JPH0274557A - Pottery device - Google Patents

Pottery device

Info

Publication number
JPH0274557A
JPH0274557A JP63300103A JP30010388A JPH0274557A JP H0274557 A JPH0274557 A JP H0274557A JP 63300103 A JP63300103 A JP 63300103A JP 30010388 A JP30010388 A JP 30010388A JP H0274557 A JPH0274557 A JP H0274557A
Authority
JP
Japan
Prior art keywords
superconducting
crystal structure
compound oxide
perovskite crystal
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63300103A
Other languages
Japanese (ja)
Inventor
Masahisa Miura
三浦 正久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP63300103A priority Critical patent/JPH0274557A/en
Publication of JPH0274557A publication Critical patent/JPH0274557A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To make a ceramics show superconductivity at high temperature by blending a compound oxide having a superconducting composition of specific three kinds of oxides with a radioactive element compound comprising the same element to form perovskite crystal structure. CONSTITUTION:(A) A metallic compound oxide composition shown by the formula LaBaSrCu3O7-x, (B) a metallic compound oxide composition shown by the formula BiBaSrCu3O7-x and (C) BiSr2Cu3O7-x (x=1-6 integer) are blended with >=0.1% radioactive element comprising the same element as that of the raw materials of the compositions such as Sr<90>, respectively and burnt under high pressure at high temperature to give ceramics of perovskite crystal structure showing superconductivity.

Description

【発明の詳細な説明】 本発明は特殊陶磁器体(超電導体)に関する。従来より
陶磁体(セラミックス)等は、全て絶縁体と考えられて
いたが、本発明に係る特殊陶磁体組成物に限り、電気伝
導のtぐれfコ性質を得する超電導体となることを発見
発明されるに至ったものである。現在最高の臨界温度で
力く超電導物質として認められているNbtGeである
が、臨界温度は23、GKである。今日これ以上の高温
でのく超電導系材は全く発見されていない実情である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a special ceramic body (superconductor). Traditionally, all ceramics have been considered to be insulators, but it was discovered and invented that only the special ceramic composition according to the present invention becomes a superconductor that obtains the characteristics of electrical conduction. This is what led to it being done. NbtGe, which is currently recognized as a superconducting material with the highest critical temperature, has a critical temperature of 23 GK. The current situation is that no superconducting material that can withstand higher temperatures than this has been discovered.

本発明は、上記の如く公知されたN b、G eより、
乙かに高温で超電導となる超電導素材を供するにのる。
The present invention is based on the well-known N b and Ge as described above.
The goal is to provide superconducting materials that become superconducting at high temperatures.

特殊陶磁体素材原料として、バリウム、(又はヒスマス
)ランタン、ストロンチウム、銅の酸化物等(各種結晶
構造を呈する混合体)を、これら物質を構成する原料の
中に、これらの物質と同一元素からなる放射性同位元素
を配合して、高圧、高温焼結して本発明に至ったもので
ある。
Barium, lanthanum (or hismuth), strontium, copper oxides, etc. (mixtures exhibiting various crystal structures) are used as raw materials for special ceramic materials. The present invention was achieved by blending radioactive isotopes and sintering at high pressure and high temperature.

本発明は一般式 ■L aB aS rCU307−X
又は ■B iB aS rCLI:+07−X。
The present invention is based on the general formula ■L aBaS rCU307-X
or ■B iB aS rCLI: +07-X.

■B +S rtc U307  X。■B + S rtc U307 X.

(但し X=1〜6整数値を示す) でなる組成物を主体とし、更に、これら組成物原料と同
一元素からなる放射性同位元素(例えばSr 90等)
を、これら組成物原料の中に、夫々、0.1%以上以上
配合した上、これら混合素材を高圧高温焼結したところ
、ペロプスカイト結晶構造セラミックスとなる。但し、
上記組成吟料の内のSrには5rs0(放射性同位元素
)を最少FA、0.1%以上最大限30%以下を配合す
るものとする。尚、5rl10に代えCo”を配合割合
で最大値10%迄とする置換えも可能である。又、B 
arJ) filを減縮して、これに代えてSr(又は
CO等)に置換えできる。
(However, X = 1 to 6 integer value) Mainly composed of a composition consisting of the following, and furthermore, a radioactive isotope consisting of the same element as the raw material of these compositions (for example, Sr 90 etc.)
are mixed into these composition raw materials in an amount of 0.1% or more, respectively, and the mixed materials are sintered at high pressure and high temperature to obtain perovskite crystal structure ceramics. however,
Among the above composition materials, Sr shall contain 5rs0 (radioactive isotope) with a minimum FA of 0.1% or more and a maximum of 30% or less. In addition, it is also possible to replace 5rl10 with Co'' at a maximum blending ratio of 10%.Also, B
arJ) fil can be reduced and replaced with Sr (or CO, etc.).

尚、La、 Bi、 Cu、 Ba等の内に同種元素の
放射性同位元素を増量配合した時超電導臨界温度が、下
記実施例よりも上昇することが判明している。
It has been found that when an increased amount of radioactive isotope of the same type of elements as La, Bi, Cu, Ba, etc. is added, the superconducting critical temperature increases more than in the following examples.

上記一般式で表わされる放射性同位元素を含む組成物か
らなるペロプスカイト型結晶構造となる陶磁体である本
発明物質は、従来知らノ;でいる超電導金属等より遥か
に高温で超電導となる。以下実施例から本発明を具体的
に説明する。
The material of the present invention, which is a ceramic material having a perovskite crystal structure made of a composition containing a radioactive isotope represented by the above general formula, becomes superconducting at a much higher temperature than conventionally known superconducting metals. The present invention will be specifically explained below using Examples.

実施例(1) 一般式L aB aS rCu307− xて表示され
た混合素材の中のSrにS r80を5%配合しfこ場
合の例La1Ot、BaC0z、5rCOt、(又は5
rO)及び、CuOの各粉抹をメノウ乳鉢で混合しく但
し、SrにはS 、goを5%配合する)ルツボに入れ
約1000℃約12時間反応させた上、これを粉砕し、
粉抹状にした上、約1kg/cm’で加圧して、ベレッ
ト状にしたしのを、炉中で約1000°Cで約4〜6時
間焼結した結果、ペロブスカイト型結晶構造となること
が判った。これを電気抵抗測定したところ、本資料は約
90に以下で超電導となることが判明している。
Example (1) 5% Sr80 is blended with Sr in the mixed material represented by the general formula L aBaS rCu307- x Example of this case La1Ot, BaC0z, 5rCOt, (or 5
Mix powders of rO) and CuO in an agate mortar (however, 5% of S and go are added to Sr) in a crucible, react at about 1000°C for about 12 hours, and then crush this.
After grinding into powder and pressurizing at about 1 kg/cm' to form a pellet, the shinobi is sintered in a furnace at about 1000°C for about 4 to 6 hours, resulting in a perovskite crystal structure. It turns out. When the electrical resistance of this material was measured, it was found that this material becomes superconducting at about 90% or less.

実施例(2) 一般式B iB aS rC+g07− Xで表示され
た素材を上記実施例(+)と同一条件下で、同一方法で
焼結した時、上記実施例(1)と同じにべロブスカイh
型結晶構造となった。この陶磁体を電気抵抗測定したと
ころ、本資料は約120に以下で超電導となることが判
明した。
Example (2) When a material represented by the general formula B iB aS rC + g07- h
It became a type crystal structure. When the electrical resistance of this ceramic material was measured, it was found that this material becomes superconducting at about 120 or less.

実施例(3) 一般式B iS rxc uzo ?−y、て表示され
た素(オを上記(1)と同一条件下で同一方法で焼結し
た場合ら上記実施例(1)と同しペロブスカイト型結晶
構造となり、電気抵抗測定の結果は約140にで超電導
となった。
Example (3) General formula B iS rxc uzo ? -y, When sintering the element (O) indicated as (y) under the same conditions and in the same method as in (1) above, it becomes the same perovskite crystal structure as in Example (1) above, and the electrical resistance measurement results are approximately It became superconducting at 140.

その余の実施例(4) 上記(1)、(2)、(3)の実施例の素手オ原料中に
S rso等放射性同位元素を全く配合しない場合は夫
々より低温の約25に以上で超電導となることら判明し
ている。
Other Examples (4) When no radioactive isotope such as S rso is added to the bare metal raw materials of Examples (1), (2), and (3) above, the temperature at a lower temperature of about 25 or higher is obtained. It has been proven that it is superconducting.

(本発明の効果) 本発明に係る内磁体超電導性材料は、従来の金属超電導
体のN btG e等より遥か高温で超電導となるため
超電導線材としては勿論、電気産業全般に及ばずトリ益
等は計り知れないものがある。
(Effects of the present invention) The inner magnetic superconducting material according to the present invention becomes superconducting at a much higher temperature than conventional metal superconductors such as N btG e, so it is not suitable for use as a superconducting wire material, but it is not suitable for the electrical industry in general, and has no utility in the industry. There is something immeasurable about it.

Claims (1)

【特許請求の範囲】  一般式(1)LaBaSrCu_3O_7−x,又は
(2)BiBaSrCu_3O_7−x,(3)BiS
r_2Cu_3O_7−x, (但しx=1〜6整数値を示す) でなる組成物と、これらの同一元素からなる放射性同位
元素を、夫々、0.1%以上配合したペロブスカイト型
結晶構造体で、底温冷却下超電導性となることを特徴と
した超電導性陶磁器。
[Claims] General formula (1) LaBaSrCu_3O_7-x, or (2) BiBaSrCu_3O_7-x, (3) BiS
r_2Cu_3O_7-x, (where x represents an integer value of 1 to 6) and a perovskite-type crystal structure containing 0.1% or more of each of these same elements as radioactive isotopes. Superconducting ceramics characterized by becoming superconducting under warm cooling.
JP63300103A 1987-11-30 1988-11-28 Pottery device Pending JPH0274557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63300103A JPH0274557A (en) 1987-11-30 1988-11-28 Pottery device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP30204387 1987-11-30
JP62-302043 1987-11-30
JP62-315827 1987-12-14
JP63300103A JPH0274557A (en) 1987-11-30 1988-11-28 Pottery device

Publications (1)

Publication Number Publication Date
JPH0274557A true JPH0274557A (en) 1990-03-14

Family

ID=26562209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63300103A Pending JPH0274557A (en) 1987-11-30 1988-11-28 Pottery device

Country Status (1)

Country Link
JP (1) JPH0274557A (en)

Similar Documents

Publication Publication Date Title
US5145831A (en) High-tc oxide superconductor and method for producing the same
JPH0274557A (en) Pottery device
JP2854338B2 (en) Copper oxide superconductor
JPH03242322A (en) Production of oxide superconductor
JP2593475B2 (en) Oxide superconductor
JP2698689B2 (en) Oxide superconducting material and manufacturing method thereof
EP0286372A2 (en) Oxide superconductor and manufacturing method thereof
RU2064909C1 (en) Method of producing superconducting oxide material based on yttrium-barium cuprite
JP2637617B2 (en) Manufacturing method of superconducting material
JP2778100B2 (en) Oxide superconducting material and method for producing the same
JP2507538B2 (en) Method for manufacturing oxide superconductor
JPH01275433A (en) Multiple oxide superconducting material and production thereof
JP2556095B2 (en) Superconductor manufacturing method
JPS63248721A (en) Superconductor
JPH02267154A (en) Ceramic superconductive body
JPH01111764A (en) Superconducting ceramic composition
Sakurai et al. N-type oxide superconductor represented by the formula (Nd x (Ce y L z) 2 CuO 4-d where L is La, Mg or a mixture of alakaline earth elements
JPH01160855A (en) Production of superconductor
JPH01212227A (en) Oxide superconducting material
JPH01172259A (en) Production of ceramic superconducting molded body
JPH03146416A (en) Oxide superconductor
JPH01301512A (en) Oxide superconductor with high critical current density
JPH01100018A (en) Preparation of high-temperature superconducting ceramic raw powder
JPH0292826A (en) Oxide superconductor
JPH02129022A (en) Oxide superconducting material