JPH02308540A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH02308540A
JPH02308540A JP1128637A JP12863789A JPH02308540A JP H02308540 A JPH02308540 A JP H02308540A JP 1128637 A JP1128637 A JP 1128637A JP 12863789 A JP12863789 A JP 12863789A JP H02308540 A JPH02308540 A JP H02308540A
Authority
JP
Japan
Prior art keywords
region
substrate
low resistance
type
cavities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1128637A
Other languages
Japanese (ja)
Other versions
JP2830053B2 (en
Inventor
Toshiaki Shinohara
俊朗 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP1128637A priority Critical patent/JP2830053B2/en
Publication of JPH02308540A publication Critical patent/JPH02308540A/en
Application granted granted Critical
Publication of JP2830053B2 publication Critical patent/JP2830053B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To form a low resistance region without using an epitaxial method by a method wherein parallel trenches are formed in the main surface of a substrate with a proper distance and the insides of the trenches are enlarged into a cavity-shapes and diffused layers having a higher concentration than the substrate are formed on the inside surfaces of the cavities and the cavity parts are filled with semiconductor material. CONSTITUTION:Parallel trenches 201 are formed in the main surface of an n-type substrate 101 with a proper distance and the inner surfaces of the trenches 201 are etched with alkali anisotropic etchant to form cavities 202. High concentration n-type impurity is deposited on the inner surfaces of the cavities 202 and driven-in in oxidizing atmosphere to form n<+>-type low resistance regions 103 and insulating films 104 composed of SiO2 films and an island region 102. The cavities 202 are filled with polycrystalline Si or amorphous Si and the surface is levelled and a surface insulating film 109 composed of SiO2 is formed by oxidation. With this constitution, the low resistance regions 103 for reducing a collector resistance can be formed on the bottom of the island region 102 which is isolated with dielectric without using an epitaxial method.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、低抵抗埋込領域を有する半導体装置の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method of manufacturing a semiconductor device having a low resistance buried region.

(従来の技術) 従来の低抵抗埋込領域を有する半導体装置としては、例
えば第4図に示すようなものがある(永田穣編[超高速
バイポーラデバイス」培風館、p8、昭60. 11.
、 1.5)。同図中、1はp形基板であり、p形基板
1にはn4埋込層2が拡散により形成され、その上にn
形エピタキシャル層3が形成されている。n形エピタキ
シャル層3には、p形基板1に達するようにp+アイソ
レーション領域4が形成され、そのn形エピタキシャル
層3により、p形基板1から接合分離されたn形の島領
域が形成されている。n形の島領域には、当該n形の島
領域をコレクタ領域として、p形ベース領域5、n+エ
ミッタ領域6及びn“コレクタコンタクト領域7が形成
され、これらの各頭載によりバイポーラトランジスタが
形成されている。
(Prior Art) As a conventional semiconductor device having a low-resistance buried region, there is, for example, the one shown in FIG. 4 (edited by Minoru Nagata, [Ultrahigh-speed Bipolar Devices], Baifukan, p. 8, 1986. 11.
, 1.5). In the figure, 1 is a p-type substrate, an n4 buried layer 2 is formed on the p-type substrate 1 by diffusion, and an n4 buried layer 2 is formed on the p-type substrate 1 by diffusion.
A shaped epitaxial layer 3 is formed. A p + isolation region 4 is formed in the n-type epitaxial layer 3 so as to reach the p-type substrate 1 , and an n-type island region junction-isolated from the p-type substrate 1 is formed by the n-type epitaxial layer 3 . ing. In the n-type island region, a p-type base region 5, an n+ emitter region 6, and an n'' collector contact region 7 are formed with the n-type island region as a collector region, and a bipolar transistor is formed by mounting each of these regions. has been done.

そして、n“埋込層2により、このバイポーラトランジ
スタのコレクタ抵抗が低減されている。
The collector resistance of this bipolar transistor is reduced by the n'' buried layer 2.

(発明が解決しようとする課題) 従来は、コレクタ領域の下部にn+埋込層2を形成する
ため、そのプロセスにエピタキシャル成長法を必須とし
ていた。このため、工程数が増えて基板コストが上り、
チップコストの上昇を招いていた。
(Problems to be Solved by the Invention) Conventionally, in order to form the n+ buried layer 2 under the collector region, an epitaxial growth method has been essential in the process. As a result, the number of steps increases and the cost of the board increases.
This led to an increase in chip costs.

そこで、この発明は、エピタキシャル成長法を用いずに
、半導体基板中に低抵抗領域を形成することができてチ
ップコストを低減することのできる半導体装置の製造方
法を提供することを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method of manufacturing a semiconductor device that can form a low resistance region in a semiconductor substrate without using epitaxial growth and can reduce chip cost.

[発明の構成] (課題を解決するための手段) この発明は上記課題を解決するために、半導体基板の主
面にエツチングにより適宜間隔をおいて平行した複数の
溝を掘る第1の工程と、エツチングにより前記溝内を空
洞状に拡大する第2の工程と、前記空洞状部分の内面部
に前記半導体基板よりも高不純物濃度の拡散層を形成す
る第3の工程と、前記空洞状部分に多結晶又は非晶質の
半導体を埋込む第4の工程とを有することを要旨とする
[Structure of the Invention] (Means for Solving the Problems) In order to solve the above problems, the present invention includes a first step of digging a plurality of parallel grooves at appropriate intervals in the main surface of a semiconductor substrate by etching. a second step of enlarging the inside of the groove into a hollow shape by etching; a third step of forming a diffusion layer with a higher impurity concentration than the semiconductor substrate on an inner surface of the hollow portion; and a fourth step of embedding a polycrystalline or amorphous semiconductor into.

(作用) 半導体基板の主面にエツチングにより適宜間隔をおいて
平行した複数の溝が掘られ、さらにエツチングにより各
溝内が空洞状に拡大される。次いて、この空洞状部分の
内面部に低抵抗領域となる高不純物濃度の拡散層が形成
され、さらに空洞状部分には多結晶又は非晶質の半導体
が埋込まれる。
(Operation) A plurality of parallel grooves are etched at appropriate intervals on the main surface of the semiconductor substrate, and the inside of each groove is expanded into a hollow shape by etching. Next, a highly impurity-concentrated diffusion layer serving as a low resistance region is formed on the inner surface of the cavity, and a polycrystalline or amorphous semiconductor is further buried in the cavity.

而して、エピタキシャル成長法を用いずに半導体基板中
に低抵抗領域の形成が可能となる。
Thus, it becomes possible to form a low resistance region in a semiconductor substrate without using epitaxial growth.

(実施例) 以下、この発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

第1図及び第2図は一実施例を示す図である。FIG. 1 and FIG. 2 are diagrams showing one embodiment.

この実施例は、バイポーラトランジスタの製造方法に適
用されている。
This embodiment is applied to a method of manufacturing a bipolar transistor.

まず、第1図を用いてこの実施例の製造方法で実現され
る半導体装置の構成から説明する。第1図(a)は平面
図、第1図(b)は同図(a)のA−A線断面図である
First, the structure of a semiconductor device realized by the manufacturing method of this embodiment will be explained using FIG. FIG. 1(a) is a plan view, and FIG. 1(b) is a sectional view taken along the line A--A in FIG. 1(a).

同図中、101は半導体基板としてのn形Si基板であ
り、n形Si基板101には、5i02膜からなる絶縁
膜104で誘電体分離されたn形の島領域102が形成
され、この島領域102における絶縁膜104との合面
部に、St基板101よりも高不純物濃度の04″低抵
抗領域103が形成されている。n“低抵抗領域103
はSi基板101の表面まで達している。n形の島領域
102には、当該n形の島領域102をコレクタ領域と
してp形ベース領域105、n+エミッタ領域106及
びn+コレクタコンタクト領域107が形成され、これ
らの各領域によりバイポーラトランジスタが形成されて
いる。108は多結晶St又は非晶質Stによる埋込領
域、109は表面絶縁膜である。
In the figure, 101 is an n-type Si substrate as a semiconductor substrate, and an n-type island region 102 dielectrically isolated by an insulating film 104 made of a 5i02 film is formed on the n-type Si substrate 101. An 04" low resistance region 103 having a higher impurity concentration than the St substrate 101 is formed at the interface with the insulating film 104 in the region 102.n" low resistance region 103
reaches the surface of the Si substrate 101. A p-type base region 105, an n+ emitter region 106, and an n+ collector contact region 107 are formed in the n-type island region 102, using the n-type island region 102 as a collector region, and a bipolar transistor is formed by each of these regions. ing. 108 is a buried region made of polycrystalline St or amorphous St, and 109 is a surface insulating film.

そして、n“低抵抗領域103により、バイポーラトラ
ンジスタのコレクタ抵抗が低減されている。
The collector resistance of the bipolar transistor is reduced by the n'' low resistance region 103.

次に、第2図を用いて、上述の半導体装置の製造方法を
説明する。なお、以下の説明において、(a)〜(d)
の各項目記号は、第2図の(a)〜(d)のそれぞれに
対応する。
Next, a method for manufacturing the above-mentioned semiconductor device will be explained using FIG. In addition, in the following explanation, (a) to (d)
Each item symbol corresponds to (a) to (d) in FIG. 2, respectively.

(a)  例えば(1001面のn形St基板101を
使用し、その主面における島予定領域をS i02−3
 i3 N4−5 i02の多層絶縁膜でマスクし、反
応性イオンエツチングにより、平行した複数の溝201
を掘る。
(a) For example, (using a 1001-plane n-type St substrate 101, the planned island area on its main surface is S i02-3
A plurality of parallel grooves 201 are formed by reactive ion etching and masked with a multilayer insulating film of i3 N4-5 i02.
dig.

(b)  溝201の内面をヒドラジン又はエチレンジ
アミン等のアルカリ系異方性エツチング液を用いてエツ
チングする。fl 101面及び+1001面の露出し
た溝201の内面をアルカリ系異方性エツチング液でエ
ツチングすると、fl 101 面及び(100)面は
(1111面に比べて著しくエッチレートが速いため、
(1111面が露出したところでエツチングが止り、溝
201内には断面が菱形の空洞202が形成される。
(b) Etch the inner surface of the groove 201 using an alkaline anisotropic etching solution such as hydrazine or ethylenediamine. When the exposed inner surface of the groove 201 on the fl 101 plane and the +1001 plane is etched with an alkaline anisotropic etching solution, the etch rate of the fl 101 plane and the (100) plane is significantly faster than that of the (1111 plane).
(Etching stops when the 1111 plane is exposed, and a cavity 202 with a rhombic cross section is formed in the groove 201.

(C)  例、えばPOC(13等により空洞202の
内面に高濃度にn形不純物をデポジションし、酸化性雰
囲気でドライブインすることにより、n“低抵抗領域1
03及び誘電体分離用の5i02膜からなる絶縁膜10
4を形成する。このようにして島領域102を形成する
(C) For example, by depositing an n-type impurity at a high concentration on the inner surface of the cavity 202 using POC (13, etc.) and driving it in in an oxidizing atmosphere, the n" low resistance region 1
Insulating film 10 consisting of 03 and 5i02 film for dielectric isolation
form 4. In this way, island regions 102 are formed.

(d)  空洞202に多結晶St又は非晶質Stを埋
込み(酸化膜や例えばPIQ等の有機物でもよい)、表
面を平坦化して、埋込領域108を形成し、さらに表面
を酸化して5f02からなる表面絶縁膜109を形成す
る。
(d) Fill the cavity 202 with polycrystalline St or amorphous St (an oxide film or an organic material such as PIQ may be used), flatten the surface, form a buried region 108, and further oxidize the surface to form a 5f02 A surface insulating film 109 is formed.

この後、島領域102内に通常のバイポーラトランジス
タの形成プロセスに従い、p形ベース領域105、n1
エミツタ領域106及びn+コレクタコンタクト領域を
形成し、さらに配線並びに表面保護プロセス等を行う。
Thereafter, p-type base region 105, n1 is formed in island region 102 according to a normal bipolar transistor formation process.
An emitter region 106 and an n+ collector contact region are formed, and further wiring and surface protection processes are performed.

上述したように、この実施例の半導体装置の製造方法に
よれば、エピタキシャル成長法を用いずに、誘電体分離
された島領域102の底部にコレクタ抵抗低減用のn+
低抵抗領域103が形成される。
As described above, according to the method of manufacturing a semiconductor device of this embodiment, an n
A low resistance region 103 is formed.

なお、上述の実施例では、島領域102を絶縁膜]04
により誘電体分離したが、絶縁膜104の形成を省略し
て埋込領域108にp形のドープド多結晶81等を使用
し、この埋込領域108を低電位とすることによりpn
接合分離とすることもできる。
In addition, in the above-mentioned embodiment, the island region 102 is an insulating film ]04
However, by omitting the formation of the insulating film 104 and using a p-type doped polycrystalline 81 for the buried region 108, and by setting the buried region 108 at a low potential, the pn
It is also possible to use junction separation.

またここでは、第2図(a)に示すように+1001面
に溝を掘る例で説明したが、+1001面の代りにfl
i01面基板を用いてもよいことは云うまでもない。
Also, here, as shown in Fig. 2(a), an example was explained in which a groove is dug on the +1001 side, but instead of the +1001 side, fl
Needless to say, an i01-plane substrate may be used.

次いで、第3図には、この発明の他の実施例を示す。こ
の実施例は、MOSFETの製造方法に適用されている
Next, FIG. 3 shows another embodiment of the present invention. This embodiment is applied to a method of manufacturing a MOSFET.

この実施例は、島領域102の下部にp4低抵抗領域1
10を形成し、埋込領域111はp4形のドープド多結
晶Si又は非晶質Stが用いられている。そして島領域
102内にp+ソース領域112、p+ ドレイン領域
113及びゲートs極114等によりMOSFETが形
成されている。
In this embodiment, a p4 low resistance region 1 is provided under the island region 102.
10 is formed, and p4 type doped polycrystalline Si or amorphous St is used for the buried region 111. A MOSFET is formed within the island region 102 by a p+ source region 112, a p+ drain region 113, a gate s-pole 114, and the like.

この実施例では、p+低抵抗領域110及びp+埋込領
域111により、他のMOSFET等との少数キャリヤ
によるインタラクションが除去されて耐圧等の特性向上
が実現される。そして、この実施例においても、上述の
ような機能を有するp“低抵抗領域110をエピタキシ
ャル成長法を用いずに形成することができる。
In this embodiment, the p+ low resistance region 110 and the p+ buried region 111 eliminate interactions due to minority carriers with other MOSFETs, etc., and improve characteristics such as withstand voltage. Also in this embodiment, the p" low resistance region 110 having the above-mentioned function can be formed without using the epitaxial growth method.

なお、上述の各実施例では、空洞202の形成に際し異
方性エツチングを用いたが、これに代えて等方性エツチ
ングを使用し、断面が円形状の空洞を形成するようにし
てもよい。
In each of the embodiments described above, anisotropic etching was used to form the cavity 202, but instead of this, isotropic etching may be used to form a cavity having a circular cross section.

[発明の効果] 以上説明したように、この発明によれば、半導体基板の
主面にエツチングにより適宜間隔をおいて平行した複数
の溝を掘り、さらにエツチングにより各溝内を空洞状に
拡大し、次いでこの空洞状部分の内面部に半導体基板よ
りも高不純物濃度の拡散層を形成し、空洞状部分には多
結晶又は非晶質の半導体を埋込むようにしたため、エピ
タキシャル成長法を用いずに半導体基板中に例えばコレ
クタ抵抗低減用等の低抵抗領域を形成することができて
基板コストが下り、従ってチップコストを低減すること
ができるという利点がある。
[Effects of the Invention] As explained above, according to the present invention, a plurality of parallel grooves are dug at appropriate intervals in the main surface of a semiconductor substrate by etching, and each groove is expanded into a hollow shape by etching. Next, a diffusion layer with a higher impurity concentration than the semiconductor substrate was formed on the inner surface of this cavity, and a polycrystalline or amorphous semiconductor was filled in the cavity, thereby eliminating the need for epitaxial growth. There is an advantage that a low resistance region, for example for reducing collector resistance, can be formed in a semiconductor substrate, thereby reducing substrate cost and, therefore, reducing chip cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係る半導体装置の製造方法の一実施
例によって製造された半導体装置を示す図、第2図はこ
の発明の一実施例に係る半導体装置の製造方法を示す工
程図、第3図はこの発明の他の実施例によって製造され
た半導体装置を示す縦断面図、第4図は従来の半導体装
置を示す縦断面図である。 101 : n形Si基板(半導体基板)、102:島
領域、 103.110;低抵抗領域(半導体基板よりも高不純
物濃度の拡散層)、 108.111・多結晶又は非晶質の半導体の埋込領域
。 代理人  弁理士  三 好  秀 和P 第1図(a) 第1f!!(b) 第2図(a) 第2図(b) 第2図(C) 第2図(d) 第3図
FIG. 1 is a diagram showing a semiconductor device manufactured by an embodiment of a semiconductor device manufacturing method according to the present invention, and FIG. 2 is a process diagram showing a semiconductor device manufacturing method according to an embodiment of the present invention. FIG. 3 is a vertical sectional view showing a semiconductor device manufactured according to another embodiment of the present invention, and FIG. 4 is a vertical sectional view showing a conventional semiconductor device. 101: n-type Si substrate (semiconductor substrate), 102: island region, 103.110; low resistance region (diffusion layer with higher impurity concentration than the semiconductor substrate), 108.111. Polycrystalline or amorphous semiconductor buried Inclusive area. Agent Patent Attorney Hidekazu Miyoshi P Figure 1 (a) 1f! ! (b) Figure 2 (a) Figure 2 (b) Figure 2 (C) Figure 2 (d) Figure 3

Claims (1)

【特許請求の範囲】[Claims] 半導体基板の主面にエッチングにより適宜間隔をおいて
平行した複数の溝を掘る第1の工程と、エッチングによ
り前記溝内を空洞状に拡大する第2の工程と、前記空洞
状部分の内面部に前記半導体基板よりも高不純物濃度の
拡散層を形成する第3の工程と、前記空洞状部分に多結
晶又は非晶質の半導体を埋込む第4の工程とを有するこ
とを特徴とする半導体装置の製造方法。
a first step of digging a plurality of parallel grooves at appropriate intervals in the main surface of a semiconductor substrate by etching; a second step of enlarging the inside of the groove into a hollow shape by etching; and an inner surface of the hollow portion. a third step of forming a diffusion layer with a higher impurity concentration than the semiconductor substrate; and a fourth step of filling the cavity with a polycrystalline or amorphous semiconductor. Method of manufacturing the device.
JP1128637A 1989-05-24 1989-05-24 Method for manufacturing semiconductor device Expired - Lifetime JP2830053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1128637A JP2830053B2 (en) 1989-05-24 1989-05-24 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1128637A JP2830053B2 (en) 1989-05-24 1989-05-24 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH02308540A true JPH02308540A (en) 1990-12-21
JP2830053B2 JP2830053B2 (en) 1998-12-02

Family

ID=14989743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1128637A Expired - Lifetime JP2830053B2 (en) 1989-05-24 1989-05-24 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2830053B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5405454A (en) * 1992-03-19 1995-04-11 Matsushita Electric Industrial Co., Ltd. Electrically insulated silicon structure and producing method therefor
KR20010064441A (en) * 1999-12-29 2001-07-09 박종섭 Method of forming trench isolation layer in semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5405454A (en) * 1992-03-19 1995-04-11 Matsushita Electric Industrial Co., Ltd. Electrically insulated silicon structure and producing method therefor
KR20010064441A (en) * 1999-12-29 2001-07-09 박종섭 Method of forming trench isolation layer in semiconductor device

Also Published As

Publication number Publication date
JP2830053B2 (en) 1998-12-02

Similar Documents

Publication Publication Date Title
US4472240A (en) Method for manufacturing semiconductor device
US5496745A (en) Method for making bipolar transistor having an enhanced trench isolation
JPH04266047A (en) Soi type semiconductor device and preparation thereof equivalent to production of a buried layer
KR900003835B1 (en) Semiconductor device
US4903109A (en) Semiconductor devices having local oxide isolation
EP0349107B1 (en) Method of making a bipolar transistor integrated circuit
US6028344A (en) Bipolar transistor on a semiconductor-on-insulator substrate
JPH02308540A (en) Manufacture of semiconductor device
JPS6352465B2 (en)
JPH05343415A (en) Bipolar transistor
JPS6360550B2 (en)
JP3150420B2 (en) Bipolar integrated circuit and manufacturing method thereof
JP2803187B2 (en) Method for manufacturing semiconductor device
JPS6057949A (en) Semiconductor device
JPH11233616A (en) Semiconductor device and its manufacturing method
JP2536616B2 (en) Semiconductor device
JP2000294563A (en) Lateral bipolar transistor
JP3104276B2 (en) Method for manufacturing semiconductor device
JPS60113942A (en) Semiconductor integrated circuit device
JP2980332B2 (en) Dielectric separation substrate, semiconductor device using the same, and method of manufacturing dielectric separation substrate
JP2764988B2 (en) Semiconductor device
JPS61269373A (en) Semiconductor device
JPS63245939A (en) Semiconductor device
JPH06104270A (en) Semiconductor device
JPS63252477A (en) Bipolar semiconductor integrated circuit device