superconducting magnet
US5319333A (en) * 1989-07-15 1994-06-07 Bruker Analytische Messtechnik Gmbh Superconducting homogeneous high field magnetic coil
JPH06244017A (en) * 1993-02-16 1994-09-02 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Oxide series superconducting coil
JP2006313923A (en) * 2006-06-26 2006-11-16 Toshiba Corp High temperature superconducting coil and high temperature superconducting magnet using the same
JP4719090B2 (en) * 2006-06-26 2011-07-06 株式会社東芝 High temperature superconducting coil and high temperature superconducting magnet using the same
JP2008124081A (en) * 2006-11-08 2008-05-29 Kyoto Univ Superconducting coil and method for manufacturing same

Also Published As

Publication number Publication date
JPH0464164B2 (en) 1992-10-14

Similar Documents

Publication Publication Date Title
US6750399B1 (en) Cable, a method of constructing a cable, and use of a cable
US6300857B1 (en) Insulating toroid cores and windings
US20080312089A1 (en) Superconducting Cable
JPS6053003A (en) Superconductive solenoid coil
US20090206968A1 (en) Armored superconducting winding and method for its production
JPH0388308A (en) Superconductive tape coil impregnated with epoxy resin
US3550050A (en) Superconducting coil with cooling means
US5929385A (en) AC oxide superconductor wire and cable
US5227755A (en) Winding configuration for a cryomagnet
US4564564A (en) Superconducting magnet wire
US4437080A (en) Method and apparatus utilizing crystalline compound superconducting elements having extended strain operating range capabilities without critical current degradation
US4277769A (en) Arrangement for cooling a superconduction magnet coil winding
JP2645721B2 (en) Superconducting coil
US3559127A (en) Superconductive magnet construction
JP3195874B2 (en) Superconducting coil device and method of manufacturing the same
JPS60198009A (en) Compound superconductive conductor
US11887777B2 (en) System and method to manage high stresses in Bi-2212 wire wound compact superconducting magnets
JPS6019645B2 (en) Pancake-shaped coil
US3984618A (en) Support body for the conductors of a low temperature cable
JPS5912003B2 (en) coil
JP2525016B2 (en) Superconducting wire
JPS5922361B2 (en) superconducting winding
JPH01130418A (en) Superconductor
Scanlan et al. Multifilamentary Nb 3 Sn for superconducting generator applications
JP2695065B2 (en) Composite superconducting magnet