JPH05105524A - Highly heat conductive ceramics and their production - Google Patents

Highly heat conductive ceramics and their production

Info

Publication number
JPH05105524A
JPH05105524A JP3269374A JP26937491A JPH05105524A JP H05105524 A JPH05105524 A JP H05105524A JP 3269374 A JP3269374 A JP 3269374A JP 26937491 A JP26937491 A JP 26937491A JP H05105524 A JPH05105524 A JP H05105524A
Authority
JP
Japan
Prior art keywords
group
compound
weight
sintering
aluminum nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3269374A
Other languages
Japanese (ja)
Inventor
Jun Monma
旬 門馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3269374A priority Critical patent/JPH05105524A/en
Publication of JPH05105524A publication Critical patent/JPH05105524A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To provide heat conductive and dense ceramics, having high heat conductivity and sinterable more readily than conventional ones and a simple method for producing the ceramics. CONSTITUTION:Highly heat conductive ceramics of this invention are characterized by adding a group Ia element of the periodic table or its compound and at least one element of groups IIIa and IIa or its compound to aluminum nitride powder, molding and sintering the resultant mixture and forming the ceramics. The content of the group Ia element of the periodic table contained in the mixture is preferably set at 0.05-3wt.% expressed in terms of the element. On the other hand, the content of at least one element of groups IIIa and IIa is preferably set at 0.5-7wt.% expressed in terms of the element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高熱伝導性セラミック
スおよびその製造方法に係り、特に電子回路用基板材料
として好適な窒化アルミニウムを主成分とする焼結体か
ら成る高熱伝導性セラミックスおよびそのセラミックス
の簡易で効率的な製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high thermal conductivity ceramic and a method for producing the same, and particularly to a high thermal conductivity ceramic composed of a sintered body containing aluminum nitride as a main component, which is suitable as a substrate material for electronic circuits, and the ceramic. And a simple and efficient manufacturing method thereof.

【0002】[0002]

【従来の技術】近年、半導体工業の急速な技術革新によ
り電子機器に内蔵される大規模集積回路の高集積化およ
び高出力化が進み、半導体素子の単位面積当たりの発熱
量が大幅に増大化している。そして増大した発熱による
半導体素子の誤動作を防止するために、熱伝導性および
絶縁性に優れたセラミックス基板材料が求められてい
る。
2. Description of the Related Art In recent years, due to rapid technological innovation in the semiconductor industry, high integration and high output of large-scale integrated circuits incorporated in electronic devices have advanced, and the amount of heat generated per unit area of semiconductor elements has significantly increased. ing. Then, in order to prevent the malfunction of the semiconductor element due to the increased heat generation, a ceramic substrate material excellent in thermal conductivity and insulation is required.

【0003】上記の特性を備える基板材料としては、従
来アルミナ(Al23 )、ベリリア(BeO)、炭化
けい素(SiC)または窒化アルミニウム(AlN)な
どの焼結体が知られているが、特に熱伝導性、電気絶縁
性(耐電圧特性)、熱膨脹率、機械的強度等において優
れた特性を備えた窒化アルミニウム(AlN)焼結体が
広く利用されるに至っている。
As a substrate material having the above characteristics, a sintered body such as alumina (Al 2 O 3 ), beryllia (BeO), silicon carbide (SiC) or aluminum nitride (AlN) is known. In particular, an aluminum nitride (AlN) sintered body having excellent properties such as thermal conductivity, electrical insulation (withstand voltage property), coefficient of thermal expansion, and mechanical strength has been widely used.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、窒化ア
ルミニウムは、共有結合性が強く、AlN粉末のみでは
焼結しても緻密化できない難焼結性の物質である。その
ため高伝導性を有し、緻密で高密度のAlNセラミック
スを得るためには、イットリア(Y2 3 )や希土類元
素の酸化物のような周期律表第 IIIa族元素の化合物や
カルシア(CaO)、などの第IIa族元素の化合物を焼
結助剤として原料AlN粉末に添加し、得られた混合体
で形成した成形体を温度1800℃程度の高温度で焼成
する必要があった。
However, aluminum nitride has a strong covalent bond property and is a material that is difficult to sinter and cannot be densified by sintering only AlN powder. Therefore, in order to obtain dense and dense AlN ceramics having high conductivity, compounds of Group IIIa elements of the periodic table such as yttria (Y 2 O 3 ) and oxides of rare earth elements and calcia (CaO) are used. It was necessary to add a compound of the group IIa element such as), etc. as a sintering aid to the raw material AlN powder, and to fire the molded body formed of the obtained mixture at a high temperature of about 1800 ° C.

【0005】そのため焼結用の加熱炉として熱容量が大
きなものが必要であり、運転コストが増大化する欠点が
あった。また従来から使用していた焼結助剤としての第
IIIa族および/またはIIa族元素の化合物のみを添加
した場合では、未だに焼結が困難であり、さらに製造コ
ストの上昇や製造効率の低下を招き易く、大量生産化が
困難となる問題点があった。
Therefore, a heating furnace having a large heat capacity is required as a heating furnace for sintering, and there is a drawback that operating cost increases. Also, as a sintering aid that has been used conventionally,
When only the compound of the group IIIa and / or the group IIa is added, there is a problem that it is still difficult to sinter, the production cost is increased and the production efficiency is lowered, and mass production is difficult. It was

【0006】本発明は上記の問題点を解決するためにな
されたものであり、高熱伝導性を有し緻密で高強度を備
えるとともに、従来よりも焼結が容易な高熱伝導性セラ
ミックスおよびその簡易な製造方法を提供することを目
的とする。
The present invention has been made in order to solve the above problems, and has a high thermal conductivity, a dense and high strength, and a high thermal conductivity ceramic which is easier to sinter than before, and its simple structure. It aims at providing a simple manufacturing method.

【0007】[0007]

【課題を解決するための手段と作用】本発明者らは窒化
アルミニウム粉末の焼結性を改善すべく、種々の焼結助
剤を用い、従来一般に使用されている焼結助剤と組み合
せて原料窒化アルミニウム粉末に添加し、その焼結性の
良否を実験により確認した。
Means and Actions for Solving the Problems In order to improve the sinterability of aluminum nitride powder, the present inventors have used various sintering aids in combination with conventionally used sintering aids. It was added to the raw material aluminum nitride powder, and the quality of its sinterability was confirmed by experiments.

【0008】その結果、従来から使用されている第 III
a族元素および第IIa族元素の少なくとも一方の元素を
含有する焼結助剤に加えて、第I a族元素を含有する化
合物を原料窒化アルミニウム粉末に添加し焼成したとき
に、窒化アルミニウム粉末の液相焼結作用がさらに改善
され、焼結操作が容易になり、熱伝導率の高いセラミッ
クスが得られた。
As a result, the conventionally used No. III
In addition to the sintering aid containing at least one element of the group a element and the group IIa element, when a compound containing the group Ia element is added to the raw material aluminum nitride powder and fired, the aluminum nitride powder The liquid phase sintering action was further improved, the sintering operation was facilitated, and ceramics with high thermal conductivity were obtained.

【0009】本発明は上記知見に基づいて完成されたも
のである。
The present invention has been completed based on the above findings.

【0010】すなわち本発明に係る高熱伝導性セラミッ
クスは、窒化アルミニウム粉末に対して周期律表第Ia
族元素またはその化合物と、第 IIIa族および第IIa族
の少なくとも一方の元素またはその化合物とを添加した
混合体を成形焼結して形成したことを特徴とする。
That is, the high thermal conductive ceramics according to the present invention is characterized by the periodic table Ia of the aluminum nitride powder.
It is characterized in that a mixture obtained by adding a group element or a compound thereof and at least one element of a group IIIa or a group IIa or a compound thereof is formed by sintering and formed.

【0011】また混合体に含まれる周期律表第Ia族元
素の含有量が元素換算で0.05〜3重量%に設定さ
れ、混合体に含まれる周期律表第 IIIa族元素および第
IIa族元素の少なくとも一方の元素の含有量を元素換算
で0.5〜7重量%に設定するとよい。
The content of the group Ia element of the periodic table contained in the mixture is set to 0.05 to 3% by weight in terms of the element, and the group IIIa element and the group IIIa element of the periodic table contained in the mixture.
The content of at least one of the Group IIa elements may be set to 0.5 to 7% by weight in terms of element.

【0012】本発明において使用される窒化アルミニウ
ム粉末としは、アルミナの還元窒化法、アルミニウムの
直接窒化法や、ハロゲン化アルミニウムと窒素またはア
ンモニアとを使用したCVD法などで合成され、平均粒
径が0.05〜10μm、好ましくは3μm以下のAl
N粉末が使用される。
The aluminum nitride powder used in the present invention is synthesized by a reduction nitriding method of alumina, a direct nitriding method of aluminum, a CVD method using aluminum halide and nitrogen or ammonia, and has an average particle size of Al of 0.05 to 10 μm, preferably 3 μm or less
N powder is used.

【0013】また本発明において使用される周期律表第
Ia族元素またはその化合物は、低温度において液相の
発生を促進し、焼結作用を容易化するために元素換算で
0.1〜3重量%添加される。すなわち周期律表第Ia
族元素およびその化合物は、一般にアルカリ性が強く、
また融点も他の無期化合物と比較すると高い方ではな
い。このような第Ia族元素の化合物を第 IIIa族元素
および/あるいは第IIa族元素の化合物とともに添加す
ると、Ia族元素特有の強いアルカリ性による溶融力に
よって、窒化アルミニウム粉末および焼結助剤としての
第 IIIa族元素、第IIa族元素の化合物の低温度におけ
る液相化が促進され、焼結作用を容易化することが可能
となる。すなわち従来より低い焼結温度でも充分に緻密
な焼結体を形成することができる。
Further, the group Ia element of the periodic table or a compound thereof used in the present invention promotes the generation of a liquid phase at a low temperature and facilitates the sintering action by 0.1 to 3 in terms of elements. Wt% is added. That is, the periodic table Ia
Group elements and their compounds are generally strongly alkaline,
The melting point is not higher than that of other endless compounds. When such a compound of the group Ia element is added together with a compound of the group IIIa element and / or a compound of the group IIa, the melting power due to the strong alkalinity peculiar to the group Ia element causes the aluminum nitride powder and the group as a sintering additive to be added. The liquid phase of the compound of the group IIIa element and the group IIa element is promoted at a low temperature, and the sintering action can be facilitated. That is, it is possible to form a sufficiently dense sintered body even at a lower sintering temperature than before.

【0014】第Ia族元素およびその化合物の具体例と
しては、Li2 PO4 ,NaF,Na2 CO3 ,Na2
4 7 ,Li2 CO3 ,LiFなどがある。これらの
第Ia族元素およびその化合物の含有量が元素換算で
0.05重量%未満の場合には、焼結時における液相化
促進効果が充分でない一方、含有量が3重量%を超える
場合には、AlN焼結体の熱伝導率が低下し、また液相
生成量が過剰になり、セラミックスの表面粗さが増大し
て基板材料として不適になってしまう。そのため第Ia
族元素およびその化合物の添加量は0.05〜3重量%
の範囲に設定される。
Specific examples of the group Ia element and its compound include Li 2 PO 4 , NaF, Na 2 CO 3 and Na 2.
B 4 O 7, Li 2 CO 3, LiF , and the like. When the content of these Group Ia element and its compound is less than 0.05% by weight in terms of element, the effect of promoting the liquid phase during sintering is not sufficient, while the content exceeds 3% by weight. In addition, the thermal conductivity of the AlN sintered body decreases, the amount of liquid phase produced becomes excessive, and the surface roughness of ceramics increases, making it unsuitable as a substrate material. Therefore, Ia
Addition amount of group element and its compound is 0.05-3% by weight
It is set to the range of.

【0015】周期律表第IIa族および第 IIIa族の元素
およびその化合物は、それぞれアルカリ土類金属酸化
物、希土類酸化物を主体にした従来の焼結助剤であり、
これらの焼結助剤は、AlN原料粉末の不純物酸素と反
応して液相を生成し、焼結体の緻密化を達成するととも
に、上記不純物酸素を粒界相として固定(酸素トラッ
プ)して高熱伝導率化をも達成するものである。
The elements of Group IIa and Group IIIa of the periodic table and their compounds are conventional sintering aids mainly composed of alkaline earth metal oxides and rare earth oxides, respectively.
These sintering aids react with the impurity oxygen of the AlN raw material powder to generate a liquid phase, achieve densification of the sintered body, and fix the impurity oxygen as a grain boundary phase (oxygen trap). It also achieves high thermal conductivity.

【0016】第IIa族元素を含有する化合物の具体例と
しては、CaO,SrO,BaO,Ca3 (P
4 2 ,Ca2 6 11,CaB2 4 ,CaCO3
等があり、この第 IIIa族元素の含有量が1重量%未満
の場合には、AlN焼結体の緻密化が充分に進行しない
一方、含有量が7重量%を超える場合には、完全にトラ
ップし切れなかった酸素等の増大によりAlN焼結体の
熱伝導率が低下し、本来の放熱特性を発揮し得なくな
る。そのため上記第IIa族および第 IIIa族の少なくと
も一方の元素の含有量は0.5〜7重量%の範囲に設定
される。
Specific examples of the compound containing a Group IIa element include CaO, SrO, BaO, Ca 3 (P
O 4 ) 2 , Ca 2 B 6 O 11 , CaB 2 O 4 , CaCO 3
If the content of the Group IIIa element is less than 1% by weight, the densification of the AlN sintered body does not proceed sufficiently, while if the content exceeds 7% by weight, Due to an increase in oxygen that has not been trapped, the thermal conductivity of the AlN sintered body is lowered, and the original heat dissipation characteristics cannot be exhibited. Therefore, the content of at least one of the Group IIa and Group IIIa elements is set in the range of 0.5 to 7% by weight.

【0017】本発明が目的とする高熱伝導性セラミック
スは、窒化アルミニウム粉末に対して周期律表第Ia族
元素を0.05〜3重量%と、第 IIIa族元素および第
IIa族元素の少なくとも一方の元素を1〜7重量%添加
して均一に混合した後、成形体を形成し、この成形体を
非酸化性雰囲気中で温度1600〜1750℃で焼成す
る方法により製造される。
The high thermal conductivity ceramics which is the object of the present invention contains 0.05 to 3% by weight of the group Ia element of the periodic table, the group IIIa element and the group IIIa element with respect to the aluminum nitride powder.
Produced by a method in which 1 to 7% by weight of at least one element of the IIa group elements is added and uniformly mixed to form a molded body, and the molded body is fired at a temperature of 1600 to 1750 ° C. in a non-oxidizing atmosphere. To be done.

【0018】ここで上記窒化アルミニウム粉末と第Ia
族、第IIa族、第 IIIa族元素またはその化合物との混
合操作は、ボールミル、アトライター、V型ミキサーな
どを利用して実施し、その際、アルコール、ベンゼン、
アセトンなどの溶媒を用いて湿式で混合すると均一な混
合体ができ好適である。
Here, the aluminum nitride powder and the No. Ia
The mixing operation with Group IIIa, Group IIa, Group IIIa elements or compounds thereof is carried out using a ball mill, an attritor, a V-type mixer, etc., in which case alcohol, benzene,
Wet mixing using a solvent such as acetone is preferable because a uniform mixture can be obtained.

【0019】また成形工程では、得られた混合体をドク
ターブレード法、鋳込み法、ラバープレス法、金型プレ
スなどの方法を利用して成形体を形成する。
In the molding step, the obtained mixture is formed into a molded body by using a doctor blade method, a casting method, a rubber pressing method, a die pressing method or the like.

【0020】さらに本発明方法によれば、成形体は16
00〜1750℃の温度範囲で焼成される。すなわち従
来法においては約1800℃以上の高温度に加熱するこ
とが必要であったが、本発明方法によれば、従来の焼結
助剤に加えて、液相化を促進する第Ia族元素を焼結助
剤として添加しているため、低い焼結温度でも充分に緻
密な焼結体を形成することができる。したがって焼結温
度が低く、加熱炉の熱容量を低減することができ、運転
コストの低減および製造効率の大幅な改善効果をもたら
す。
Furthermore, according to the method of the present invention, 16
It is fired in a temperature range of 00 to 1750 ° C. That is, in the conventional method, it was necessary to heat to a high temperature of about 1800 ° C. or higher, but according to the method of the present invention, in addition to the conventional sintering aid, a Group Ia element that promotes liquefaction is added. Is added as a sintering aid, a sufficiently dense sintered body can be formed even at a low sintering temperature. Therefore, the sintering temperature is low, the heat capacity of the heating furnace can be reduced, and the operation cost is reduced and the manufacturing efficiency is significantly improved.

【0021】なお焼結時の加熱温度が1600℃未満と
低い場合には、液相の生成が不充分であり、緻密な焼結
体を製造することが困難である。一方、加熱温度が17
50℃を超えると、加熱炉の熱負荷が上昇して運転コス
トが上昇したり、特に温度が2000℃を超えると、焼
結体の結晶粒が粗大化し易くなる。
When the heating temperature at the time of sintering is as low as less than 1600 ° C., the liquid phase is insufficiently produced, and it is difficult to produce a dense sintered body. On the other hand, the heating temperature is 17
If the temperature exceeds 50 ° C, the heat load of the heating furnace increases and the operating cost rises. In particular, if the temperature exceeds 2000 ° C, the crystal grains of the sintered body tend to become coarse.

【0022】本発明の目的とする高熱伝導性を発揮させ
るためには前記成形体は、例えばアルゴン、ヘリウム、
窒素、水素などの不活性ガスや非酸化性ガス雰囲気ある
いは真空中で焼成することが重要である。この焼成は常
圧焼結法あるいは加圧焼結法のいずれの方法を採用して
もよい。
In order to exhibit the high thermal conductivity which is the object of the present invention, the molded body is made of, for example, argon, helium,
It is important to fire in an atmosphere of an inert gas such as nitrogen or hydrogen or a non-oxidizing gas or in vacuum. For this firing, either a normal pressure sintering method or a pressure sintering method may be adopted.

【0023】本発明方法によって製造される窒化アルミ
ニウムセラミックスは、密度が3.1g/cm3 以上であ
り、室温における熱伝導率が100〜190w/m・k
と高く、特に高い放熱性を要求される電気回路用基板と
して最適である。
The aluminum nitride ceramics produced by the method of the present invention has a density of 3.1 g / cm 3 or more and a thermal conductivity of 100 to 190 w / m · k at room temperature.
It is most suitable as a substrate for electric circuits that requires high heat dissipation.

【0024】[0024]

【実施例】次に本発明を以下の実施例および比較例に基
づいてより具体的に説明する。
EXAMPLES Next, the present invention will be described more specifically based on the following examples and comparative examples.

【0025】実施例1〜4 実施例1〜2として、酸化アルミニウム還元法によって
製造した平均粒径2μmの窒化アルミニウム粉末に対し
て、第 IIIa族元素化合物である酸化イットリウム(Y
2 3 )を5重量%(Y元素換算で3.9重量%)焼結
助剤として添加し、さらに第Ia族元素化合物である硼
酸ナトリウム無水物(Na2 4 7 )を1重量%(N
a元素換算で0.23重量%)添加して、さらにエタノ
ールとn−ブタノールとの混合溶媒を添加し、ボールミ
ルで24時間混合しスラリー状の混合体を得た。このス
ラリー状混合体にアクリル系バインダーを添加し、さら
に24時間混合した後に、乾燥させ、通篩後プレス成形
して基板成形体を形成した。さらに得られた基板成形体
を窒素気流中で温度500℃で1時間脱脂した後に、常
圧窒素雰囲気中にて1650℃および1750℃でそれ
ぞれ5時間焼成し、窒化アルミニウム焼結体から成る実
施例1〜2に係るAlN焼結体を調製した。
Examples 1 to 4 In Examples 1 and 2, aluminum nitride powder having an average particle size of 2 μm produced by the aluminum oxide reduction method was used, and yttrium oxide (Y) as a group IIIa element compound was used.
2 O 3 ) was added as a sintering aid in an amount of 5% by weight (3.9% by weight in terms of Y element), and 1% by weight of anhydrous sodium borate (Na 2 B 4 O 7 ) which is a Group Ia element compound. % (N
0.23% by weight in terms of element a) was added, and a mixed solvent of ethanol and n-butanol was further added, and mixed by a ball mill for 24 hours to obtain a slurry-like mixture. An acrylic binder was added to the slurry mixture, and the mixture was further mixed for 24 hours, dried, sieved and press-molded to form a substrate molded body. Further, the obtained substrate compact was degreased in a nitrogen stream at a temperature of 500 ° C. for 1 hour and then fired at 1650 ° C. and 1750 ° C. for 5 hours in a nitrogen atmosphere at atmospheric pressure to obtain an aluminum nitride sintered body. The AlN sintered bodies according to 1-2 were prepared.

【0026】また実施例3〜4として、実施例1で使用
した窒化アルミニウム粉末に対して、第Ia族元素化合
物である硼酸ナトリウム無水物(Na2 4 7 )を
0.4重量%(Na元素換算で0.09重量%)添加
し、第IIa族元素化合物である酸化カルシウム(Ca
O)を2重量%(Ca元素換算で1.4重量%)焼結助
剤として添加した後は、実施例1と同一条件で混合、成
形を行ない、同一寸法の成形体を多数調製した。そし
て、得られた成形体を実施例1と同一条件で脱脂し、さ
らに温度1650℃および1750℃でそれぞれ5時間
焼成し、実施例3〜4に係るAlN焼結体を調製した。
In Examples 3 to 4, 0.4% by weight of sodium borate anhydrous (Na 2 B 4 O 7 ) which is a Group Ia element compound was added to the aluminum nitride powder used in Example 1. 0.09% by weight (calculated as Na element) is added, and calcium oxide (Ca
After adding 2% by weight (O) as a sintering aid (1.4% by weight in terms of Ca element), the mixture was mixed and molded under the same conditions as in Example 1 to prepare a large number of compacts of the same size. Then, the obtained molded body was degreased under the same conditions as in Example 1, and further fired at a temperature of 1650 ° C. and 1750 ° C. for 5 hours to prepare AlN sintered bodies according to Examples 3 to 4.

【0027】比較例1〜4 一方、比較例1〜3として実施例1において使用した窒
化アルミニウム粉末に対して、第 IIIa族元素化合物で
あるY2 3 のみを5.0重量%(Y元素換算で3.9
重量%)を焼結助剤として添加した原料混合体を実施例
1と同一条件で混合、成形、脱脂した後に、得られた成
形体を3群に分け、それぞれ1650℃、1750℃、
1800℃の3通りの温度条件で5時間焼成することに
より、比較例1〜3のAlN焼結体を調製した。また比
較例4として、CaOのみを2.0重量%添加し、温度
1650℃で焼成して同様にAlN焼結体を調製した。
Comparative Examples 1 to 4 On the other hand, with respect to the aluminum nitride powder used in Example 1 as Comparative Examples 1 to 3, only 5.0% by weight of the group IIIa element compound Y 2 O 3 (Y element) was used. 3.9 in conversion
%) As a sintering aid was mixed under the same conditions as in Example 1, molded and degreased, and the resulting molded bodies were divided into three groups, 1650 ° C. and 1750 ° C., respectively.
The AlN sintered bodies of Comparative Examples 1 to 3 were prepared by firing for 5 hours under three temperature conditions of 1800 ° C. Further, as Comparative Example 4, only 2.0% by weight of CaO was added and fired at a temperature of 1650 ° C. to similarly prepare an AlN sintered body.

【0028】こうして調製した実施例1〜4および比較
例1〜4に係るAlN焼結体の焼結性および放熱特性を
評価するために、それぞれ焼結体の密度および熱伝導率
を測定し、下記表1に示す結果を得た。
In order to evaluate the sinterability and heat dissipation characteristics of the AlN sintered bodies according to Examples 1 to 4 and Comparative Examples 1 to 4 thus prepared, the density and the thermal conductivity of the sintered bodies were measured, The results shown in Table 1 below were obtained.

【0029】[0029]

【表1】 [Table 1]

【0030】表1に示す結果から明らかなように、実施
例1〜4に係るAlN焼結体によれば、原料AlN粉末
に対して第 IIIa族元素化合物または第IIa族元素化合
物である従来の焼結助剤に加えて、液相化を促進する第
Ia族元素化合物を添加しているため、従来より低い焼
結温度で焼成した場合においても、充分に密度が上り、
かつ熱伝導率が大幅に向上したAlN焼結体が得られ
た。
As is clear from the results shown in Table 1, according to the AlN sintered bodies of Examples 1 to 4, the conventional AlN powders of the group IIIa element compound or the group IIa element compound of the conventional AlN powder were used. In addition to the sintering aid, since the Group Ia element compound that promotes liquid phase is added, the density is sufficiently increased even when firing at a lower sintering temperature than before,
Moreover, an AlN sintered body having a significantly improved thermal conductivity was obtained.

【0031】一方、比較例1〜2,4のように第Ia族
元素を添加せずに従来より低い温度で焼成した焼結体で
は、緻密化が充分に進行せず熱伝導率も相対的に低下し
てしまう。
On the other hand, in the sintered bodies which were fired at a lower temperature than the conventional one without adding the group Ia element like Comparative Examples 1 to 2 and 4, the densification did not proceed sufficiently and the thermal conductivity was relatively high. Will fall to.

【0032】[0032]

【発明の効果】以上説明の通り本発明に係る高熱伝導性
セラミックスおよびその製造方法によれば、窒化アルミ
ニウム原料粉末に対して、第IIa族元素および/または
第 IIIa族元素またはその化合物を添加するとともに、
液相化を促進する第Ia族元素を添加しているため、従
来より低い焼結温度で焼成した場合においても密度が上
り、かつ熱伝導率が大幅に改善された高熱伝導性セラミ
ックスが得られる。
As described above, according to the high thermal conductivity ceramics and the method for producing the same according to the present invention, the group IIa element and / or the group IIIa element or the compound thereof is added to the aluminum nitride raw material powder. With
Since the Group Ia element that promotes liquefaction is added, it is possible to obtain a high thermal conductive ceramics having a high density and a significantly improved thermal conductivity even when fired at a lower sintering temperature than before. ..

【0033】したがって、製造工程が簡素で容易になり
製造コストの低減をも図ることが可能となるとともに、
放熱特性に優れたセラミックス回路基板等を安価に提供
することができる。
Therefore, the manufacturing process is simple and easy, and the manufacturing cost can be reduced.
It is possible to inexpensively provide a ceramic circuit board or the like having excellent heat dissipation characteristics.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 窒化アルミニウム粉末に対して周期律表
第Ia族元素またはその化合物と、第 IIIa族および第
IIa族の少なくとも一方の元素またはその化合物とを添
加した混合体を成形焼結して形成したことを特徴とする
高熱伝導性セラミックス。
1. An aluminum nitride powder, a group Ia element of the periodic table or a compound thereof, a group IIIa group and a group IIIa group thereof.
A high thermal conductive ceramics characterized by being formed by sintering a mixture to which at least one element of Group IIa or its compound is added.
【請求項2】 混合体に含まれる周期律表第Ia族元素
の含有量が元素換算で0.05〜3重量%であることを
特徴とする請求項1記載の高熱伝導性セラミックス。
2. The high thermal conductive ceramics according to claim 1, wherein the content of the Group Ia element of the periodic table contained in the mixture is 0.05 to 3% by weight in terms of element.
【請求項3】 混合体に含まれる周期律表第 IIIa族元
素および第IIa族元素の少なくとも一方の元素の含有量
が元素換算で0.5〜7重量%であることを特徴とする
請求項1記載の高熱伝導性セラミックス。
3. The content of at least one of Group IIIa element and Group IIa element of the periodic table contained in the mixture is 0.5 to 7% by weight in terms of element. The high thermal conductive ceramics described in 1.
【請求項4】 窒化アルミニウム粉末に対して周期律表
第Ia族元素を0.05〜3重量%と、第 IIIa族元素
および第IIa族元素の少なくとも一方の元素を0.5〜
7重量%添加して均一に混合した後、成形体を形成し、
この成形体を非酸化性雰囲気中で温度1600〜175
0℃で焼成することを特徴とする高熱伝導性セラミック
スの製造方法。
4. An aluminum nitride powder containing 0.05 to 3% by weight of a Group Ia element of the periodic table and 0.5 to at least one of a Group IIIa element and a Group IIa element.
After adding 7% by weight and mixing uniformly, a molded body is formed,
This molded body is heated at a temperature of 1600 to 175 in a non-oxidizing atmosphere.
A method for producing a high thermal conductive ceramics, which comprises firing at 0 ° C.
JP3269374A 1991-10-17 1991-10-17 Highly heat conductive ceramics and their production Pending JPH05105524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3269374A JPH05105524A (en) 1991-10-17 1991-10-17 Highly heat conductive ceramics and their production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3269374A JPH05105524A (en) 1991-10-17 1991-10-17 Highly heat conductive ceramics and their production

Publications (1)

Publication Number Publication Date
JPH05105524A true JPH05105524A (en) 1993-04-27

Family

ID=17471514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3269374A Pending JPH05105524A (en) 1991-10-17 1991-10-17 Highly heat conductive ceramics and their production

Country Status (1)

Country Link
JP (1) JPH05105524A (en)

Similar Documents

Publication Publication Date Title
JP3100871B2 (en) Aluminum nitride sintered body
JP2899893B2 (en) Aluminum nitride sintered body and method for producing the same
JPH05105524A (en) Highly heat conductive ceramics and their production
JP2666942B2 (en) Aluminum nitride sintered body
JPH0881267A (en) Aluminum nitride sintered compact, its production, aluminum nitride circuit board and its production
JP2742600B2 (en) Aluminum nitride sintered body and method for producing the same
JPS635352B2 (en)
JPH075378B2 (en) Black aluminum nitride sintered body and manufacturing method thereof
JP2876521B2 (en) Manufacturing method of aluminum nitride sintered body
JP2541150B2 (en) Aluminum nitride sintered body
JPS61286267A (en) Manufacture of aluminum nitride base sintered body
JPH0641390B2 (en) High thermal conductivity aluminum nitride sintered body and manufacturing method thereof
JPH07165472A (en) Radiating base
JPH0678195B2 (en) Aluminum nitride sintered body
JP2704194B2 (en) Black aluminum nitride sintered body
JP2024053480A (en) Method for producing sintered silicon nitride
JPH11180774A (en) Silicon nitride-base heat radiating member and its production
JPS6236066A (en) Silicon carbide base sintered body and manufacture
KR20230037070A (en) Composition for manufacturing AlN ceramics including Sc2O3 as sintering aid and the AlN ceramics and the manufacturing method of the same
JPS63222074A (en) Manufacture of aluminum nitride sintered body
JP2001151575A (en) Method of producing aluminum nitride sintered compact
JPH02107569A (en) Production of aluminum nitride sintered body
JPH0566339B2 (en)
JPS6369761A (en) Manufacture of aluminum nitride base sintered body
JPH06172037A (en) Production of aluminum nitride sintered compact