JPS6325009B2 - - Google Patents

Info

Publication number
JPS6325009B2
JPS6325009B2 JP25051184A JP25051184A JPS6325009B2 JP S6325009 B2 JPS6325009 B2 JP S6325009B2 JP 25051184 A JP25051184 A JP 25051184A JP 25051184 A JP25051184 A JP 25051184A JP S6325009 B2 JPS6325009 B2 JP S6325009B2
Authority
JP
Japan
Prior art keywords
epoxy resin
inorganic filler
resin composition
group
coupling agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP25051184A
Other languages
Japanese (ja)
Other versions
JPS61130326A (en
Inventor
Shuichi Kita
Takamitsu Fujimoto
Juzo Kanegae
Norimoto Moriwaki
Torahiko Ando
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP25051184A priority Critical patent/JPS61130326A/en
Publication of JPS61130326A publication Critical patent/JPS61130326A/en
Publication of JPS6325009B2 publication Critical patent/JPS6325009B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、2種類以上の界面処理剤を直接処理
した無機充填剤を添加配合することを特徴とする
耐湿信頼性に優れた半導体封止用エポキシ樹脂組
成物に関するものである。 〔従来の技術〕 現在、IC,LSIやVLSIなどの半導体素子をシ
リコーン樹脂あるいはエポキシ樹脂を用いて封止
する樹脂封止法が広く採用されている。これらの
中でも、エポキシ樹脂は比較的優れた気密性を与
え、かつ安価であることから半導体封止用樹脂と
して汎用されている。しかし、樹脂封止は気密封
止に比べ耐湿信頼性に劣り、半導体素子のアルミ
配線やパツド部の腐蝕を引き起こす。 上記腐蝕の原因として、封止材料に含まれてい
るイオン性不純物や加水分解性塩素が樹脂中に浸
透した水により遊離し、金属を腐蝕すると考えら
れる。 これらの水や、水によつて遊離した不純物は、
主に樹脂/無機充填剤界面より内部に浸透して半
導体素子に至り、腐蝕が始まると考えられる。故
に樹脂封止の耐湿信頼性を向上させるには、イオ
ン性不純物や加水分解性塩素の量を最小限に制御
することと共に、樹脂組成物の吸湿性を押えるこ
とが重要である。 従来は、もつぱら電気絶縁性の向上と機械強度
の向上の目的で無機充填剤の界面処理が行なわれ
て来た。界面処理剤としては、有機マトリクスと
化学結合できる官能基(エポキシ基、アミノ基な
ど)を有するシランカツプリング剤を無機充填剤
に直接処理する直接処理法、あるいはポリマーの
コンパウンド時にシランカツプリング剤を添加す
るインテグラルブレンド法または両者の併用で界
面処理がなされて来た。 〔発明が解決しようとする問題点〕 この様に処理された無機充填剤表面は、無処理
表面よりも疎水性ではあるが、カツプリング剤が
極性官能基を有するためにその表面の疎水性は弱
く、耐湿信頼性に劣る欠点があつた。 本発明は上述の問題を解決するためになされた
もので、無機充填剤の表面に強い疎水性を付与す
るとともに、有機マトリクスと化学結合できる官
能基を与えることによつて、耐湿信頼性に優れし
かも機械特性、電気絶縁性に優れた半導体封止用
エポキシ樹脂組成物を得ることを目的とする。 〔問題点を解決するための手段〕 すなわち本発明は、エポキシ樹脂、硬化剤、硬
化促進剤、及びシランカツプリング剤で処理した
無機充填剤を本質的に配合してなる半導体封止用
エポキシ樹脂組成物において、上記無機充填剤を
1種以上の疎水性シラン化合物(a)と1種以上のシ
ランカツプリング剤(b)で処理したものを使用する
ことを特徴とする半導体封止用エポキシ樹脂組成
物に存する。 上軌疎水性シラン化合物(a)は一般式() RnSi(OR′)4-o () で表わされ、シランカツプリング剤(b)は一般式
() YnSi(OR′)4-o () で表される。両式中、Rはアルキル基またはフエ
ニル基を表し、R′は水素原子または炭素数1〜
5個のアルキル基を表し、Yはエポキシ基やアミ
ノ基を有する一価の有機基であり、nは1〜3の
整数である。 本発明は、シラン化合物(a)で無機充填剤表面を
直接処理することにより、疎水性の強い均一な表
面を得ることができるとともに、シランカツプリ
ング剤(b)で処理することにより、有機マトリクス
と化学結合し、機械特性、電気特性に優れた半導
体封止用エポキシ樹脂組成物を与える無機充填剤
を得ることができる。特にシラン化合物(a)として
Rにフエニル基を含むものを用いると、疎水性の
効果が高い。 本発明において用いられるエポキシ樹脂として
は、例えばノボラツク系エポキシ樹脂、ビスフエ
ノールA系エポキシ樹脂、脂環族系エポキシ樹脂
など種々のタイプのエポキシ樹脂が使用可能であ
るが、高温特性のすぐれたノボラツク系エポキシ
樹脂の使用が好ましい。これらのエポキシ樹脂は
単独もしくは2種以上の使用も可能である。な
お、これらのエポキシ樹脂とともに、必要に応じ
て臭素化ノボラツクエポキシ樹脂、臭素化ビスフ
エノールA系エポキシ樹脂などのエポキシ樹脂も
併用可能である。 本発明において用いられる硬化剤としては、例
えば、フエノールノボラツクなどのフエノール化
合物や、メチルヘキサハイドロ無水フタル酸、テ
トラヒドロ無水フタル酸、メチレンエンドメチレ
ン無水フタル酸、無水クロレンデイツク酸、無水
ヒドロメリツト酸、無水ドデセニルサクセニツク
酸などの酸無水物系化合物があげられる。 本発明において用いられる硬化促進剤として
は、たとえば2−エチルイミダゾール、2−メチ
ルイミダゾール、2,4−ジメチルイミダゾー
ル、2−エチル−4−メチルイミダゾール、1−
ベンジル−2−メチルイミダゾール、2−ヘプタ
デシルイミダゾール、1−ビニル−2−メチルイ
ミダゾール、2−ウンデシルイミダゾールなどの
イミダゾール系化合物およびこれらの前駆物質で
あるイミダゾリン化合物やたとえばトリエチルア
ミン、2,4,6−ジメチルメチルアミノフエノ
ール、ベンジルジメチルアミン、α−メチルベン
ジルメチルアミン、ピペリジン、ジメチルラウリ
ルアミン、ジアルキルアミノメタノールアミン、
テトラメチルグアニジン、2−ジメチルアミノ−
2−ヒドロキシプロパン、N,N′−ジメチルピ
ペラジン、N−メチルモルホリン、ピペラジン、
2−(ジメチルアミノメチル)フエノール、ヘキ
サメチレンテトラミン、1−ヒドロキシルエチル
−2−ヘプタデシルグリオキサリジンなどの第3
級アミンおよびその他のアミン系化合物やイミダ
ゾール系化合物などがあげられる。 本発明において用いられる無機充填剤として
は、結晶性シリカ、溶融シリカ、アルミナなどを
樹脂分100重量部に対して100〜600重量部の範囲
で用いられる。 本発明の特徴である界面処理剤の一般式()
で表わされるシラン化合物(a)としては、例えば、
メチルトリメトキシシラン、メチルトリエトキシ
シラン、ジメチルジメトキシシラン、ジメチルジ
エトキシシラン、トリメチルメトキシシラン、ブ
チルトリメトキシシラン、ヘキシルトリメトキシ
シラン、フエニルトリメトキシシラン、フエニル
トリエトキシシラン、フエニルジメチルエトキシ
シラン、フエニルトリペントキシシラン、トリフ
エニルシラノールなどがあげられ、特にフエニル
トリメトキシシラン、フエニルトリエトキシシラ
ンなどのフエニル基を持つシラン化合物が好まし
い。また、一般式()で表わされるシランカツ
プリング剤(b)としては、例えばγ−グリシドキシ
プロピルトリメトキシシラン、γ−グリシドキシ
プロピルトリペントキシシラン、β−(3,4−
エポキシシクロヘキシル)エチルトリメトキシシ
ラン、γ−アミノプロピルトリエトキシシランな
どがあげられる。 上記界面処理剤は、シラン化合物(a)の1種以上
とシランカツプリング剤(b)の1種以上を無機充填
剤に対してヘンシエルミキサーなどにより直接処
理され、必要に応じて有機マトリクス中に添加す
ることもできる。また、無機充填剤に直接処理を
行なう際に、界面処理剤を水やエチルアルコー
ル、イソプロピルアルコールなどの溶媒またはこ
れらの混合溶媒に溶解し用いることもできる。こ
の直接処理は、無機充填剤に対しシラン化合物(a)
とシランカツプリング剤(b)とを同時に処理しても
よく、又は任意の順序で処理してもよい。 ここで、界面処理剤であるシラン化合物(a)とシ
ランカツプリング剤(b)の配合量は無機充填剤に対
して3重量%以下、好ましくは0.1〜2重量%配
合される。また、シラン化合物(a)とシランカツプ
リング剤(b)の重量配合比は、シラン化合物(a)/シ
ランカツプリング剤(b)=0.1〜10重量比の範囲で
配合される。 上記界面処理剤の無機充填剤に対する配合量が
0.1重量%未満では、疎水化の効果が少なくまた
有機マトリクス/無機充填剤の界面の化学結合が
十分でなく機械特性電気特性の向上の効果が少な
い。3重量%以上を配合すると、過剰の界面処理
剤が、吸湿した水により遊離し、それらが金属の
腐蝕を促進する。また、上記のシラン化合物(a)と
シランカツプリング剤(b)の重量配合比が0.1重量
比未満では、無機充填剤表面の疎水化の効果が少
ない。10重量比より多いと有機マトリクス/無機
充填剤の界面の化学結合が起こりにくくなり、機
械特性、電気特性の向上の効果が少なく、未反応
の官能基のため疎水化の効果も低下する。 本発明の組成物には、必要に応じてカーボンブ
ラツクなどの着色剤、カルナウバワツクス、ポリ
エチレンワツクスなどの離型剤や三酸化アンチモ
ンなどの難燃剤を添加することができる。 本発明の組成物は、無機充填剤の界面処理を行
なうためのヘンシエルミキサーやナウターミキサ
ーなどの粉体混合装置と、エポキシ樹脂やシリコ
ーン樹脂の調製などに使用されている公知の混合
装置、例えばロール、ニーダ、ライカイ機などを
用いて容易に調製できる。 〔実施例〕 以下実施例および比較例をあげて本発明を説明
する。 第1表および第2表に示した組成のシラン化合
物およびシランカツプリング剤で界面処理した無
機充填剤を、ヘンシエルミキサーにより1000rpm
で10分間撹拌混合して調製した。実施例1〜9、
比較例1〜9において、それぞれ第3表および第
4表に示した割合でエポキシ樹脂、硬化剤、硬化
促進剤、上記のように調製した無機充填剤、界面
処理剤、着色剤、および離型剤を配合し、ニーダ
を用いて40%で10分間減圧混合してエポキシ樹脂
組成物を得た。 耐熱信頼性評価用半導体素子の封止と、機械特
性、電気特性評価用試験片の成形は、180℃、2
分間で硬化後、180℃、6時間アフタキユアとい
う条件で行つた。得られた組成物のガラス転位
点、曲げ弾性率、電気伝導率、および耐湿性を評
価した結果を第5表(実施例)および第6表(比
較例)にそれぞれ示した。 ガラス転移点は、粘弾性スペクトロメータ(1
Hz)で損失弾性率の温度変化を測定し、最大の損
失弾性率を与える温度とした。電気伝導率は、試
験片を121℃、2atm相対湿度100%の条件下で
Pressure Cooker Test(PCT)を行ない、1000
時間経過した試料に直流500Vを印加した時の値
で評価した。耐湿性の評価は、耐湿性評価用半導
体素子を上記条件でPCTを行い不良発生時間で
行つた。
[Industrial Application Field] The present invention relates to an epoxy resin composition for semiconductor encapsulation with excellent moisture resistance and reliability, which is characterized in that it contains an inorganic filler directly treated with two or more types of surface treatment agents. It is. [Prior Art] Currently, resin encapsulation methods are widely used in which semiconductor elements such as ICs, LSIs, and VLSIs are encapsulated using silicone resin or epoxy resin. Among these, epoxy resins are widely used as semiconductor encapsulating resins because they provide relatively excellent airtightness and are inexpensive. However, resin sealing has inferior moisture resistance and reliability compared to hermetic sealing, and causes corrosion of the aluminum wiring and pads of semiconductor elements. The cause of the above corrosion is thought to be that ionic impurities and hydrolyzable chlorine contained in the sealing material are liberated by water that has penetrated into the resin and corrode the metal. These water and impurities liberated by water are
It is thought that corrosion mainly occurs by penetrating into the interior through the resin/inorganic filler interface and reaching the semiconductor element. Therefore, in order to improve the moisture resistance reliability of resin sealing, it is important to control the amount of ionic impurities and hydrolyzable chlorine to a minimum, and to suppress the hygroscopicity of the resin composition. Conventionally, interface treatment of inorganic fillers has been carried out primarily for the purpose of improving electrical insulation and mechanical strength. As a surface treatment agent, there is a direct treatment method in which an inorganic filler is directly treated with a silane coupling agent that has a functional group (epoxy group, amino group, etc.) that can chemically bond with an organic matrix, or a silane coupling agent is used during polymer compounding. Surface treatment has been carried out by adding an integral blend method or a combination of both. [Problem to be solved by the invention] Although the surface of the inorganic filler treated in this way is more hydrophobic than the untreated surface, the hydrophobicity of the surface is weaker because the coupling agent has a polar functional group. However, it had the disadvantage of poor moisture resistance and reliability. The present invention has been made to solve the above-mentioned problems, and has excellent moisture resistance and reliability by imparting strong hydrophobicity to the surface of the inorganic filler as well as providing a functional group that can chemically bond with the organic matrix. Moreover, it is an object of the present invention to obtain an epoxy resin composition for semiconductor encapsulation that has excellent mechanical properties and electrical insulation properties. [Means for Solving the Problems] That is, the present invention provides an epoxy resin for semiconductor encapsulation which essentially contains an epoxy resin, a curing agent, a curing accelerator, and an inorganic filler treated with a silane coupling agent. An epoxy resin for semiconductor encapsulation, characterized in that the composition uses the inorganic filler treated with one or more hydrophobic silane compounds (a) and one or more silane coupling agents (b). present in the composition. The upper orbital hydrophobic silane compound (a) is represented by the general formula () RnSi(OR′) 4-o (), and the silane coupling agent (b) is represented by the general formula () YnSi(OR′) 4-o ( ). In both formulas, R represents an alkyl group or a phenyl group, and R' is a hydrogen atom or a group having 1 to 1 carbon atoms.
It represents five alkyl groups, Y is a monovalent organic group having an epoxy group or an amino group, and n is an integer of 1 to 3. In the present invention, by directly treating the surface of an inorganic filler with a silane compound (a), a highly hydrophobic and uniform surface can be obtained, and by treating with a silane coupling agent (b), an organic matrix can be obtained. It is possible to obtain an inorganic filler that chemically bonds with the epoxy resin composition and provides an epoxy resin composition for semiconductor encapsulation with excellent mechanical and electrical properties. In particular, when a silane compound (a) containing a phenyl group in R is used, the hydrophobic effect is high. Various types of epoxy resins can be used as the epoxy resin used in the present invention, such as novolak epoxy resin, bisphenol A epoxy resin, and alicyclic epoxy resin. Preference is given to using epoxy resins. These epoxy resins can be used alone or in combination of two or more. In addition to these epoxy resins, epoxy resins such as brominated novolac epoxy resins and brominated bisphenol A-based epoxy resins can also be used in combination, if necessary. Examples of the curing agent used in the present invention include phenolic compounds such as phenol novolak, methylhexahydrophthalic anhydride, tetrahydrophthalic anhydride, methyleneendomethylene phthalic anhydride, chlorendic anhydride, hydromeritic anhydride, and phenolic anhydride. Examples include acid anhydride compounds such as decenylsaxenic acid. Examples of the curing accelerator used in the present invention include 2-ethylimidazole, 2-methylimidazole, 2,4-dimethylimidazole, 2-ethyl-4-methylimidazole, and 1-ethylimidazole.
Imidazole compounds such as benzyl-2-methylimidazole, 2-heptadecylimidazole, 1-vinyl-2-methylimidazole, and 2-undecylimidazole, and their precursor imidazoline compounds, such as triethylamine, 2,4,6 -dimethylmethylaminophenol, benzyldimethylamine, α-methylbenzylmethylamine, piperidine, dimethyllaurylamine, dialkylaminomethanolamine,
Tetramethylguanidine, 2-dimethylamino-
2-hydroxypropane, N,N'-dimethylpiperazine, N-methylmorpholine, piperazine,
Tertiary compounds such as 2-(dimethylaminomethyl)phenol, hexamethylenetetramine, 1-hydroxylethyl-2-heptadecylglyoxalidine, etc.
amines, other amine compounds, and imidazole compounds. As the inorganic filler used in the present invention, crystalline silica, fused silica, alumina, etc. are used in an amount of 100 to 600 parts by weight based on 100 parts by weight of the resin content. General formula () of the surface treating agent that is a feature of the present invention
As the silane compound (a) represented by, for example,
Methyltrimethoxysilane, methyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, trimethylmethoxysilane, butyltrimethoxysilane, hexyltrimethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyldimethylethoxysilane , phenyltripentoxysilane, triphenylsilanol, etc., and particularly preferred are silane compounds having a phenyl group such as phenyltrimethoxysilane and phenyltriethoxysilane. Examples of the silane coupling agent (b) represented by the general formula () include γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltripentoxysilane, β-(3,4-
Examples include epoxycyclohexyl)ethyltrimethoxysilane and γ-aminopropyltriethoxysilane. The above-mentioned surface treatment agent is prepared by directly treating an inorganic filler with one or more silane compounds (a) and one or more silane coupling agents (b) using a Henschel mixer, etc., and adding it to an organic matrix as necessary. It can also be added to. Furthermore, when directly treating the inorganic filler, the surface treatment agent can be dissolved in water, a solvent such as ethyl alcohol, isopropyl alcohol, or a mixed solvent thereof. This direct treatment uses silane compounds (a) for inorganic fillers.
and the silane coupling agent (b) may be treated simultaneously or in any order. Here, the blending amount of the silane compound (a) as a surface treating agent and the silane coupling agent (b) is 3% by weight or less, preferably 0.1 to 2% by weight, based on the inorganic filler. The weight ratio of the silane compound (a) and the silane coupling agent (b) is within the range of silane compound (a)/silane coupling agent (b) = 0.1 to 10. The amount of the above surface treatment agent added to the inorganic filler is
If it is less than 0.1% by weight, the effect of hydrophobization is small and the chemical bonding at the organic matrix/inorganic filler interface is insufficient, resulting in little effect of improving mechanical and electrical properties. If 3% by weight or more is blended, the excess surface treating agent will be liberated by absorbed water, which will accelerate the corrosion of metals. Furthermore, if the weight ratio of the silane compound (a) to the silane coupling agent (b) is less than 0.1, the effect of making the surface of the inorganic filler hydrophobic is small. When the weight ratio is more than 10, chemical bonding at the organic matrix/inorganic filler interface becomes difficult to occur, the effect of improving mechanical properties and electrical properties is small, and the hydrophobization effect is also reduced due to unreacted functional groups. A coloring agent such as carbon black, a mold release agent such as carnauba wax or polyethylene wax, and a flame retardant such as antimony trioxide may be added to the composition of the present invention, if necessary. The composition of the present invention can be applied to a powder mixing device such as a Henschel mixer or a Nauter mixer for interfacial treatment of an inorganic filler, and a known mixing device used for preparing epoxy resins and silicone resins. For example, it can be easily prepared using a roll, kneader, light machine, etc. [Example] The present invention will be explained below with reference to Examples and Comparative Examples. An inorganic filler whose surface was treated with a silane compound and a silane coupling agent having the composition shown in Tables 1 and 2 was mixed at 1000 rpm using a Henschel mixer.
The mixture was prepared by stirring and mixing for 10 minutes. Examples 1 to 9,
In Comparative Examples 1 to 9, the epoxy resin, curing agent, curing accelerator, inorganic filler prepared as above, surface treatment agent, coloring agent, and mold release agent were used in the proportions shown in Tables 3 and 4, respectively. The mixture was mixed using a kneader at 40% under reduced pressure for 10 minutes to obtain an epoxy resin composition. The sealing of semiconductor elements for heat resistance reliability evaluation and the molding of test pieces for mechanical and electrical property evaluation were carried out at 180℃, 2
After curing for 1 minute, after-curing was carried out at 180°C for 6 hours. The results of evaluating the glass transition point, flexural modulus, electrical conductivity, and moisture resistance of the obtained compositions are shown in Table 5 (Examples) and Table 6 (Comparative Examples), respectively. The glass transition point was determined using a viscoelastic spectrometer (1
The temperature change in the loss modulus was measured at Hz), and the temperature that gave the maximum loss modulus was determined. The electrical conductivity of the test piece was measured at 121℃, 2atm, and 100% relative humidity.
Pressure Cooker Test (PCT) and 1000
Evaluation was made using the value obtained when 500 V DC was applied to the sample over time. Moisture resistance was evaluated by subjecting the semiconductor element for moisture resistance evaluation to PCT under the above conditions and determining the failure occurrence time.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、耐湿信頼性に優
れしかも機械特性、電気特性に優れた半導体封止
用エポキシ樹脂組成物が得られる。
As described above, according to the present invention, it is possible to obtain an epoxy resin composition for semiconductor encapsulation that has excellent moisture resistance reliability and excellent mechanical properties and electrical properties.

Claims (1)

【特許請求の範囲】 1 エポキシ樹脂、硬化剤、硬化促進剤、及びシ
ランカツプリング剤で処理した無機充填剤を本質
的に配合してなる半導体封止用エポキシ樹脂組成
物において、上記無機充填剤を次の一般式()
で表される1種以上の疎水性シラン化合物(a) RnSi(OR′)4-o () と、次の一般式()で表わされる1種以上のシ
ランカツプリング剤(b) YnSi(OR′)4-o () (両式中、Rはアルキル基またはフエニル基を
表し、R′は水素原子または炭素数1〜5個のア
ルキル基を表し、Yはエポキシ基やアミノ基を有
する一価の有機基であり、nは1〜3の整数であ
る)とで処理したものを使用することを特徴とす
る半導体封止用エポキシ樹脂組成物。 2 シラン化合物(a)とシランカツプリング剤(b)の
重量混合比が、シラン化合物(a)/シランカツプリ
ング剤(b)=0.1〜10の範囲であり、かつシラン化
合物(a)及びシランカツプリング剤(b)を無機充填剤
に対して3重量%以下添加配合する特許請求の範
囲第1項記載の半導体封止用エポキシ樹脂組成
物。 3 一般式() RnSi(OR′)4-o () で表されるシラン化合物(a)が、Rに少なくとも1
つのフエニル基を有するシラン化合物である特許
請求の範囲第1項または第2項記載の半導体封止
用エポキシ樹脂組成物。
[Scope of Claims] 1. An epoxy resin composition for semiconductor encapsulation which essentially comprises an epoxy resin, a curing agent, a curing accelerator, and an inorganic filler treated with a silane coupling agent, wherein the inorganic filler The following general formula ()
One or more hydrophobic silane compounds represented by (a) RnSi(OR′) 4-o () and one or more silane coupling agents represented by the following general formula (b) YnSi(OR ') 4-o () (In both formulas, R represents an alkyl group or a phenyl group, R' represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and Y represents a group having an epoxy group or an amino group. 1. An epoxy resin composition for semiconductor encapsulation, characterized in that an epoxy resin composition is used that has been treated with a valent organic group, and n is an integer of 1 to 3. 2 The weight mixing ratio of the silane compound (a) and the silane coupling agent (b) is in the range of silane compound (a)/silane coupling agent (b) = 0.1 to 10, and The epoxy resin composition for semiconductor encapsulation according to claim 1, wherein the coupling agent (b) is added in an amount of 3% by weight or less based on the inorganic filler. 3 The silane compound (a) represented by the general formula () RnSi(OR') 4-o () has at least 1
The epoxy resin composition for semiconductor encapsulation according to claim 1 or 2, which is a silane compound having two phenyl groups.
JP25051184A 1984-11-29 1984-11-29 Epoxy resin composition for semiconductor sealing Granted JPS61130326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25051184A JPS61130326A (en) 1984-11-29 1984-11-29 Epoxy resin composition for semiconductor sealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25051184A JPS61130326A (en) 1984-11-29 1984-11-29 Epoxy resin composition for semiconductor sealing

Publications (2)

Publication Number Publication Date
JPS61130326A JPS61130326A (en) 1986-06-18
JPS6325009B2 true JPS6325009B2 (en) 1988-05-24

Family

ID=17208974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25051184A Granted JPS61130326A (en) 1984-11-29 1984-11-29 Epoxy resin composition for semiconductor sealing

Country Status (1)

Country Link
JP (1) JPS61130326A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63202621A (en) * 1987-02-18 1988-08-22 Matsushita Electric Works Ltd Epoxy resin molding material
JP2930115B2 (en) * 1988-09-12 1999-08-03 日東電工株式会社 Semiconductor device
JPH078939B2 (en) * 1988-10-19 1995-02-01 沖電気工業株式会社 Resin-sealed semiconductor device
US5571851A (en) * 1994-01-28 1996-11-05 J.M. Huber Corporation Reinforcing fillers for plastics systems
JP5256614B2 (en) * 2006-01-19 2013-08-07 日立化成株式会社 Epoxy resin composition and electronic component device
JP5311130B2 (en) * 2009-06-22 2013-10-09 日立化成株式会社 Epoxy resin molding material for device sealing and electronic component device
JP6409362B2 (en) * 2014-06-25 2018-10-24 味の素株式会社 Resin composition

Also Published As

Publication number Publication date
JPS61130326A (en) 1986-06-18

Similar Documents

Publication Publication Date Title
JPS5927945A (en) Liquid epoxy resin composition for sealing semiconductor
JPS6325009B2 (en)
JPS6218565B2 (en)
JPH0520447B2 (en)
JPS583382B2 (en) Resin-encapsulated semiconductor device
JP3003887B2 (en) Resin composition for semiconductor encapsulation
JPH0977958A (en) Epoxy resin composition and semiconductor device
JP2991849B2 (en) Epoxy resin composition
JPH07107091B2 (en) Epoxy resin composition for semiconductor encapsulation
JPH062808B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JPH08337634A (en) Epoxy resin composition and semiconductor device sealed therewith
JPH04296046A (en) Resin-sealed semiconductor device
JPH03119049A (en) Resin composition
JP3365065B2 (en) Epoxy resin composition for sealing
JP3235798B2 (en) Epoxy resin composition
JP3339806B2 (en) Epoxy resin composition for sealing and semiconductor device
JPH0977850A (en) Epoxy resin composition and resin-sealed semiconductor device
JP2843247B2 (en) Epoxy resin composition
JPH0730236B2 (en) Epoxy resin composition for semiconductor encapsulation
JPH0528243B2 (en)
JPH02240132A (en) Epoxy resin composition for semiconductor sealing
JP3093051B2 (en) Epoxy resin composition
JP3235799B2 (en) Epoxy resin composition
JP2643547B2 (en) Epoxy resin composition for semiconductor encapsulation
JPH07165878A (en) Epoxy resin composition for sealing