JPS63261729A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS63261729A
JPS63261729A JP9535987A JP9535987A JPS63261729A JP S63261729 A JPS63261729 A JP S63261729A JP 9535987 A JP9535987 A JP 9535987A JP 9535987 A JP9535987 A JP 9535987A JP S63261729 A JPS63261729 A JP S63261729A
Authority
JP
Japan
Prior art keywords
silicon
film
oxide film
silicon oxide
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9535987A
Other languages
Japanese (ja)
Inventor
Hidetoshi Wakamatsu
若松 秀利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP9535987A priority Critical patent/JPS63261729A/en
Publication of JPS63261729A publication Critical patent/JPS63261729A/en
Pending legal-status Critical Current

Links

Landscapes

  • Local Oxidation Of Silicon (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To prevent strain in a silicon oxide film in an element isolating region, by using an IVD method, by which nitrogen ion implantation and silicon evaporation are carried out at the same time, and depositing a silicon nitride film on a silicon substrate, in which a silicon oxide film as surface protecting film is patterned and formed in an element isolating region beforehand. CONSTITUTION:Thermal oxidation of a P-type silicon substrate 8 is performed, and a silicon oxide film 9 as a protecting film is formed. An opening part 10, which is to become an element isolating region, is formed by etching. Then, nitrogen ions having low accelerating energy are implanted by an IVD method, and silicon is evaporated with an electron beam at the same time. Thus a silicon nitride film 11 is deposited. At this time a silicon nitride film 12 is formed. The silicon nitride film 11 is etched back, and the film 11 is made to remain only at the opening part 10. The silicon oxide film 9 is removed by wet etching. An impurity ion implanted layer 13 at the element isolating region is formed on the upper surface of the substrate 8. High temperature oxidation is performed, and a silicon oxide film 14 is grown and formed on the layer 13. Then, the flat element isolating region C and an element forming region D, almost free of bird's beak, are formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体素子の製造方法に係り、より詳しくは半
導体素子分離領域の形成方法に関するものでおる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of forming a semiconductor device isolation region.

〔従来の技術〕[Conventional technology]

従来、この糧の半導体集積回路の素子分離領域の形成方
法としては、例えば「特公昭45−41455号公報、
特公昭47−6131号公報」に開示されている様に、
耐酸化性のシリコン窒化膜(Si3N4)を用いた選択
酸化法が一般に知られている。然るに、この選択酸化法
では、周知の様に特にバーズビークの発生から素子分離
領域の拡がりが大きくなり、Δターンデザイン上大きな
制約を与える。
Conventionally, methods for forming element isolation regions in semiconductor integrated circuits have been disclosed in Japanese Patent Publication No. 45-41455,
As disclosed in Japanese Patent Publication No. 47-6131,
A selective oxidation method using an oxidation-resistant silicon nitride film (Si3N4) is generally known. However, as is well known, in this selective oxidation method, the expansion of the element isolation region becomes large due to the occurrence of bird's beaks, which imposes a large restriction on the Δ-turn design.

近年、VLSI化が進み半導体素子並びに素子分離領域
の微細化が強く要求されている。そのため、前記選択酸
化法に代わる素子分離領域の形成方法として、IVD法
という窒素イオンとシリコン電子ビーム蒸着を同時に行
なう方法を用いて、化学量論的組成の制御されたシリコ
ン窒化膜形成方法が開発されている。
In recent years, with the advancement of VLSI, there is a strong demand for miniaturization of semiconductor elements and element isolation regions. Therefore, as an alternative method for forming element isolation regions to the selective oxidation method, a method for forming a silicon nitride film with a controlled stoichiometric composition was developed using the IVD method, a method in which nitrogen ions and silicon electron beam evaporation are performed simultaneously. has been done.

以下、第2図(a)乃至(d)に従来方法の工程図を示
して、IVD法により形成したシリコン窒化膜の素子分
離法を説明する。
Hereinafter, a device isolation method for a silicon nitride film formed by the IVD method will be described with reference to FIGS. 2(a) to 2(d) showing process diagrams of the conventional method.

先ず、第2図(a)に示す如く、P型シリコン基板(以
下基板という)lを真空度が2 X 1O−6Torr
程度のチャンバー内にセットし、窒素イオンを加速電圧
5〜20 KeV 、電流密度0.05〜5mA/c!
iで1〜35分程度前記基板10表面部位に打ち込むと
同時にシリコンの電子ビーム蒸着を蒸着速度409m1
nで行なう。斯くして、前記基板l上に窒素イオンとシ
リコン原子との直接反応によって、窒素イオン注入層2
及びシリコン窒化膜3が順次形成される。尚、IVD法
により形成された該シリコン窒化膜3は600^程度の
深さ迄均質に形成される。
First, as shown in FIG. 2(a), a P-type silicon substrate (hereinafter referred to as a substrate) is placed at a vacuum level of 2 x 1O-6 Torr.
Nitrogen ions are accelerated at a voltage of 5 to 20 KeV and a current density of 0.05 to 5 mA/c.
i for about 1 to 35 minutes on the surface of the substrate 10, and at the same time, electron beam evaporation of silicon was performed at a deposition rate of 409 m1.
Do it with n. In this way, a nitrogen ion implantation layer 2 is formed on the substrate l by direct reaction between nitrogen ions and silicon atoms.
and silicon nitride film 3 are sequentially formed. The silicon nitride film 3 formed by the IVD method is uniformly formed to a depth of about 600°.

次に、第2図(b)に示す如く、前記シリコン窒化膜3
上にレジスト膜4を7000〜5oooλ程度塗布した
後、ノ蓼ターニングを施し、開口部5を形成する。
Next, as shown in FIG. 2(b), the silicon nitride film 3
After applying a resist film 4 of about 7000 to 500λ on the resist film 4, turning is performed to form an opening 5.

その後、レジスト膜4をマスクとして、前記窒素イオン
注入層2及びシリコン窒化膜3をRIE法を用いてエツ
チングする。続いて、同しソスト膜4をマスクとして、
素子分離領域の反転防止用不純物(ボロンB+ )をイ
オン注入(40KeV、 2X10L3tons/cj
 ) l、、不純物イオン注入層6を形成する。
Thereafter, using the resist film 4 as a mask, the nitrogen ion implantation layer 2 and silicon nitride film 3 are etched using the RIE method. Next, using the same Sost film 4 as a mask,
Ion implantation of impurity (boron B+) for preventing inversion in the element isolation region (40KeV, 2X10L3tons/cj
) l., an impurity ion implantation layer 6 is formed.

しかる後、第2図(C)に示す如く、前記レジスト膜4
を除去した後、1000℃、H,+ 0.の酸化雰囲気
中で熱的酸化を行なうことにより前記開口部5の不純物
イオン注入層6上に素子分離領域の酸化シリコン膜7を
6000λ程度成長形成する。そして、第2図(d)に
示す如く、前記シリコン窒化膜3及び窒素イオン注入層
2を熱リン酸によりエツチング除去して、素子分離領域
Aと素子領域Bとを夫々形成していた。
After that, as shown in FIG. 2(C), the resist film 4 is
After removing, 1000°C, H, +0. By performing thermal oxidation in an oxidizing atmosphere, a silicon oxide film 7 of about 6000 λ is grown as an element isolation region on the impurity ion implanted layer 6 in the opening 5. Then, as shown in FIG. 2(d), the silicon nitride film 3 and the nitrogen ion-implanted layer 2 were removed by etching with hot phosphoric acid to form an element isolation region A and an element region B, respectively.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

然し乍ら、従来の素子分離領域Aの形成方法においては
、基板1の全面に窒素イオン注入とシリコン電子ビーム
蒸着とを行なうため、素子分離領域Aのノ臂ターニング
エツチングの際、終点判定が困難となる。そのため、シ
リコン窒化膜3が完全に除去されず、次工程の選択酸化
の際、酸化シリコン膜7の表面7a及び境界面7bに凹
凸による歪みが生じるという問題点があった。
However, in the conventional method for forming the element isolation region A, since nitrogen ion implantation and silicon electron beam evaporation are performed on the entire surface of the substrate 1, it is difficult to determine the end point during the turning etching of the element isolation region A. . Therefore, there is a problem that the silicon nitride film 3 is not completely removed, and distortion occurs due to the unevenness on the surface 7a and the boundary surface 7b of the silicon oxide film 7 during the next step of selective oxidation.

本発明の目的は上述の問題点に鑑み、素子分離領域の酸
化シリコン膜の歪みが防止できる半導体素子の製造方法
を提供するものである。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, an object of the present invention is to provide a method for manufacturing a semiconductor device that can prevent distortion of a silicon oxide film in an isolation region.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上述した目的を達成するため、シリコン基板8
上に表面保護膜としての酸化シリコン膜9を形成する工
程と、該酸化シリコン[9を/#ターニングして開口部
10を形成する工程と、前記シリコン基板8及び前記酸
化シリコン膜9上にIVD法を以て、窒化シリコン膜1
1を堆積する工程と、該窒化シリコン膜11を、エッチ
パック法を以て、前記開口部10にのみ残留させる工程
と、前記酸化シリコン膜9をエツチング除去する工程と
、前記シリコン基板8上部に不純物イオン注入層13を
形成した後、高温酸化によって、該不純物イオン注入層
13上に酸化シリコン膜14を成長形成する工程とを含
むものである。
In order to achieve the above-mentioned object, the present invention provides a silicon substrate 8
A step of forming a silicon oxide film 9 as a surface protection film on the silicon oxide film 9, a step of turning the silicon oxide film 9 to form an opening 10, and forming an IVD film on the silicon substrate 8 and the silicon oxide film 9. The silicon nitride film 1 is
1, a step of leaving the silicon nitride film 11 only in the opening 10 using an etch-pack method, a step of etching away the silicon oxide film 9, and a step of depositing impurity ions on the upper part of the silicon substrate 8. After forming the implanted layer 13, the method includes a step of growing a silicon oxide film 14 on the impurity ion implanted layer 13 by high-temperature oxidation.

〔作用〕[Effect]

本発明においては、予めシリコン基板の素子分離領域に
表面保護膜用の酸化シリコン膜を・臂ターニング形成し
た後、窒化シリコン膜を堆積するので、素子分離領域形
成のための高温酸化後において、素子分離領域における
酸化シリコン膜の表面及び境界面の歪みが防止され、該
酸化シリコン膜は所定形状に形成される。
In the present invention, a silicon nitride film is deposited after a silicon oxide film for a surface protection film is formed in advance in the element isolation region of a silicon substrate by turning. Distortion of the surface and interface of the silicon oxide film in the isolation region is prevented, and the silicon oxide film is formed into a predetermined shape.

〔実施例〕〔Example〕

本発明の半導体素子の製造方法に係る一実施例を第1図
に本発明方法の工程図を示して説明する。
An embodiment of the method of manufacturing a semiconductor device of the present invention will be described with reference to FIG. 1, which shows a process diagram of the method of the present invention.

先ず、第1図(a)に示す如<、ioo結晶軸を有する
2塁シリコン基板(以下基板という)8に熱的酸化を施
すことによりその主面8aに保護膜としての酸化シリコ
ン膜9を1000λ程度形成する。
First, as shown in FIG. 1(a), a silicon oxide film 9 as a protective film is formed on a main surface 8a by thermally oxidizing a second base silicon substrate (hereinafter referred to as a substrate) 8 having an ioo crystal axis. Form about 1000λ.

次いで、第1図(b)に示す如く、ホトリソ工程を以て
、前記酸化シリコン膜9をRIE法によりエツチングし
て、素子分離領域を形成する領域となる開口部10を形
成する。続いて、前記基@8を、イオン銃と電子ビーム
蒸着源とを配備すると共に、真空度が概ねI X 10
−1’ Torrの真空容器内に配置し、室温において
、IVD法による低加速エネルギー(約10 KeV 
)の窒素イオン注入を行なうと同時に、シリコンの電子
ビーム蒸着を行ない、窒化シリコン膜11を5000λ
程度堆積する。その際、基板8の開口部10側と窒化シ
リコン膜11の基板8側とには、窒素イオンのみ注入さ
れ、窒素の深さ方向のグロファイルがガウシアン分布に
なっている傾城(窒化シリコン膜)12が形成される。
Next, as shown in FIG. 1(b), the silicon oxide film 9 is etched by RIE using a photolithography process to form an opening 10 which will become a region for forming an element isolation region. Subsequently, the base @8 is equipped with an ion gun and an electron beam evaporation source, and the vacuum level is approximately I x 10.
-1' Torr in a vacuum chamber, and at room temperature, low acceleration energy (approximately 10 KeV
) At the same time as nitrogen ion implantation, electron beam evaporation of silicon is performed to form a silicon nitride film 11 with a thickness of 5000λ.
It accumulates to some extent. At this time, only nitrogen ions are implanted into the opening 10 side of the substrate 8 and the substrate 8 side of the silicon nitride film 11, and the sloped wall (silicon nitride film) in which the nitrogen profile in the depth direction has a Gaussian distribution is formed. 12 is formed.

尚、前記の窒化シリコン膜11は減圧CVD法により形
成した窒化シリコン膜に比較して、基板1に結晶欠陥を
生じさせない低ストレス膜でアリ、前記窒化シリコン膜
11のシリコンと窒素との組成比は、耐酸化性を有する
ものであれば、必ずしもSi:Nが3:4の化学量論的
に安定し次もので無くても良い。而して、第1図(C)
に示す如く、前記窒化シリコン膜11をRIB法を以て
、エッチバックし、前記開口部10のみに残す。その際
、開口部10以外の窒化シリコン膜11が完全にエツチ
ングされているか否かは分光分析法によるCoのピーク
の検出により再現性良く制御されるので、エツチング残
りが生じないと共に、エツチング面積が小さくなり、エ
ツチング速度が急に速くなるローディング効果の影響を
受は無い。又、開口部10に残った窒化シリコン膜11
の膜厚制御は酸化シリコン膜9の膜厚を変更することで
制御される。
The silicon nitride film 11 is a low-stress film that does not cause crystal defects in the substrate 1 compared to a silicon nitride film formed by low-pressure CVD, and the composition ratio of silicon to nitrogen of the silicon nitride film 11 is As long as it has oxidation resistance, it does not necessarily have to have a stable Si:N stoichiometry of 3:4. Therefore, Figure 1 (C)
As shown in FIG. 2, the silicon nitride film 11 is etched back using the RIB method, leaving only the opening 10. At this time, whether or not the silicon nitride film 11 other than the opening 10 is completely etched is controlled with good reproducibility by detecting the Co peak using spectroscopic analysis, so that no etching residue is left and the etching area is reduced. It is not affected by the loading effect, which causes the etching speed to suddenly increase. Moreover, the silicon nitride film 11 remaining in the opening 10
The film thickness is controlled by changing the film thickness of the silicon oxide film 9.

次に、第1図(d)に示す如く、フッ酸等のエツチング
液により前記酸化シリコン膜9をウェットエツチング除
去する。更に、前記基板8の上面に素子分離領域の反転
防止用不純物(ボロンB+)をイオン注入(40KeV
、 2X10L3ions/cd ) l、、不純物イ
オン注入層13を形成する。その後、第1図(e)に示
す如<、1000℃ウェット酸化雰囲気中で高温酸化を
行ない、該不純物イオン注入層13上に酸化シリコン膜
14を6000^程度成長形成させる。そして、前記窒
化シリコン膜11及び12を熱リン酸によるエツチング
と次工程のホワイトリボン酸化を以て、完全に除去し、
バーズビークの発生が殆ど無い平担な素子分離領域C及
び素子形成領域りが夫々形成される。
Next, as shown in FIG. 1(d), the silicon oxide film 9 is removed by wet etching using an etching solution such as hydrofluoric acid. Further, an impurity (boron B+) for preventing inversion of the element isolation region is ion-implanted (40 KeV) into the upper surface of the substrate 8.
, 2X10L3ions/cd) 1, an impurity ion implantation layer 13 is formed. Thereafter, as shown in FIG. 1(e), high-temperature oxidation is performed in a wet oxidation atmosphere at 1000° C., and a silicon oxide film 14 is grown to a thickness of about 6000° on the impurity ion-implanted layer 13. Then, the silicon nitride films 11 and 12 are completely removed by etching with hot phosphoric acid and white ribbon oxidation in the next step,
A flat element isolation region C and a flat element formation region with almost no bird's beaks are formed.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明し友様に本発明によれば、低加速エネル
ギーの窒素イオン注入とシリコンの電子ビーム蒸着とを
同時罠行なうIVD法を用いて、予め素子分離領域に表
面保護膜用の酸化シリコン膜を・ンターニング形成した
シリコン基板上に、窒化シリコン膜を堆積するので、素
子分離領域形成の際の高温酸化後において、素子分離領
域の酸化シリコン膜の表面及び境界面は、マスク寸法通
りに歪みが無く平担に形成できる。従って、素子分離領
域における横方向へのバーズビークの発生及び素子分離
領域パターンの歪みが防止できる。そのため、前記素子
分離領域を微細にできるので、素子の微細化が達成でき
、半導体集積回路の高集積化ができる等の特有の効果よ
り前述の問題を解決し得る。
As explained in detail above, according to the present invention, silicon oxide for a surface protective film is pre-coated in an element isolation region using an IVD method that simultaneously performs low acceleration energy nitrogen ion implantation and silicon electron beam evaporation. Since the silicon nitride film is deposited on the silicon substrate on which the film has been patterned, the surface and boundary surfaces of the silicon oxide film in the element isolation region are aligned with the mask dimensions after high-temperature oxidation when forming the element isolation region. It can be formed flat without distortion. Therefore, generation of bird's beak in the lateral direction in the element isolation region and distortion of the element isolation region pattern can be prevented. Therefore, since the element isolation region can be made finer, the above-mentioned problems can be solved by the unique effects such as miniaturization of elements and higher integration of semiconductor integrated circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)乃至(6)は本発明方法に係る一実施例を
示す工程図、第2図(a)乃至(d)は従来方法の工程
図を示すものである。 8・・・シリコン基板(基板)、9・・・酸化シリコン
膜、10・・・開口部、11・・・窒化シリコン膜、1
2・・・領域(窒化シリコン膜)、13・・・不純物イ
オン注入層、14・・・酸化シリコン膜、C・・・素子
分離領域、D・・・素子形成領域。 ”v  EB(57) 11置置11 未発117st/)工ずifJ 第1図
FIGS. 1(a) to (6) are process diagrams showing one embodiment of the method of the present invention, and FIGS. 2(a) to (d) are process diagrams of a conventional method. 8... Silicon substrate (substrate), 9... Silicon oxide film, 10... Opening, 11... Silicon nitride film, 1
2... Region (silicon nitride film), 13... Impurity ion implantation layer, 14... Silicon oxide film, C... Element isolation region, D... Element formation region. ”v EB (57) 11 Placement 11 Unexploded 117st/) Works ifJ Figure 1

Claims (1)

【特許請求の範囲】 シリコン基板上に表面保護膜としての酸化シリコン膜を
形成する工程と、 該酸化シリコン膜をパターニングして開口部を形成する
工程と、 前記シリコン基板及び前記酸化シリコン膜上にIVD法
を以て、窒化シリコン膜を堆積する工程と、 該窒化シリコン膜を、エッチバック法を以て、前記開口
部にのみ残留させる工程と、 前記酸化シリコン膜をエッチング除去する工程と、 前記シリコン基板上部に不純物イオン注入層を形成した
後、高温酸化によつて、該不純物イオン注入層上に酸化
シリコン膜を成長形成する工程とを含むことを特徴とす
る半導体素子の製造方法。
[Claims] A step of forming a silicon oxide film as a surface protection film on a silicon substrate, a step of patterning the silicon oxide film to form an opening, and a step of forming an opening on the silicon substrate and the silicon oxide film. a step of depositing a silicon nitride film using an IVD method; a step of leaving the silicon nitride film only in the opening using an etch-back method; a step of etching away the silicon oxide film; 1. A method of manufacturing a semiconductor device, comprising the step of forming an impurity ion implantation layer and then growing a silicon oxide film on the impurity ion implantation layer by high-temperature oxidation.
JP9535987A 1987-04-20 1987-04-20 Manufacture of semiconductor device Pending JPS63261729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9535987A JPS63261729A (en) 1987-04-20 1987-04-20 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9535987A JPS63261729A (en) 1987-04-20 1987-04-20 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS63261729A true JPS63261729A (en) 1988-10-28

Family

ID=14135445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9535987A Pending JPS63261729A (en) 1987-04-20 1987-04-20 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS63261729A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5686348A (en) * 1996-08-19 1997-11-11 United Microelectronics Corp. Process for forming field isolation structure with minimized encroachment effect

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5686348A (en) * 1996-08-19 1997-11-11 United Microelectronics Corp. Process for forming field isolation structure with minimized encroachment effect

Similar Documents

Publication Publication Date Title
US4498227A (en) Wafer fabrication by implanting through protective layer
JP3143473B2 (en) Silicon-on-porous silicon; manufacturing method and material
US4766086A (en) Method of gettering a semiconductor device and forming an isolation region therein
US4069068A (en) Semiconductor fabrication method for improved device yield by minimizing pipes between common conductivity type regions
EP0409561A2 (en) Methods of manufacturing MIS semiconductor devices
US4552595A (en) Method of manufacturing a semiconductor substrate having dielectric regions
US5476800A (en) Method for formation of a buried layer for a semiconductor device
JPH0628282B2 (en) Method for manufacturing semiconductor device
JPS63261729A (en) Manufacture of semiconductor device
US20030013257A1 (en) Method for manufacturing semiconductor device
JPS6040702B2 (en) Method for manufacturing semiconductor integrated circuit device
EP0111097B1 (en) Method for making semiconductor devices having a thick field dielectric and a self-aligned channel stopper
KR0150995B1 (en) Semiconductor gettering method
JPS6018930A (en) Manufacture of semiconductor device
KR930000876B1 (en) HIGH ENERGY ION BEAM BLOCKING METHOD USING Si3N4 FILM
JP3371600B2 (en) Method for manufacturing MIS transistor
KR0177387B1 (en) Manufacture for bipolar semiconductor device
KR960000191B1 (en) Capacitor's capacity increasing method by impurities ion implanted nitride film
KR100503369B1 (en) A method for manufacturing a semiconductor device with a buried channel
JPS59101851A (en) Manufacture of semiconductor device
JPS6386565A (en) Manufacture of semiconductor device
KR0151225B1 (en) Device isolation method of semicondcutor device
JP2576513B2 (en) Method for manufacturing bipolar transistor
JPS6248028A (en) Forming method for field oxide film
JPS59143329A (en) Manufacture of semiconductor device