JPS63239158A - Manufacture of aluminum nitride sintered body - Google Patents

Manufacture of aluminum nitride sintered body

Info

Publication number
JPS63239158A
JPS63239158A JP62075075A JP7507587A JPS63239158A JP S63239158 A JPS63239158 A JP S63239158A JP 62075075 A JP62075075 A JP 62075075A JP 7507587 A JP7507587 A JP 7507587A JP S63239158 A JPS63239158 A JP S63239158A
Authority
JP
Japan
Prior art keywords
weight
aln
aluminum nitride
thermal conductivity
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62075075A
Other languages
Japanese (ja)
Inventor
周作 上田
正之 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP62075075A priority Critical patent/JPS63239158A/en
Publication of JPS63239158A publication Critical patent/JPS63239158A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は回路配線基板あるいは半導体集積回路積載用用
セラミックパッケージ等に用いられる窒化アルミニウム
(AlN)焼結体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing an aluminum nitride (AlN) sintered body used for circuit wiring boards, ceramic packages for mounting semiconductor integrated circuits, and the like.

[従来の技術] AlN焼結体は、熱伝導性及び電気絶縁性が高く、更に
機械的強度及び化学的安定性に優れていることから、回
路配線用基板、半導体集積回路積載用セラミックパッケ
ージ等への利用が検討されている。
[Prior Art] AlN sintered bodies have high thermal conductivity and electrical insulation, as well as excellent mechanical strength and chemical stability, so they are used as substrates for circuit wiring, ceramic packages for mounting semiconductor integrated circuits, etc. Its use is being considered.

このAlNは、共用結合性が高くて焼結させることが難
しいことから、AlN焼結体を得る時にはAlN原料粉
末に少量の焼結助剤を添加し、N2ガス雰囲気中180
0℃〜2000℃で熱処理して焼結させる。焼結助剤と
しては、例えば特開昭61−10071号公報に開示さ
れているようにアルカリ土類金属の酸化物、炭酸塩、シ
ュウ酸塩、又は特開昭60−127267号公報に開示
されているように酸化サマリウム、酸化イツトリウム、
酸化ガドリウム等が使用される。
Since this AlN has a high covalent bonding property and is difficult to sinter, when obtaining an AlN sintered body, a small amount of sintering aid is added to the AlN raw material powder, and the
Heat treatment and sintering at 0°C to 2000°C. Examples of the sintering aid include alkaline earth metal oxides, carbonates, and oxalates as disclosed in JP-A-61-10071, or as disclosed in JP-A-60-127267. samarium oxide, yttrium oxide,
Gadolinium oxide etc. are used.

[発明が解決しようとする問題点コ ところで、窒化アルミニウム原料粉末に焼結助剤を添加
して常圧で焼結させる方法によって得られた窒化アルミ
ニウム焼結体の熱伝導率は、窒化アルミニウムの理論熱
伝導率< 320 w / m −K )よりも大幅に
低いので、この向上が望まれている。
[Problems to be Solved by the Invention] By the way, the thermal conductivity of an aluminum nitride sintered body obtained by adding a sintering aid to aluminum nitride raw powder and sintering it at normal pressure is the same as that of aluminum nitride. This improvement is desired since it is significantly lower than the theoretical thermal conductivity (<320 w/m-K).

そこで、本発明の目的は、熱伝導率が高い窒化アルミニ
ウム焼結体の製造方法を提供することにある。
Therefore, an object of the present invention is to provide a method for manufacturing an aluminum nitride sintered body having high thermal conductivity.

[問題点を解決するための手段] 上記目的を達成するための本発明は、Al□03及び/
又はAlNの窒素の一部を酸素で置換したAI N、、
Ox (但しXは置換された酸素の量を示す)より選ば
れる少なくとも一種を酸素に換算して0.58〜9.4
2重量%含む窒化アルミニウムM料粉末100重量部と
、アルカリ土類元素及び希土類元素から選ばれた少なく
ともIMの金属粉末を含む焼結助剤0.5〜6重量部と
の混合物の成形体を形成し、前記Al2o3及び/又は
A I N、−xoXを構成する酸素と前記金属粉末と
が反応すると共に、前記A I 203及び/又はA 
I N1−xO,を構成するAIと窒素とが反応して窒
化アルミニウムが生成されるように前記成形体を窒素ガ
ス雰囲気中で焼成することを特徴とする窒化アルミニウ
ム焼結体の製造方法に係わるものである。
[Means for Solving the Problems] The present invention for achieving the above object is based on Al□03 and/or
or AIN in which part of the nitrogen in AlN is replaced with oxygen,
At least one type selected from Ox (where X indicates the amount of substituted oxygen) is 0.58 to 9.4 in terms of oxygen
A molded body of a mixture of 100 parts by weight of aluminum nitride M material powder containing 2% by weight and 0.5 to 6 parts by weight of a sintering aid containing at least IM metal powder selected from alkaline earth elements and rare earth elements. The oxygen that forms and constitutes the Al2o3 and/or A I N, -xoX reacts with the metal powder, and the A I 203 and/or A
A method for producing an aluminum nitride sintered body, characterized in that the molded body is fired in a nitrogen gas atmosphere so that aluminum constituting IN1-xO reacts with nitrogen to produce aluminum nitride. It is something.

[作 用] 焼結助剤としてのアルカリ土類元素及び希土類元素から
選ばれた少なくとも1種の金FA(以下、アルカリ土類
金属をMe、希土類金属をReで示す)がAlN中の酸
素(通常A 1203及び/又はAlNの窒素の一部を
酸素で置換したAlN1−xOxの形で含まれていると
考えられる)と反応して焼結を促進させると共に、焼結
体の熱伝導率の向上に寄チ、する。即ち、焼結の過程に
おいて、例えばA’ 120 sの酸素と焼結助剤のM
e又はReとが結合して金属酸化物が生成され、Al□
03のAlと原料粉末中あるいは雰囲気中に含まれてい
る窒素とが結合してAlNが生成される。
[Function] At least one type of gold FA selected from alkaline earth elements and rare earth elements as a sintering aid (hereinafter, alkaline earth metals are referred to as Me and rare earth metals are referred to as Re) is added to the oxygen ( Normally, it is thought to be contained in the form of AlN1-xOx, in which part of the nitrogen in A1203 and/or AlN is replaced with oxygen) to promote sintering and reduce the thermal conductivity of the sintered body. Participate in the improvement. That is, in the sintering process, for example, A' 120 s of oxygen and the sintering aid M
A metal oxide is produced by combining with e or Re, and Al□
Al of No. 03 and nitrogen contained in the raw material powder or atmosphere combine to generate AlN.

Meの場合の反応は次式で示すことができる。The reaction in the case of Me can be shown by the following formula.

Al o +3/4Me+1/4N2→3/4MeO・
Al2O3+1/2 AlN 2 A 1 0  +2/3 Me +2/3 N2−
2/3 MeO−2Al203+4/3八1N Reの場合の反応は次式で示すことができる。
Al o +3/4Me+1/4N2→3/4MeO・
Al2O3+1/2 AlN 2 A 1 0 +2/3 Me +2/3 N2-
The reaction in the case of 2/3 MeO-2Al203+4/381N Re can be shown by the following formula.

うA I  O+15/4Re +15/8N2−5/
4 R1AI  O+15/4AlN AI  O+Re +1/2 N  →Re AlO3
+AlN 生成した複合酸化物あるいは酸化物は、AlN焼枯体の
結晶粒界に集まり、一方、生成したAlNは結晶粒子の
一部となる。Me又はReを焼結助剤として使用するこ
とによって、熱伝導率の高いAlNが生成され、この分
だけ熱伝導率の低い金属酸化物の生成が少なくなるので
、全体として熱伝導率が高くなる。
UAI O+15/4Re +15/8N2-5/
4 R1AI O+15/4AlN AI O+Re +1/2 N →Re AlO3
+AlN The generated composite oxide or oxide gathers at the grain boundaries of the burnt AlN body, while the generated AlN becomes part of the crystal grains. By using Me or Re as a sintering aid, AlN with high thermal conductivity is generated, which reduces the generation of metal oxides with low thermal conductivity, resulting in higher overall thermal conductivity. .

これに対して、従来のアルカリ土類金R酸化物M+30
)を焼結助剤として使用する場合には、例えば、AlN
中のA 1203とこのMeOとが次のように反応する
In contrast, conventional alkaline earth gold R oxide M+30
) as a sintering aid, for example, AlN
The A 1203 inside reacts with this MeO as follows.

AlO3+2eo→MeO−Al2032Al 0  
+Me O−+Me O−2Al203これから明らか
な如く、金R酸化物(Men)を焼結助剤として使用す
る場合には、複合酸化物が生成されるのみであり、Al
Nは生成されない。
AlO3+2eo→MeO-Al2032Al 0
+Me O-+Me O-2Al203 As is clear from this, when gold R oxide (Men) is used as a sintering aid, only a composite oxide is produced, and Al
N is not generated.

従って、結晶粒界に熱伝導率の悪い複合酸化物が多量に
集まり、結局、高い熱伝導率のAlN焼結体が得られな
い、従来の希土類元素(Re)の酸化物を焼結助剤とし
て使用する場合に同様に、AlN中のAl2o3と希土
類酸化物とが次のように反応する。
Therefore, a large amount of composite oxides with poor thermal conductivity gather at the grain boundaries, and as a result, an AlN sintered body with high thermal conductivity cannot be obtained. Similarly, when used as AlN, Al2o3 in AlN and rare earth oxide react as follows.

5Al 0  +3Re  O−2Re3At5AI 
 O+Re203−2ReAl03この場合においても
、熱伝導率の悪い酸化物が生成されるのみであり、Al
Nは生成されず、結局、焼結体の熱伝導率は低い。
5Al 0 +3Re O-2Re3At5AI
O+Re203-2ReAl03 In this case, only oxides with poor thermal conductivity are generated, and Al
No N is generated, and as a result, the thermal conductivity of the sintered body is low.

[実施例コ 金属中酸素濃度分析計によって0.58重I%の酸素を
含むことが確認された平均粒径0.92μmのAlN粉
末100重量部に対し、平均粒径4.58μmの金属カ
ルシウム粉末から成る焼結助剤0.5重量部を添加し、
AlN粉末と焼結助剤との合計(100ffl量部)に
対して結合剤としてポリメチルメタクリレート8重量部
、解膠剤としてオレイン酸1重量部、モレキュラーシー
ブにより脱水処理を施したトルエンを40重量部添加し
、これらをボールミルにより20時間撹拌混合して、均
一に分散したスラリーを得た。なお、AlN中の酸素は
通常酸化アルミニウム(Al203)及び/又は窒化ア
ルミニウム(AlN)の窒素の一部を酸素で置換したA
lN1−xOxの形で含まれていると考えられる。
[Example] Metallic calcium with an average particle size of 4.58 μm was added to 100 parts by weight of AlN powder with an average particle size of 0.92 μm, which was confirmed to contain 0.58% by weight of oxygen using a metal oxygen concentration analyzer. Adding 0.5 parts by weight of a sintering aid consisting of powder,
For the total of AlN powder and sintering aid (100 ffl parts), 8 parts by weight of polymethyl methacrylate as a binder, 1 part by weight of oleic acid as a deflocculant, and 40 parts by weight of toluene that has been dehydrated with a molecular sieve. These were stirred and mixed in a ball mill for 20 hours to obtain a uniformly dispersed slurry. Note that the oxygen in AlN is usually aluminum oxide (Al203) and/or aluminum nitride (AlN) in which part of the nitrogen is replaced with oxygen.
It is thought that it is contained in the form of lN1-xOx.

次に、得られたスラリーを脱気処理した後、ドクターブ
レード法により成形し、厚さ1.0nnのセラミックグ
リーンシートを得た。
Next, the obtained slurry was deaerated and then molded by a doctor blade method to obtain a ceramic green sheet with a thickness of 1.0 nn.

次に、セラミックグリーンシートを50111X 5Q
nmの寸法に切断したものをAlN焼結体からなるサヤ
に収納し、N2ガス雰囲気中500℃で2時間脱バイン
ダー処理した後、実質的に常圧のN2ガス雰囲気中18
00℃で30分間焼成した。
Next, attach the ceramic green sheet to 50111X 5Q
The pieces cut to a size of nm were stored in a sheath made of an AlN sintered body, subjected to debinding treatment at 500°C for 2 hours in an N2 gas atmosphere, and then heated to 18 nm in an N2 gas atmosphere at substantially normal pressure.
It was baked at 00°C for 30 minutes.

次に、得られたAlN焼結体の両面をラップ研磨して厚
さ0.51に仕上げ、試料1を得た。得られた試料につ
いて、アルキメデス法で求めたかさ密度と真比重(3,
26g/cm3)から相対密度(かさ密度つ/真比重X
100)を算出し、また、得られた試料のそれぞれの主
面に金蒸着を施した後、さらにカーボン蒸着を行いレー
ザーフラッシュ法を用いて熱伝導率を測定したところ、
表に示す結果が得られた。表には、各試料No、のAl
N原料粉末における酸素含有量、焼結助剤の種類と量、
熱伝導率、相対密度が示されている。
Next, both surfaces of the obtained AlN sintered body were lap-polished to a thickness of 0.51 mm to obtain Sample 1. For the obtained sample, the bulk density and true specific gravity (3,
26g/cm3) to relative density (bulk density/true specific gravity
100) was calculated, and after gold vapor deposition was performed on each main surface of the obtained sample, carbon vapor deposition was further performed and the thermal conductivity was measured using the laser flash method.
The results shown in the table were obtained. In the table, the Al of each sample No.
Oxygen content in N raw material powder, type and amount of sintering aid,
Thermal conductivity and relative density are shown.

試料?k)、 2〜88においても、酸素含有量、焼結
助剤の種類及び量を変えた他は、試料量、1と同じ方法
でAlN焼結体を作製し、同じ方法で熱伝導率、相対密
度を測定した。
sample? k), In 2 to 88, AlN sintered bodies were prepared in the same manner as in 1, except that the oxygen content and the type and amount of the sintering aid were changed, and the thermal conductivity, Relative density was measured.

上記表において、酸素含有量(Al203及び/又はA
I N、、Oxの形で含まれている)が0゜58重量%
とされている試料量、1〜20の中で試料量、15〜2
0は本発明の範囲外の比較例である。
In the above table, oxygen content (Al203 and/or A
I N,, contained in the form of Ox) is 0°58% by weight
The sample amount is 15 to 2 within the range of 1 to 20.
0 is a comparative example outside the scope of the present invention.

試料NO,19は1、焼結助剤として金属粉末を添加せ
ずに、アルカリ土類金属の酸化物であるCa0(酸化カ
ルシウム)2.0重量部添加したものであり、試料Nα
は焼結助剤として金屑粉末を添加せずに希土類金属の酸
化物であるNd2o3 (酸化ネオジム)を5.0重量
部添加したものであるから、熱伝導率が低い(125と
110w;/m −K)試料No、15及び17の焼結
助剤としてのCa及びNdの量はそれぞれ0.2重量部
であって少ないので、焼結体の熱伝導率が低く、本発明
の目的を達成することができない、また、試料Nα16
及び18のCa及びNdの量は7.0重量部であって多
過ぎるために、焼結体の熱伝導率が低くなり、本発明の
目的を達成することができない。従って、試料N0.1
5〜18も本発明の範囲外のものである。
Sample No. 19 is 1, in which 2.0 parts by weight of Ca0 (calcium oxide), which is an oxide of an alkaline earth metal, is added without adding any metal powder as a sintering aid.
The thermal conductivity is low (125 and 110w; / m-K) The amounts of Ca and Nd as sintering aids in samples Nos. 15 and 17 are 0.2 parts by weight each, which is small, so the thermal conductivity of the sintered bodies is low and the purpose of the present invention cannot be achieved. Also, sample Nα16
The amounts of Ca and Nd in No. 1 and No. 18 are 7.0 parts by weight, which are too large, resulting in a low thermal conductivity of the sintered body, making it impossible to achieve the object of the present invention. Therefore, sample No.1
5 to 18 are also outside the scope of the present invention.

試料Nα1〜8から明らかな如く、焼結助剤としてCa
  (カルシウム)、Nd(ネオジム) 、M(+(マ
グネシウム)、Sl(サマリウム)を0.5〜6.0重
量部の範囲で添加すると、熱伝導率が139−168w
/m −Kとなり、試料NQ 19.20に示す比較例
の値よりも大きくなる。
As is clear from samples Nα1 to Nα8, Ca was used as a sintering aid.
When adding (calcium), Nd (neodymium), M(+ (magnesium), Sl (samarium) in the range of 0.5 to 6.0 parts by weight, the thermal conductivity increases from 139 to 168 w.
/m −K, which is larger than the value of the comparative example shown in sample NQ 19.20.

試料Nα9〜12に示す如(、Nd、Ca、Mg、ce
  (セリウム)の複数種類を添加しても比較例よりも
大きな熱伝導率を得ることができる。
As shown in samples Nα9 to 12 (, Nd, Ca, Mg, ce
Even if multiple types of (cerium) are added, a higher thermal conductivity than the comparative example can be obtained.

試f4NQ13に示す如(Nd、Caの金属粉末に、Y
2 o3 (酸化イツトリウム)を加えても金属(Nd
、Ca)粉末添加効果が失われない、また、試料111
0.14に示す如くCe、Mgの金属粉末にCaCO3
をCaOに換算して0.5重量部加えても金属粉末(C
e 、 Mg)添加効果が失われない。
As shown in test f4NQ13 (Nd, Ca metal powder, Y
Even if 2 o3 (yttrium oxide) is added, metal (Nd
, Ca) The powder addition effect is not lost, and sample 111
As shown in 0.14, CaCO3 is added to Ce and Mg metal powder.
Even if 0.5 part by weight is added in terms of CaO, the metal powder (C
e, Mg) The addition effect is not lost.

酸素含有量が0.93重量%とされている試料N021
〜40においても、試料島1〜20と全く同様な作用効
果が生じている。即ち本発明に従って金属粉末を0.5
〜6.0重量部添加した試料(資)、21〜34の熱伝
導率は、比較例である試料Nα35〜40のものよりも
高い。
Sample N021 with oxygen content of 0.93% by weight
-40, the same effects as those of sample islands 1-20 are occurring. That is, according to the present invention, the metal powder is
The thermal conductivities of Samples 21 to 34, in which ~6.0 parts by weight was added, are higher than those of Samples Nα35 to 40, which are comparative examples.

酸素含有量が9.42重1%とされている試料間、41
〜60においても、試料N0.1〜20と全く同様な作
用効果が生じている。即ち、本発明に従って金属粉末を
0.5〜6.0重量部添加した試料41〜54の熱伝導
率は、比較例である試料No。
Among the samples whose oxygen content is 9.42% by weight, 41
-60 also produced the same effects as those of samples No.1-20. That is, the thermal conductivity of Samples 41 to 54 to which 0.5 to 6.0 parts by weight of metal powder was added according to the present invention is that of Sample No., which is a comparative example.

55〜60のものよりも高い。higher than those of 55-60.

試料No、61〜74では、酸素含有量が0.311i
1%とされている。酸素含有量がこの様に少ないと、金
属粉末を0.5〜6.0重量部の範囲で添加しても高い
熱伝導率を得ることができない。
In sample Nos. 61 to 74, the oxygen content was 0.311i
It is said to be 1%. When the oxygen content is so low, high thermal conductivity cannot be obtained even if metal powder is added in the range of 0.5 to 6.0 parts by weight.

従って、試料NO,61〜74は本発明の範囲外のもの
である。
Therefore, samples Nos. 61 to 74 are outside the scope of the present invention.

試料短75〜88までは、酸素含有量が18゜95重量
%とされている。酸素含有量がこの様に多いと、金属粉
末を0.5〜6.0重量部の範囲で添加しても高い熱伝
導率を得ることができない。
For samples 75 to 88, the oxygen content was 18.95% by weight. When the oxygen content is so high, high thermal conductivity cannot be obtained even if metal powder is added in a range of 0.5 to 6.0 parts by weight.

従って、試料No、 75〜88は本発明の範囲外のも
のである。
Therefore, samples Nos. 75 to 88 are outside the scope of the present invention.

本発明の範囲内の試料間、1〜14.21〜34.41
〜54の熱伝導率は136〜185w/m・Kの範囲に
あり、本発明の範囲外のものに比叡して明らかに高くな
っている。
Between samples within the scope of the invention, 1 to 14.21 to 34.41
The thermal conductivity of ~54 is in the range of 136 to 185 w/m·K, which is clearly higher than that of those outside the range of the present invention.

[変形例コ 本発明は、上述の実施例に限定されるものでなく、例え
ば次の変形が可能である。
[Modifications] The present invention is not limited to the above-described embodiments, and for example, the following modifications are possible.

(1)Ca 、Ma以外のアルカリ土類金属(例えば、
Sr、Ba)、又はNd 、Ce 、Sn以外の希土類
金属(例えば、La、Pr)を焼結助剤として使用して
もよい。
(1) Alkaline earth metals other than Ca and Ma (e.g.
Sr, Ba) or rare earth metals other than Nd, Ce, Sn (eg, La, Pr) may be used as sintering aids.

(2)必要に応じて、Y2O3、CaO以外の化合物(
例えば、M(10、Sr O,Ba 01MgCO3、
CaCO3、SrCO3、BaCO3、La2O3、C
eO2、Pr02、Nd203)を本発明の作用効果を
阻害しない範囲で焼結助剤に含めてもよい。
(2) Compounds other than Y2O3 and CaO (
For example, M(10, Sr O, Ba 01 MgCO3,
CaCO3, SrCO3, BaCO3, La2O3, C
eO2, Pr02, Nd203) may be included in the sintering aid to the extent that they do not inhibit the effects of the present invention.

(3)焼成温度を必要に応じて例えば1600〜190
0℃の範囲で種々変えても差し支えない。
(3) Adjust the firing temperature to 1600 to 190, for example.
There is no problem in varying the temperature within the range of 0°C.

[発明の効果] 上述から明らかな如く、本発明によれば、実質的に常圧
焼結であるにも拘らず、アルカリ土類又は希土類金属の
作用によって熱伝導率が135w/ m −K以上のA
lN焼結体を得ることができる。
[Effects of the Invention] As is clear from the above, according to the present invention, the thermal conductivity is 135 w/m-K or more due to the action of the alkaline earth or rare earth metal, despite the fact that it is essentially pressureless sintering. A of
An IN sintered body can be obtained.

Claims (1)

【特許請求の範囲】[Claims]  Al_2O_3及び/又はAlNの窒素の一部を酸素
で置換したAlN_1_−_xO_xより選ばれる少な
くとも一種を酸素に換算して0.58〜9.42重量%
含む窒化アルミニウム原料粉末100重量部と、アルカ
リ土類元素及び希土類元素から選ばれた少なくとも1種
の金属粉末を含む焼結助剤0.5〜6重量部との混合物
の成形体を形成し、前記Al_2O_3及び/又はAl
N_1_−_xO_xを構成する酸素と前記金属粉末と
が反応すると共に、前記Al_2O_3及び/又はAl
N_1_−_xO_xを構成するAlと窒素とが反応し
て窒化アルミニウムが生成されるように前記成形体を窒
素ガス雰囲気中で焼成することを特徴とする窒化アルミ
ニウム焼結体の製造方法。
At least one type selected from Al_2O_3 and/or AlN_1_-_xO_x in which a part of the nitrogen of AlN is replaced with oxygen, 0.58 to 9.42% by weight in terms of oxygen
Forming a molded body of a mixture of 100 parts by weight of aluminum nitride raw material powder containing 0.5 to 6 parts by weight of a sintering aid containing at least one metal powder selected from alkaline earth elements and rare earth elements, The Al_2O_3 and/or Al
The oxygen constituting N_1_-_xO_x reacts with the metal powder, and the Al_2O_3 and/or Al
A method for producing an aluminum nitride sintered body, comprising firing the compact in a nitrogen gas atmosphere so that aluminum constituting N_1_-_xO_x reacts with nitrogen to produce aluminum nitride.
JP62075075A 1987-03-27 1987-03-27 Manufacture of aluminum nitride sintered body Pending JPS63239158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62075075A JPS63239158A (en) 1987-03-27 1987-03-27 Manufacture of aluminum nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62075075A JPS63239158A (en) 1987-03-27 1987-03-27 Manufacture of aluminum nitride sintered body

Publications (1)

Publication Number Publication Date
JPS63239158A true JPS63239158A (en) 1988-10-05

Family

ID=13565702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62075075A Pending JPS63239158A (en) 1987-03-27 1987-03-27 Manufacture of aluminum nitride sintered body

Country Status (1)

Country Link
JP (1) JPS63239158A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158549A (en) * 2007-12-25 2009-07-16 Panasonic Electric Works Co Ltd Aluminum nitride-based base material for three-dimensional circuit board, manufacturing method thereof and three-dimensional circuit board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158549A (en) * 2007-12-25 2009-07-16 Panasonic Electric Works Co Ltd Aluminum nitride-based base material for three-dimensional circuit board, manufacturing method thereof and three-dimensional circuit board

Similar Documents

Publication Publication Date Title
JP2009023895A (en) Ceramic substrate and its producing method
JPS63239158A (en) Manufacture of aluminum nitride sintered body
JP2777679B2 (en) Spinel ceramics and manufacturing method thereof
JP2899893B2 (en) Aluminum nitride sintered body and method for producing the same
JPS63239157A (en) Aluminum nitride sintered body
JP3434963B2 (en) Aluminum nitride sintered body and method for producing the same
JPS62252374A (en) Manufacture of aluminum nitride sintered body
JP2949296B2 (en) Aluminum nitride substrate
JPS6011259A (en) Ceramic composition
JPH0825799B2 (en) Method for manufacturing high thermal conductivity aluminum nitride sintered body
JP2772580B2 (en) Method for producing aluminum nitride sintered body
JP5354320B2 (en) Ceramic substrate and manufacturing method thereof
JPS61286267A (en) Manufacture of aluminum nitride base sintered body
JPS63166765A (en) Aluminum nitride base sintered body and manufacture
JPS63222074A (en) Manufacture of aluminum nitride sintered body
JP2000178072A (en) Aluminum nitride matter sintered compact
JPS61146766A (en) Aluminum nitride sintered body and manufacture
JPH0566339B2 (en)
JP2784551B2 (en) Aluminum nitride substrate
JPS6110071A (en) High heat conductivity aluminum nitride sintered body
JPH07165472A (en) Radiating base
JPS62187172A (en) Manufacture of aluminum nitride sintered body
JP2704194B2 (en) Black aluminum nitride sintered body
JPH08325060A (en) Aluminum nitride sintered compact and its production
JPH05105524A (en) Highly heat conductive ceramics and their production