JPS63239147A - Production of superconductive material - Google Patents
Production of superconductive materialInfo
- Publication number
- JPS63239147A JPS63239147A JP62073284A JP7328487A JPS63239147A JP S63239147 A JPS63239147 A JP S63239147A JP 62073284 A JP62073284 A JP 62073284A JP 7328487 A JP7328487 A JP 7328487A JP S63239147 A JPS63239147 A JP S63239147A
- Authority
- JP
- Japan
- Prior art keywords
- particle size
- sintering
- superconducting
- raw material
- compd
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 24
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 238000005245 sintering Methods 0.000 claims abstract description 18
- 239000002245 particle Substances 0.000 claims abstract description 17
- 239000000843 powder Substances 0.000 claims abstract description 17
- 230000000737 periodic effect Effects 0.000 claims abstract description 5
- 239000002994 raw material Substances 0.000 claims description 11
- 150000001875 compounds Chemical class 0.000 claims description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- 239000007858 starting material Substances 0.000 abstract 3
- 238000000034 method Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
この発明は、高い臨界温度を持つセラミックス系超電導
材料の製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a ceramic superconducting material having a high critical temperature.
[従来の技術]
最近脚光を浴びているセラミックス系超電導材料は、そ
の構成元素の酸化物粉末を高温度下で焼結させ、粉末粒
子同士の界面に臨界温度の高い超電導層を生成したもの
である。このとき、用いられる原材料粉末は、一般的に
は平均粒径1μm以上のものである。[Prior Art] Ceramic superconducting materials, which have been in the spotlight recently, are made by sintering oxide powders of their constituent elements at high temperatures to form superconducting layers with high critical temperatures at the interfaces between the powder particles. be. At this time, the raw material powder used generally has an average particle size of 1 μm or more.
[発明が解決しようとする問題点]
上述のように原材料粉末の平均粒径が1μ1以上である
ため、均一混合が困難であるとともに、粒子同士の界面
の表面積が少ないので焼結体全体に占める超電導層の割
合が低かった。また、焼結時の構成元素の拡散が超電導
層生成の律速となるので、焼結温度を高く、かつ、焼結
時間を長くしたり、焼結回数を増加させる必要がへった
。さらに、焼結温度が高くなるため、その超電導材料を
シースする材料を見出すのが困難であった。[Problems to be solved by the invention] As mentioned above, since the average particle size of the raw material powder is 1μ1 or more, uniform mixing is difficult, and the surface area of the interface between particles is small, so it occupies less than the entire sintered body. The proportion of superconducting layer was low. Furthermore, since the diffusion of constituent elements during sintering is the rate-determining factor for superconducting layer formation, it is no longer necessary to raise the sintering temperature, lengthen the sintering time, or increase the number of times of sintering. Furthermore, because of the high sintering temperatures, it has been difficult to find materials to sheath the superconducting material.
そこで、この発明は、上記問題点を解消するためになさ
れたもので、均一な超電導材料を1りることができる超
電導材料の製造方法を提供することを目的とする。Therefore, the present invention was made to solve the above problems, and an object of the present invention is to provide a method for manufacturing a superconducting material that can produce a uniform superconducting material.
[問題点を解決するための手段]
この発明に従った超電導材料の製造方法は、原材料粉末
を焼結することによって超電導材料を製造する方法にお
いて、その原材料粉末の平均粒径が1μm以下であるこ
とを特徴とするものである。[Means for Solving the Problems] A method for manufacturing a superconducting material according to the present invention is a method for manufacturing a superconducting material by sintering raw material powder, wherein the average particle size of the raw material powder is 1 μm or less. It is characterized by this.
[発明の作用効果]
本発明において、使用する原材料粉末の平均粒径を1μ
m以下、好ましくは0.5μm以下にすることにより以
下に述べる作用がある。[Operation and Effect of the Invention] In the present invention, the average particle size of the raw material powder used is 1 μm.
By setting the thickness to less than m, preferably less than 0.5 μm, the following effects can be obtained.
すなわら、均一混合が容易になるとともに、粒子同士の
界面の表面積が増加するため生成される超電導層の割合
が増加する。イの結果、焼結体全体を超電導層とするこ
とが可能となり、均一な性質を示す超電導材料を生成す
ることが可能となる。In other words, uniform mixing becomes easier, and the surface area of the interface between particles increases, so the proportion of the superconducting layer produced increases. As a result of (a), it becomes possible to make the entire sintered body a superconducting layer, and it becomes possible to produce a superconducting material exhibiting uniform properties.
それにより高い通電電流を1qることができる。また、
焼結時において構成元素の拡散距離が短くてすむので拡
散反応が容易となる。さらに粒子同士の界面エネルギが
高いため、低いエネルギで焼結反応が進みやすい。それ
ゆえに焼結湿度を低くすること、焼結時間を短くするこ
と、焼結回数を減らすことが可能となり、製造工程のコ
スト削減を図ることができる。焼結温度が低くなるので
iB電導材料のシース材料として使用可能な材料の種類
が増加する。As a result, a high current of 1q can be applied. Also,
Since the diffusion distance of the constituent elements during sintering is short, the diffusion reaction is facilitated. Furthermore, since the interfacial energy between particles is high, the sintering reaction tends to proceed at low energy levels. Therefore, it is possible to lower the sintering humidity, shorten the sintering time, and reduce the number of times of sintering, thereby reducing the cost of the manufacturing process. The lower sintering temperature increases the variety of materials that can be used as the sheath material for the iB conductive material.
以上説明したように、本発明によれば高均一かつ高品質
な超電導材料を1りることができるので、高臨界温度を
右する超電導材料の!1造に用いるとさらに効果がある
。好ましくは、原材料粉末としては以下の化合物から構
成されればよい。それは、周期率表中の■a族元素のう
ちの少なくとも1種と酸素を含む化合物、周期律表中の
1lla族元素のうちの少なくとも1種と酸素を含む化
合物、銅と酸素を含む化合物で、原材gf5)末として
はそれらの化合物をそれぞれ1種以上含んだものからな
ればよい。As explained above, according to the present invention, it is possible to produce a highly uniform and high quality superconducting material. It is even more effective when used in one construction. Preferably, the raw material powder may be composed of the following compounds. It is a compound containing oxygen and at least one of the elements of Group A in the periodic table, a compound containing oxygen and at least one of the elements of Group Illa in the periodic table, and a compound containing copper and oxygen. , the raw material gf5) powder may contain one or more of these compounds.
[実施例]
原材料粉末として、Y20a 、Ba Co8、CuO
からなる各粉末を用いた。各粉末の平均粒径が1.5μ
mのものく比較例)と、0.5μmのもの(実施例)を
用いて、それぞれ上記各化合物の粉末を同一比率で混合
焼結して超電導材料からなる焼結体を作成した。得られ
た2ffの超電導材料の臨界温度Tcを測定したところ
、第1図(実施例)および第2図(比較例)で示すよう
に温度−電気抵抗の関係は平均粒径0.5μmのものを
用いた場合の方が完全に超電導になる温度が高く、かつ
常°電導−超電導の遷移温度幅も小さくなることが判明
した。これにより平均粒径が小さい方が均質かつ高品質
の材料ができていると考えられる。[Example] Raw material powders include Y20a, BaCo8, CuO
Each powder consisting of was used. The average particle size of each powder is 1.5μ
A sintered body made of a superconducting material was prepared by mixing and sintering the powders of the above-mentioned compounds at the same ratio using a sample with a diameter of 0.5 μm (comparative example) and a sample with a diameter of 0.5 μm (example). When the critical temperature Tc of the obtained 2ff superconducting material was measured, as shown in Figure 1 (Example) and Figure 2 (Comparative Example), the relationship between temperature and electrical resistance was that of the average particle size of 0.5 μm. It was found that the temperature at which the material becomes completely superconducting is higher when the material is used, and the transition temperature range between normal conductivity and superconductivity is also smaller. As a result, it is thought that the smaller the average particle size, the more homogeneous and high quality material is produced.
さらに平均粒径0.5μmの混合粉末の焼結温度を平均
粒径1.5μmのものよりも50℃低くしても、温度−
電気抵抗の関係が似た挙動を示すことが判明した。これ
により類似の特性を得るための焼結温度は平均粒径が小
さい方が低いということが考えられる。Furthermore, even if the sintering temperature of a mixed powder with an average particle size of 0.5 μm is 50°C lower than that of a mixed powder with an average particle size of 1.5 μm, the temperature -
It was found that the electrical resistance relationship exhibits similar behavior. This suggests that the sintering temperature for obtaining similar properties is lower when the average particle size is smaller.
第1図は、実施例において得られた超電導材料の温度−
電気抵抗の関係を示す図である。第2図は、比較例にお
いて得られた超電導材料の温度−電気抵抗の関係を示す
図である。
温湿(k)Figure 1 shows the temperature -
FIG. 3 is a diagram showing the relationship of electrical resistance. FIG. 2 is a diagram showing the temperature-electrical resistance relationship of the superconducting material obtained in the comparative example. Temperature and humidity (k)
Claims (2)
製造する方法において、 前記原材料粉末の平均粒径が1μm以下であることを特
徴とする超電導材料の製造方法。(1) A method for producing a superconducting material by sintering raw material powder, characterized in that the raw material powder has an average particle size of 1 μm or less.
ちの少なくとも1種と酸素を含む化合物、周期律表中の
IIIa族元素のうちの少なくとも1種と酸素を含む化合
物、銅と酸素を含む化合物である、特許請求の範囲第1
項記載の超電導材料の製造方法。(2) The raw material powder is a compound containing at least one group IIa element in the periodic table and oxygen;
Claim 1 is a compound containing at least one group IIIa element and oxygen, or a compound containing copper and oxygen.
A method for producing a superconducting material as described in Section 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62073284A JP2565894B2 (en) | 1987-03-26 | 1987-03-26 | Method for producing oxide superconducting material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62073284A JP2565894B2 (en) | 1987-03-26 | 1987-03-26 | Method for producing oxide superconducting material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63239147A true JPS63239147A (en) | 1988-10-05 |
JP2565894B2 JP2565894B2 (en) | 1996-12-18 |
Family
ID=13513691
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62073284A Expired - Lifetime JP2565894B2 (en) | 1987-03-26 | 1987-03-26 | Method for producing oxide superconducting material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2565894B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6483516A (en) * | 1987-09-25 | 1989-03-29 | Ube Industries | Superconducting ceramic powder |
JPH0397655A (en) * | 1989-09-07 | 1991-04-23 | Dowa Mining Co Ltd | Production of sintered body of perovskite type copper-containing oxide superconductor |
JPH03159953A (en) * | 1989-08-28 | 1991-07-09 | American Teleph & Telegr Co <Att> | Formation of superconducting ceramic body |
-
1987
- 1987-03-26 JP JP62073284A patent/JP2565894B2/en not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
PHYSICAL REVIEW LETTERS * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6483516A (en) * | 1987-09-25 | 1989-03-29 | Ube Industries | Superconducting ceramic powder |
JPH03159953A (en) * | 1989-08-28 | 1991-07-09 | American Teleph & Telegr Co <Att> | Formation of superconducting ceramic body |
JPH0397655A (en) * | 1989-09-07 | 1991-04-23 | Dowa Mining Co Ltd | Production of sintered body of perovskite type copper-containing oxide superconductor |
Also Published As
Publication number | Publication date |
---|---|
JP2565894B2 (en) | 1996-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS63239147A (en) | Production of superconductive material | |
EP0376981A4 (en) | Machine workable, thermally conductive, high strength, ceramic superconducting composite | |
JP2803823B2 (en) | Method for producing T1-based oxide superconductor | |
JP2727565B2 (en) | Superconductor manufacturing method | |
JPH01290530A (en) | Multiple oxides superconducting material and production thereof | |
JPH0518778B2 (en) | ||
JP2634187B2 (en) | Method for producing thallium-based oxide superconductor | |
SU1034548A1 (en) | Device for many josephson junctions and method of manufacturing same | |
JPS63310517A (en) | Manufacture of superconductor wire material | |
JPH02177216A (en) | Manufacture of superconducting wire rod | |
JPH04108604A (en) | Production of oxide superconductor | |
JPH01258314A (en) | Product containing ceramic superconductor and its manufacture | |
JPH03165018A (en) | Manufacture of ceramic capacitor having varistor characteristic | |
JPH02207422A (en) | Manufacture of oxide superconducting wire rod | |
Sakurai et al. | N-type oxide superconductor represented by the formula (Nd x (Ce y L z) 2 CuO 4-d where L is La, Mg or a mixture of alakaline earth elements | |
JPH01212225A (en) | Oxide superconducting material | |
JPH01111764A (en) | Superconducting ceramic composition | |
JPH01176268A (en) | Production of high-temperature superconductor | |
JPH02120226A (en) | Superconducting material of oxide | |
JPH01164762A (en) | Compound oxide type superconducting sintered body | |
JPH01278420A (en) | Superconductor and production thereof | |
JPH03252350A (en) | Production of superconductive oxide paste and oxide superconductor | |
JPH08217442A (en) | Carbon-containing metal oxide wire material and its production | |
JPS63308814A (en) | Forming method for oxide superconductor | |
JPH09263447A (en) | Superconductive precursor composite powder and manufacture of superconductor therefrom |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071003 Year of fee payment: 11 |