JPS63252477A - Bipolar semiconductor integrated circuit device - Google Patents

Bipolar semiconductor integrated circuit device

Info

Publication number
JPS63252477A
JPS63252477A JP8826387A JP8826387A JPS63252477A JP S63252477 A JPS63252477 A JP S63252477A JP 8826387 A JP8826387 A JP 8826387A JP 8826387 A JP8826387 A JP 8826387A JP S63252477 A JPS63252477 A JP S63252477A
Authority
JP
Japan
Prior art keywords
layer
diffusion layer
trenches
integrated circuit
semiconductor integrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8826387A
Other languages
Japanese (ja)
Inventor
Kazutoshi Kamibayashi
和利 上林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8826387A priority Critical patent/JPS63252477A/en
Publication of JPS63252477A publication Critical patent/JPS63252477A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To fine an IC element, and to increase the working speed of the IC element by isolating a transistor element by a dielectric insulating layer surrounded from the cross direction and the longitudinal direction on a substrate. CONSTITUTION:A P<+> diffusion layer is formed to a P-type Si substrate 1, and an N<+> buried layer 3 and an N<-> epitaxial layer 4 are shaped in succession. An oxide film 9 is attached onto the surface of the epitaxial layer 4, and vertical trenches 6 are cut through ion etching. Only the P<+> diffusion layer is etched selectively to form transverse trenches while Si oxide films 5 are affixed onto the whole wall surfaces of the trenches. The ions of a P<+> type impurity are implanted to shape channel-stoppers 10, poly Si is vapor-grown, and the insides of the trenches are buried with the poly Si layers 6. An N-P-N bipolar transistor respectively using an N<+> diffusion layer 7, a P diffusion layer 8 and the N<-> epitaxial layer as emitter, base and collector regions is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はバイポーラ型半導体集積回路装置に関し、特に
素子間分離領域の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a bipolar semiconductor integrated circuit device, and particularly to the structure of an isolation region between elements.

〔従来の技術〕[Conventional technology]

従来、バイポーラ型半導体集積回路装置の素子間分離領
域はP−N接合を利用する基板と逆導電型の高濃度層或
いは通常ロコス(LOCOS)法と呼ばれる厚膜酸化膜
によって形成される。
Conventionally, element isolation regions of bipolar semiconductor integrated circuit devices are formed by a substrate using a PN junction, a high concentration layer of opposite conductivity type, or a thick oxide film commonly called the LOCOS method.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、これら従来の素子間分離領域の構造は最
近の微細化、高速化の要求に対してそれぞれ大きな欠点
を有している。すなわち、前者のP−N接合によるもの
は絶縁耐圧を確保するうえで空乏層の横方向の広がり分
が必要とをるのでトランジスタ素子を微小化することが
できず、また、絶縁容量成分も大きいのでスイッチング
回路等の高速回路が非常に形成しにくい、また後者のロ
コス法によるものは前者より可成りスイッチング回路等
の高速性を改善し得るものの未だ充分とは言い難く微細
化に対しても、なお不充分な状態にある。すなわち、ロ
コス法は素子の横方向は厚い酸化膜による誘電体で充分
絶縁分離できるものの、基板との間の分離は依然として
P−N接合による絶縁法を残しているので、高速回路の
構成および素子の微細化に限界を生じている。
However, these conventional structures of element isolation regions each have major drawbacks in response to recent demands for miniaturization and increased speed. In other words, the former type using a P-N junction requires a lateral spread of the depletion layer to ensure dielectric strength, so the transistor element cannot be miniaturized, and the insulation capacitance component is also large. Therefore, it is very difficult to form high-speed circuits such as switching circuits, and although the latter LOCOS method can considerably improve the high-speed performance of switching circuits and the like compared to the former, it is still far from being sufficient and is not suitable for miniaturization. However, it is still in an insufficient state. In other words, in the LOCOS method, although the device can be sufficiently isolated in the lateral direction using a dielectric layer made of a thick oxide film, isolation from the substrate is still achieved using a P-N junction, which makes it difficult to configure high-speed circuits and devices. There are limits to the miniaturization of

本発明の目的は、上記の状況に鑑み、トランジスタ素子
の横方向および縦方向をそれぞれ充分に絶縁分離し得る
誘電体素子間分離領域を備えたバイポーラ型半導体集積
回路装置を提供することである。
SUMMARY OF THE INVENTION In view of the above circumstances, an object of the present invention is to provide a bipolar semiconductor integrated circuit device that includes a dielectric isolation region that can sufficiently insulate transistor elements in the horizontal and vertical directions.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、バイポーラ型半導体集積回路装置は、
半導体基板と、前記半導体基板上に形成される横型のバ
イポーラ・トランジスタ素子と、前記バイポーラ・トラ
ンジスタ素子を横方向および縦方向から取囲む切削溝の
壁面に付着するシリコン酸化膜と内部を埋めるポリシリ
コン層からなる誘電体絶縁層の素子分離領域とを含む。
According to the present invention, the bipolar semiconductor integrated circuit device includes:
A semiconductor substrate, a horizontal bipolar transistor element formed on the semiconductor substrate, a silicon oxide film attached to the wall surface of a cut groove surrounding the bipolar transistor element in the horizontal and vertical directions, and polysilicon filling the inside. and an element isolation region of a dielectric insulating layer.

〔実施例〕〔Example〕

以下図面を参照して本発明の詳細な説明する。 The present invention will be described in detail below with reference to the drawings.

第1図は本発明の一実施例を示すバイポーラ型半導体集
積回路装置の部分断面図である。本実施例によれば、バ
イポーラ型半導体集積回路装置は、P型シリコン基板1
と、この基板面に形成されたP+拡散層2と、N+埋込
層3およびN−エピタキシャル層4とを縦方向に貫通し
更にP+拡散層2を横方向に切削して成る縦溝および横
溝の全壁面に形成されるシリコン酸化膜5およびこれら
溝内に埋設されるポリシリコン層6とから形成される素
子間分離領域と、N“拡散層7、P型拡散層8およびN
−エピタキシャル層4をそれぞれエミッタ、ベースおよ
びコレクタの各領域とするNPNバイポーラ・トランジ
スタとを含む。ここで、9および10はそれぞれシリコ
ン酸化絶縁膜およびP+チャネル・ストッパーを、また
E、BおよびCはエミッタ、ベースおよびコレクタの電
極配線をそれぞれ示す。
FIG. 1 is a partial sectional view of a bipolar semiconductor integrated circuit device showing an embodiment of the present invention. According to this embodiment, the bipolar semiconductor integrated circuit device includes a P-type silicon substrate 1
A vertical groove and a horizontal groove are formed by vertically penetrating the P+ diffusion layer 2, N+ buried layer 3, and N- epitaxial layer 4 formed on this substrate surface, and cutting the P+ diffusion layer 2 laterally. An element isolation region formed from a silicon oxide film 5 formed on the entire wall surface of the trench and a polysilicon layer 6 buried in these trenches, an N" diffusion layer 7, a P type diffusion layer 8 and an N
- NPN bipolar transistors with epitaxial layer 4 as their emitter, base and collector regions, respectively. Here, 9 and 10 represent a silicon oxide insulating film and a P+ channel stopper, respectively, and E, B, and C represent emitter, base, and collector electrode wirings, respectively.

本実施例によれば、素子間分離領域はトランジスタ素子
を横方向のみならず縦方向の大部分を誘電体分離できる
のでトランジスタの縦方向容量を従来の1/2程度に減
少せしめ得る。
According to this embodiment, the element isolation region can dielectrically isolate the transistor elements not only in the horizontal direction but also in most of the vertical direction, so that the vertical capacitance of the transistor can be reduced to about 1/2 of the conventional capacitance.

本実施例の構造はつぎのようにして形成することができ
る。すなわち、まず、最初P型シリコン基板1にP+拡
散N(不純物濃度5 X 1018” /c113〜1
×1020f/cIII3)を形成後、N+埋込層3 
(I X 1018” /crs3〜5 x 1019
” 7cmりおよびN−エピタキシャル層4(IXIO
””/c113〜1×1017′/Cll3)を順次形
成する。ついで、N−型エピタキシャル層4の表面に酸
化膜9を付けPR技術を用いてイオン・エッチし縦溝6
を掘る。この溝の深さはさきのP”型拡散層に達する程
度若しくはそれより深くてもよい、その後ヒドラジン液
を用いてP+拡散層のみを選択的にエツチングし溝の底
部を横方向を広げ横溝を作ると共に酸化性雰囲気内で酸
化し縦溝および横溝の壁面の全てにシリコン酸化膜5を
付着させる。つぎに表面の厚い酸化膜9をマスクとして
P+型不純物をイオン注入し、各素子間の寄生効果防止
用チャネル・ストッパー10を設けた後、ポリシリコン
の気相成長を行い、縦溝および横溝の内部をポリシリコ
ン層6で完全に埋める。以上の工程により素子間分離領
域の形成が完了したので、後は通常の技術に従いベース
、エミッタおよびコレクタ取出コンタクト層などの各拡
散工程を行ない電極配線を行えば本実施例半導体集積回
路装置の構造は完成する。
The structure of this embodiment can be formed as follows. That is, first, P+ diffusion N (impurity concentration 5 x 1018"/c113~1
×1020f/cIII3) After forming N+ buried layer 3
(I x 1018”/crs3~5 x 1019
” 7 cm thick and N-epitaxial layer 4 (IXIO
""/c113 to 1×1017'/Cll3) are sequentially formed. Next, an oxide film 9 is formed on the surface of the N-type epitaxial layer 4, and ion etching is performed using PR technology to form vertical grooves 6.
dig. The depth of this groove may be deep enough to reach the previous P'' type diffusion layer or deeper than that. After that, only the P+ diffusion layer is selectively etched using a hydrazine solution, and the bottom of the groove is widened laterally to form a lateral groove. At the same time, the silicon oxide film 5 is oxidized in an oxidizing atmosphere to adhere to all the walls of the vertical and horizontal grooves.Next, using the thick oxide film 9 on the surface as a mask, P+ type impurities are ion-implanted to reduce the parasitics between each element. After providing the channel stopper 10 for preventing the effect, vapor phase growth of polysilicon is performed to completely fill the inside of the vertical and horizontal grooves with the polysilicon layer 6. Through the above steps, the formation of the isolation region between elements is completed. Therefore, the structure of the semiconductor integrated circuit device of this embodiment is completed by performing various diffusion steps for the base, emitter, and collector contact layers and wiring the electrodes according to conventional techniques.

第2図は本発明の他の実施例を示すバイポーラ型半導体
集積回路装置の部分断面図である。本実施例によれば、
縦方向の全てを誘電体分離する素子間分離領域の構造が
示される。すなわち、シリコン酸化膜5およびポリシリ
コン層6から成る誘電体分離層の横溝部がシリコン基板
1の全面にわたり形成される。従って、本実施例によれ
ばトランジスタの縦方向容量は従来の1/3程度にまで
減少し、きわめて高速化を達成し得るようになる。本実
施例の構造はつぎのようにして容易に形成し得る。
FIG. 2 is a partial sectional view of a bipolar semiconductor integrated circuit device showing another embodiment of the present invention. According to this embodiment,
A structure of an element isolation region that provides dielectric isolation in all vertical directions is shown. That is, a lateral groove portion of a dielectric isolation layer consisting of silicon oxide film 5 and polysilicon layer 6 is formed over the entire surface of silicon substrate 1. Therefore, according to this embodiment, the vertical capacitance of the transistor is reduced to about 1/3 of that of the conventional one, making it possible to achieve extremely high speed. The structure of this embodiment can be easily formed as follows.

第3図は第2図の実施例構造の形成方法の一つを示す部
分工程図であって、縦溝部は2回に分けて形成される。
FIG. 3 is a partial process diagram showing one method for forming the structure of the embodiment shown in FIG. 2, in which the vertical grooves are formed in two steps.

すなわち、P型シリコン基板1にはまず最初P1拡散層
2(不純物濃度5×1018′/cm3〜I X 10
20’ /cm3)が図のようにパターン形成され、つ
いでN+埋込層3 (I X 1018” /cm’〜
5 X 1019” /cm’ )およびN−エピタキ
シャル層4 (IX 1015” /am3〜l X 
I Q” /cn+りがそれぞれ形成される。ついで、
N−型エピタキシャル層4の表面に酸化絶縁膜9を付け
、PR技術を用いてイオンエッチし縦溝12を掘る。こ
の溝の深さはP1拡散層2に達する程度若しくはそれよ
り深くてもよい。その後ヒドラジン液を用いてP+拡散
層2のみを選択的にエツチングし、縦溝12の底部を横
方向に広げ横溝を作る。この際、P”拡散層2はパター
ンの全てが除去される。ここで、前実施例と同様に酸化
性雰囲気内で酸化し縦溝12および形成した横溝の全面
にシリコン酸化膜3をつける。つぎに表面の酸化絶縁膜
9をマスクとしてP+型不純物をイオン注入しチャネル
・ストッパー10を設けた後、ポリシリコンの気相成長
で縦溝12および横溝内をポリシリコン層6で完全に埋
める。ついで、再びシリコン酸化絶縁M9にPRマスク
を施しP+拡散層2のパターン絶縁部上に縦溝(点線で
示す)13を掘る。以後全く同様の手段で縦溝13の内
壁全面にシリコン酸化膜5をつけチャネル・ストッパー
11を形成し、更に溝部内をポリシリコン層6で埋め、
縦溝12および13で取囲まれた領域内にトランジスタ
素子を形成すれば完成する。
That is, first, a P1 diffusion layer 2 (with an impurity concentration of 5 x 1018'/cm3 to I x 10
20'/cm3) is patterned as shown, and then the N+ buried layer 3 (I x 1018"/cm'~
5 X 1019"/cm') and N-epitaxial layer 4 (IX 1015"/am3~lX
I Q"/cn+re are respectively formed. Then,
An oxide insulating film 9 is attached to the surface of the N-type epitaxial layer 4, and vertical grooves 12 are dug by ion etching using PR technology. The depth of this groove may be as deep as reaching the P1 diffusion layer 2 or deeper than that. Thereafter, only the P+ diffusion layer 2 is selectively etched using a hydrazine solution, and the bottoms of the vertical grooves 12 are laterally expanded to form horizontal grooves. At this time, the entire pattern of the P" diffusion layer 2 is removed. Here, as in the previous embodiment, the silicon oxide film 3 is oxidized in an oxidizing atmosphere to form a silicon oxide film 3 on the entire surface of the vertical grooves 12 and the formed horizontal grooves. Next, using the oxide insulating film 9 on the surface as a mask, P+ type impurities are ion-implanted to provide a channel stopper 10, and then vertical trenches 12 and horizontal trenches are completely filled with a polysilicon layer 6 by vapor phase growth of polysilicon. Next, a PR mask is applied to the silicon oxide insulation M9 again, and a vertical groove (indicated by a dotted line) 13 is dug on the patterned insulation part of the P+ diffusion layer 2. Thereafter, a silicon oxide film 5 is formed on the entire inner wall of the vertical groove 13 using exactly the same method. , to form a channel stopper 11, and further fill the inside of the groove with a polysilicon layer 6.
The structure is completed by forming a transistor element within the region surrounded by vertical grooves 12 and 13.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、本発明によればバイポーラ
・トランジスタ素子は基板上でその横方向と縦方向が共
に誘電体分離されているので縦方向の絶縁容量は、従来
の1/2〜1/3程度にまで減少される。また、この誘
電体分離領域の横幅は従来の絶縁方式と比べ著しく短縮
化することが可能であるので、微細化および高速化され
た半導体集積回路を容易に得ることができる。
As explained in detail above, according to the present invention, the bipolar transistor element is dielectrically isolated in both the horizontal and vertical directions on the substrate, so that the insulation capacitance in the vertical direction is 1/2 to 1/2 that of the conventional one. /3. Furthermore, since the width of the dielectric isolation region can be significantly reduced compared to conventional insulation systems, it is possible to easily obtain miniaturized and faster semiconductor integrated circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すバイポーラ型半導体集
積回路装置の部分断面図、第2図は本発明の他の実施例
を示すバイポーラ型半導体集積回路装置の部分断面図、
第3図は第2図の実施例構造の形成方法の一つを示す部
分工程図である。 1・・・P型シリコン基板、2・・・P”拡散層、3・
・・N“埋込層、4・・・N−エピタキシャル層〈コレ
クタ領域)、5・・・シリコン酸化膜、6・・・ポリシ
リコン層、7・・・N1拡散層〈エミッタ領域〉、8・
・・P型拡散層(ベース領域〉、9・・・シリコン酸化
絶縁膜、10.11・・・チャネル・ストッパー、12
゜13・・・m溝、E・・・エミッタ電極配線、B・・
・ベース電極配線、C・・・コレクタ電極配線。 代理人 弁理士  内 原  晋 第1m Qコ1り9電ψ哲己eζ
FIG. 1 is a partial sectional view of a bipolar semiconductor integrated circuit device showing one embodiment of the present invention, FIG. 2 is a partial sectional view of a bipolar semiconductor integrated circuit device showing another embodiment of the invention,
FIG. 3 is a partial process diagram showing one method of forming the embodiment structure of FIG. 2. DESCRIPTION OF SYMBOLS 1... P-type silicon substrate, 2... P'' diffusion layer, 3...
...N" buried layer, 4...N- epitaxial layer (collector region), 5... silicon oxide film, 6... polysilicon layer, 7... N1 diffusion layer (emitter region), 8・
...P-type diffusion layer (base region), 9...Silicon oxide insulating film, 10.11...Channel stopper, 12
゜13...m groove, E...emitter electrode wiring, B...
・Base electrode wiring, C...Collector electrode wiring. Agent Patent Attorney Susumu Uchihara 1st Q Ko1ri 9th Den ψ Tetsumi eζ

Claims (1)

【特許請求の範囲】[Claims]  半導体基板と、前記半導体基板上に形成される横型の
バイポーラ・トランジスタ素子と、前記バイポーラ・ト
ランジスタ素子を横方向および縦方向から取囲む切削溝
の壁面に付着するシリコン酸化膜と内部を埋めるポリシ
リコン層からなる誘電体絶縁層の素子分離領域とを含む
ことを特徴とするバイポーラ型半導体集積回路装置。
A semiconductor substrate, a horizontal bipolar transistor element formed on the semiconductor substrate, a silicon oxide film attached to the wall surface of a cut groove surrounding the bipolar transistor element in the horizontal and vertical directions, and polysilicon filling the inside. 1. A bipolar semiconductor integrated circuit device comprising an element isolation region of a dielectric insulating layer.
JP8826387A 1987-04-09 1987-04-09 Bipolar semiconductor integrated circuit device Pending JPS63252477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8826387A JPS63252477A (en) 1987-04-09 1987-04-09 Bipolar semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8826387A JPS63252477A (en) 1987-04-09 1987-04-09 Bipolar semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS63252477A true JPS63252477A (en) 1988-10-19

Family

ID=13937998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8826387A Pending JPS63252477A (en) 1987-04-09 1987-04-09 Bipolar semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS63252477A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0223647A (en) * 1988-07-13 1990-01-25 Hitachi Ltd Semiconductor device and manufacture thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61251070A (en) * 1985-04-27 1986-11-08 Fujitsu Ltd Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61251070A (en) * 1985-04-27 1986-11-08 Fujitsu Ltd Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0223647A (en) * 1988-07-13 1990-01-25 Hitachi Ltd Semiconductor device and manufacture thereof

Similar Documents

Publication Publication Date Title
US6835629B2 (en) Power integrated circuit with vertical current flow and related manufacturing process
JP2773611B2 (en) Insulator-isolated semiconductor device
JPS6286760A (en) Transistor with polycrystalline side wall and manufacture ofthe same
JPH04233764A (en) Vertical-type transistor
JPS62108538A (en) Semiconductor integrated circuit structure unit
JPH0548936B2 (en)
US4980748A (en) Semiconductor device made with a trenching process
US6331470B1 (en) Process for manufacturing a semiconductor material wafer having power regions dielectrically insulated from circuitry regions
US4566174A (en) Semiconductor device and method for manufacturing the same
KR100854077B1 (en) Method of forming a SOI substrate using wafer bonding techniques and method of manufacturing a high voltage complementary bipolar transistor using the SOI substrate
JPS63252477A (en) Bipolar semiconductor integrated circuit device
US5065210A (en) Lateral transistor structure for bipolar semiconductor integrated circuits
US3815223A (en) Method for making semiconductor structure with dielectric and air isolation
JPS61172346A (en) Semiconductor integrated circuit device
JPH11233616A (en) Semiconductor device and its manufacturing method
KR100209765B1 (en) Method of fabricating bi-mos
JP3207561B2 (en) Semiconductor integrated circuit and method of manufacturing the same
JPS63293938A (en) Semiconductor integrated circuit device
JPS60244036A (en) Semiconductor device and manufacture thereof
JPS62213258A (en) Manufacture of semiconductor device
JPH02152240A (en) Manufacture of semiconductor device
KR100268866B1 (en) Semiconductor device and method for fabricating the same
JPH02308540A (en) Manufacture of semiconductor device
JPS6387740A (en) Semiconductor device
JPS60113942A (en) Semiconductor integrated circuit device