JPH01111764A - Superconducting ceramic composition - Google Patents

Superconducting ceramic composition

Info

Publication number
JPH01111764A
JPH01111764A JP62267850A JP26785087A JPH01111764A JP H01111764 A JPH01111764 A JP H01111764A JP 62267850 A JP62267850 A JP 62267850A JP 26785087 A JP26785087 A JP 26785087A JP H01111764 A JPH01111764 A JP H01111764A
Authority
JP
Japan
Prior art keywords
compsn
temperature
ceramic composition
composition
superconducting ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62267850A
Other languages
Japanese (ja)
Inventor
Toyosaku Sato
佐藤 豊作
Yoichi Nishioka
洋一 西岡
▲あゆ▼沢 一年
Kazutoshi Ayusawa
Toru Arai
徹 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP62267850A priority Critical patent/JPH01111764A/en
Publication of JPH01111764A publication Critical patent/JPH01111764A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To produce the above compsn. capable of exhibiting superconductivity at a temp. above the b.p. of liquid N2 by adding a specified amt. of MnO to an Ho-Ba-Cu-O type superconducting compsn. expressed by a specified compositional formula. CONSTITUTION:Ho2O3, BaCO3, and CuO each having about 99.9% purity are weighed so as to obtain a charge compsn. corresponding to HoBa2Cu3OY (6<=Y<=7), and <=5wt.% (expressed in terms of MnO) MnCO3 having high purity is added to the compsn. and mixed well in an agate mortar. The powdery mixture is then calcined provisionally at about 900 deg.C for about 5hr in the air, and the product is molded under about 1-3t/cm<2> to a disc-shaped molded body. The molded body is calcined further at about 950 deg.C for about 20hr in the air to produce thus the ceramic compsn. By this method, an Ho-Ba-Cu-O type superconducting ceramic compsn. capable of exhibiting superconductivity at least a temp. of b.p. of liquid N2 (77K) and having high sinterability is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、核融合、電力発電装置、超高速コンピュー
タ用高速動作半導体素子、電線材料、強力磁石材料、加
速器、さらには医療機器等に使用される超電導セラミッ
クス組成物に関するものである。
[Detailed Description of the Invention] (Field of Industrial Application) This invention can be used in nuclear fusion, power generation equipment, high-speed operating semiconductor elements for ultra-high-speed computers, electric wire materials, strong magnetic materials, accelerators, and even medical equipment. The present invention relates to a superconducting ceramic composition.

(従来の技術) Nb(ニオブ)を含む物質等から成る従来の超電導体と
比較して、超電導現象を示す温度が高い超電導セラミッ
クス組成物についでの研寛が、最近精力的に行なわれて
いる。その理由は、高温で超電導現象が生しればそれだ
け冷却機構か簡易になり、このため、超電導現象の利点
を種々の分野へ波及させることが容易になるからである
(Prior art) Research has recently been actively conducted on superconducting ceramic compositions that exhibit a superconducting phenomenon at a higher temperature than conventional superconductors made of materials containing Nb (niobium). . The reason for this is that the higher the superconducting phenomenon occurs at high temperatures, the simpler the cooling mechanism becomes, which makes it easier to spread the benefits of the superconducting phenomenon to various fields.

このような超電導セラミックス組成物としては、例えば
文献:’Japanese Journal Of A
ppliedPhysics(ジャパニーズ ジャーナ
ル オブ アプライド フィジックス)J (Vol、
26.No、4.April。
As such a superconducting ceramic composition, for example, literature: 'Japanese Journal Of A
ppliedPhysics (Japanese Journal of Applied Physics) J (Vol.
26. No, 4. April.

1987、pp、L347− L348)に開示される
組成物が知られている。この文献では、Ha−Ba−C
u−○系セラミックスにつき記述されており、Ha :
 Ba : Cuの元素比が0.246: 0.336
 : 1 、または0.316 :0.336 : 1
の夫々の組成物において、電気抵抗が実質的に零となる
温度(臨界温度Tc)は、夫々76に或いは47にであ
った。
1987, pp. L347-L348) are known. In this document, Ha-Ba-C
It is described for u-○ series ceramics, and Ha:
The element ratio of Ba:Cu is 0.246:0.336
: 1 or 0.316 : 0.336 : 1
In each composition, the temperature at which the electrical resistance became substantially zero (critical temperature Tc) was 76 and 47, respectively.

(発明か解決しようとする問題点) しかしながら、上述した種々の組成を有する従来の超電
導セラミックス組成物が有する臨界温度Tcにおいて、
これら組成物の利用分野の拡大を図るためには、当該臨
界温度Tcを少なくとも液体窒素温度(77K)以上と
する必要が有る。即ち、超電導体を種々の分野に応用し
ようとした場合、臨界温度T。は高い程好ましく、例え
ば上述の液体窒素温度以上の温度で超電導現象が生じる
ような物質が得られれば、従来の液体ヘリウム(4,2
K) !始めとする冷却媒体に比べて、液体窒素が安価
であること等の理由から、非常に好適である。
(Problems to be Solved by the Invention) However, at the critical temperature Tc of the conventional superconducting ceramic compositions having the various compositions mentioned above,
In order to expand the field of application of these compositions, it is necessary to make the critical temperature Tc at least higher than the liquid nitrogen temperature (77K). That is, when trying to apply superconductors to various fields, the critical temperature T. The higher the temperature, the better. For example, if a substance that exhibits superconductivity at a temperature higher than the liquid nitrogen temperature mentioned above can be obtained, conventional liquid helium (4,2
K)! Compared to other cooling media, liquid nitrogen is very suitable because it is cheaper.

ざらに、セラミックス組成物の超電導体ということにな
れば、その焼結性が良いものでなくては実用に耐えない
ことは明らかである。
In general, when it comes to superconductors made of ceramic compositions, it is clear that they cannot be put to practical use unless they have good sinterability.

この発明は上述した点に鑑みなされたものであり、従っ
て、この発明の目的は、少なくとも液体窒素温度(77
K)以上の温度で超電導性を発揮し、かつ焼結性に優れ
た超電導セラミックス組成物を提供することにある。
This invention has been made in view of the above-mentioned points, and therefore, an object of the invention is to at least reduce the temperature of liquid nitrogen (77
An object of the present invention is to provide a superconducting ceramic composition that exhibits superconductivity at temperatures above K) and has excellent sinterability.

(問題点を解決するための手段) この目的の達成を図るため、この発明の超電導セラミッ
クス組成物によれば、 Ho(ホルミウム) −Ba(バリウム) −Cu(銅
)−〇(酸素)系の超電導セラミックス組成物において
、 組成式かHo8a2Cu30.(6≦Y≦7)で表され
る主成分に対して、酸化マンガンか5重量%未満添加さ
れて成る ことを特徴としでいる。
(Means for Solving the Problems) In order to achieve this object, according to the superconducting ceramic composition of the present invention, Ho (holmium) -Ba (barium) -Cu (copper) -〇 (oxygen) system In the superconducting ceramic composition, the composition formula is Ho8a2Cu30. It is characterized in that less than 5% by weight of manganese oxide is added to the main component represented by (6≦Y≦7).

(作用) この発明の超電導セラミックス組成物によれば、Ha 
−Ba −Cu−○系セラミックスに対しで、上述した
所定の範囲で酸化マンガンを添加する構成となっている
。これがため、上述した従来組成の超電導セラミックス
組成物に良好な焼結性を付与せしめ、かつ得られた組成
物が有する臨界温度Tcを液体窒素温度以上とすること
か可能となる。
(Function) According to the superconducting ceramic composition of the present invention, Ha
The structure is such that manganese oxide is added within the above-mentioned predetermined range to -Ba-Cu-○ series ceramics. Therefore, it is possible to impart good sinterability to the above-described conventional superconducting ceramic composition, and to make the critical temperature Tc of the obtained composition higher than the liquid nitrogen temperature.

(実施例) 以下、この発明の超電導セラミックス組成物の実施例に
つき説明する。
(Examples) Examples of the superconducting ceramic composition of the present invention will be described below.

裂1方ユ まず、この発明の超電導セラミックス組成物の特性評価
を行なうための実験試料を以下に説明するような製造方
法で作製した。尚、以下の説明においては、この種の組
成物の製造工程で通常行なわれでいるバインダの混合や
整粒等の工程についでは省略しで説明している。また、
以下に説明する製造方法中で述べる焼成温度、成形圧力
、焼成時間及び試料寸法またはその他の数値的条件、ざ
らに、使用薬品等は、この発明の超電導体セラミックス
を得るために好適な条件を例示したにすぎず、従って、
この発明の目的は、これら数値的条件及び使用薬品によ
ってのみ達成されるものではなく、他の好適条件の下で
あっても達成できることを理解されたい。
First, experimental samples for evaluating the characteristics of the superconducting ceramic composition of the present invention were prepared by the manufacturing method described below. In the following description, steps such as binder mixing and sizing, which are normally carried out in the manufacturing process of this type of composition, are omitted. Also,
The firing temperature, molding pressure, firing time, sample size, other numerical conditions, chemicals used, etc. described in the manufacturing method described below are examples of conditions suitable for obtaining the superconducting ceramics of the present invention. Therefore,
It should be understood that the objects of the invention are not achieved solely by these numerical conditions and chemicals used, but can also be achieved under other suitable conditions.

まず始めに、出発原料として、夫々の純度が99.9%
である酸化ホルミウム(HO203)、炭酸バリウム(
BaC03)及び酸化第二銅(Cub)を用意し、主成
分については仕込組成てHo8a2Cu30.(6≦Y
≦7)と表されるペロブスカイト組成を満足するように
秤量する。
First of all, as starting materials, the purity of each is 99.9%.
Holmium oxide (HO203), barium carbonate (
BaC03) and cupric oxide (Cub) were prepared, and the main components were prepared with a composition of Ho8a2Cu30. (6≦Y
It is weighed so as to satisfy the perovskite composition expressed as ≦7).

然る後、上述した金属化合物の総重量に対しで、前述の
範囲(−酸化マンガン(MnO)に換算して5重量%未
満)の任意好適な添加量を以って化学的に高純度の炭酸
マンガン(MnCO3)を添加し、メノウ製の乳鉢また
は播潰8!!を用いて約30分間に亙って混合すること
により、夫々の酸化マンガン添加tを有する混合粉を得
る。
Thereafter, a chemically high-purity compound is added in any suitable amount within the above-mentioned range (less than 5% by weight in terms of -manganese oxide (MnO)) based on the total weight of the above-mentioned metal compound. Add manganese carbonate (MnCO3) and sow in an agate mortar or sow 8! ! By mixing for about 30 minutes using a powder mixer, mixed powders having respective manganese oxide additions t are obtained.

然る後、これら混合粉の夫々を、空気雰囲気中、約90
0°Cの温度で5時間に亙って焼成し、仮焼物を得る。
After that, each of these mixed powders was heated to about 90% in an air atmosphere.
A calcined product is obtained by firing at a temperature of 0°C for 5 hours.

続いて、前述の摺潰機等を用いて上述の仮焼物を粉砕し
、仮焼粉とした後、金型と油圧プレスとを用いて1〜3
 ton/cm2の成形圧力を以って成形し、直径24
mmで厚さ3mmの円板状の成形体を得た。
Subsequently, the above-mentioned calcined product is crushed using the above-mentioned grinding machine, etc. to form a calcined powder, and then 1 to 3
Molded with molding pressure of ton/cm2, diameter 24
A disc-shaped molded body with a thickness of 3 mm was obtained.

このようにして得られた成形体を、空気雰囲気中、約9
50℃の温度で20時間に亙って焼成し、表1(後述)
に示す、試料番号■〜■のセラミックス組成物を得た。
The molded body thus obtained was placed in an air atmosphere for about 90 minutes.
Baked at a temperature of 50°C for 20 hours, Table 1 (described later)
Ceramic compositions with sample numbers (■) to (■) shown in (1) to (2) were obtained.

また、これとは別に、酸化マンガンを添加することなく
焼結したセラミックス組成物(試料番号■)、或いは、
前述した範囲を超えて酸化マンガンの添加量を5重量%
添加した場合(試料番号■)または7重量%添加した場
合(試料番号■)につき、上述した工程により焼結せし
め、比較試料とした。
Apart from this, there is also a ceramic composition sintered without adding manganese oxide (sample number ■), or
The amount of manganese oxide added exceeds the above range by 5% by weight.
Comparative samples were prepared by sintering the samples with the addition (sample number ■) or the case with the addition of 7% by weight (sample number ■) according to the above-mentioned process.

臨 温戸T  浬 次に、上述した製造方法によって得られたセラミックス
組成物に関し、各組成物の温度に対する抵抗の変化を測
定した。
Next, regarding the ceramic compositions obtained by the above-mentioned manufacturing method, changes in resistance with respect to temperature of each composition were measured.

この実施例の場合、この抵抗の測定は、銅線で構成した
電極を銀ペーストによって各セラミックス組成物より成
る前述の成形体夫々に接続し、4端子法によって定電流
下でセラミックス組成物の所定の地点間の電圧変化を測
定することにより行なった。尚、測定温度範囲は低温側
を液体窒素温度(77K)までとした。
In the case of this example, the resistance was measured by connecting an electrode made of a copper wire to each of the above-mentioned molded bodies made of each ceramic composition using silver paste, and using a four-terminal method to measure the predetermined value of the ceramic composition under constant current. This was done by measuring the voltage change between points. Note that the measurement temperature range was on the low temperature side up to the liquid nitrogen temperature (77K).

以下、前述の製造方法により作製した試料番号■〜■の
仕込組成と、前述の測定方法により測定した臨界温度下
Cとを表工として示す。
Hereinafter, the charging compositions of sample numbers ① to ② produced by the above-mentioned manufacturing method and the critical temperature C measured by the above-mentioned measuring method are shown as the surface finish.

表工 但し、*は、この発明に係る酸化マンガンの添加量の範
囲外の試料を示す。
However, * indicates a sample in which the amount of manganese oxide added is outside the range according to the present invention.

以下、前記表工を参照して、この発明の超電導セラミッ
クス組成物の特性につき説明する。
Hereinafter, the characteristics of the superconducting ceramic composition of the present invention will be explained with reference to the above-mentioned surface finish.

表1からも理解できるように、この発明に係る試料番号
■〜■のセラミックス組成物は、各試料共に液体窒素温
度以上の温度であり、かつ主成分となるHoBa2Cu
3OY(6≦Y≦7)の組成を有する試料番号■のセラ
ミックス組成物よりも高いTcを以って超電導現象を示
すのが認められた。
As can be understood from Table 1, the ceramic compositions of sample numbers ■ to ■ according to the present invention each have a temperature equal to or higher than the liquid nitrogen temperature, and the main component is HoBa2Cu.
It was observed that the sample exhibited a superconducting phenomenon with a higher Tc than the ceramic composition of sample number ■ having a composition of 3OY (6≦Y≦7).

一方、添加量が前述の範囲を超えて7重量%とした試料
番号■の組成物では、少なくとも液体窒素温度程度の温
度では超電導現象(電気抵抗が零となる状態を指す。)
が認められず、半導体としての抵抗値しか示さなかった
。さらに、酸化マンガンの添加jit5重量%とじた場
合、焼結性の向上は認められたが、試料番号■の組成物
に比して、Tcの向上は認められなかった。
On the other hand, in the composition of sample number (■) in which the amount added exceeds the above range and is 7% by weight, a superconducting phenomenon (referring to a state in which the electrical resistance becomes zero) occurs at least at a temperature around the temperature of liquid nitrogen.
was not observed, and only showed a resistance value as a semiconductor. Further, when adding 5% by weight of manganese oxide, an improvement in sinterability was observed, but no improvement in Tc was observed compared to the composition of sample number (■).

また、酸化マンガンを添加しなかった場合のセラミック
ス組成物(試料番号■)では焼結性が悪く、焼結に伴な
い、多数のクラック発生が認められた。
In addition, the ceramic composition (sample number ■) in which no manganese oxide was added had poor sinterability, and many cracks were observed during sintering.

しかしなから1.酸化マンガンを、前述の範囲内での所
定jl添加した試料番号■〜試料番号■の超電導セラミ
・シクス組成物では、焼結後のクラック発生の頻度が低
下し、焼結性の向上が認められた。
However, 1. In the superconducting ceramic 6 compositions of Sample No. ■ to Sample No. ■ in which manganese oxide was added to a predetermined amount within the above-mentioned range, the frequency of cracking after sintering was reduced, and an improvement in sinterability was observed. Ta.

上述の実験結果から、液体窒素温度より高い臨界温度T
cを与え、かつ焼結性を向上させ得る酸化マンガンの添
加量は、仕込時の添加量で表わした場合、組成式がHo
[3a2cu30 y(6≦Y≦7)で表される主成分
(即ち、HO203,8aCO3及びCuOの重jlヲ
合計したりに対して、−酸化マンガン(MnO)に換算
して5重量%未満(但し、Oは含ます)の任意好適な値
とするのが良い。
From the above experimental results, it is clear that the critical temperature T higher than the liquid nitrogen temperature
The amount of manganese oxide added that can give c and improve sinterability is expressed as the amount added at the time of preparation, and the composition formula is Ho
[3a2cu30y (6≦Y≦7) (i.e. less than 5% by weight in terms of manganese oxide (MnO), based on the total weight of HO203, 8aCO3 and CuO) However, it is preferable to set it to any suitable value (including O).

ざらに、この実施例の酸化マンガンを添加して焼成した
超電導セラミックス組成物においては、超電導性を示す
ような焼成条件において、従来の焼成温度に比べて、2
0℃程度低い温度で焼成した場合にも、超電導性を損な
うことなく超電導セラミックス組成物を焼成することが
できた。
Roughly speaking, in the superconducting ceramic composition of this example, which was fired with the addition of manganese oxide, under firing conditions that exhibit superconductivity, the firing temperature was 2.
Even when firing at a temperature as low as 0° C., the superconducting ceramic composition could be fired without impairing superconductivity.

尚、この発明は上述した実施例にのみ限定されるもので
はないこと明らかである。
It is clear that the present invention is not limited only to the embodiments described above.

上述の実施例においては実験試料の作製のため炭酸マン
ガンを用いたが、この炭酸マンガンの代りに一酸化マン
ガン(MnO) 、二酸化マンガン(MnO□)及びそ
の他、一連の酸化マンガンを用いでも実施例と同様な効
果を期待することが出来る。
In the above-mentioned examples, manganese carbonate was used to prepare the experimental samples; however, manganese monoxide (MnO), manganese dioxide (MnO□), and other manganese oxides may be used instead of manganese carbonate. Similar effects can be expected.

これらを用いる際も、出発原料を秤量する際に、この発
明の組成範囲を満足するように数Ja換算を行ない、こ
れに基づいて秤量・添加すれば良い。
When using these, when weighing the starting materials, it is sufficient to convert them into several Ja so as to satisfy the composition range of the present invention, and to weigh and add them based on this.

ざらに、この実施例では、従来知られている 1ペロブ
スカイト型の組成物として、Ha : 8a : Cu
の組成比が1:2:3の場合を例示して説明したが、こ
の発明は、これにのみ限定されるものではなく、例えば
前述の文献に開示される組成を主成分とした場合であっ
ても同様の効果を期待し得る。
Roughly speaking, in this example, as a conventionally known perovskite type composition, Ha: 8a: Cu
Although the case where the composition ratio of Similar effects can be expected.

これに加え、各超電導セラミックス組成物にあける酸素
含有量は、焼結雰囲気における酸素分圧等の条件により
種々の値として焼成することが可能であり、Ha : 
Ba : Cuの組成比が1:2:3の場合、当該酸素
の比を示す値Yが6≦Y≦7とした場合に高いT。を得
ることができた。
In addition, the oxygen content in each superconducting ceramic composition can be fired to various values depending on conditions such as oxygen partial pressure in the sintering atmosphere, and Ha:
When the composition ratio of Ba:Cu is 1:2:3, T is high when the value Y indicating the ratio of oxygen is 6≦Y≦7. was able to obtain.

これら材料、焼成条件及びその他の条件は、この発明の
目的の範囲内で、必要に応じ、任意好適な設計の変更及
び変形を行ない得ること明らかである。
It is clear that these materials, firing conditions, and other conditions can be changed or modified in any suitable design as necessary within the scope of the purpose of the present invention.

(発明の効果) 上述した説明からも明らかなように、この発明によれば
、電気抵抗が零になる温度が液体窒素温度以上の超電導
セラミックス組成物であり、クラック等の発生を回避し
かつ焼成温度の低下を図ることか可能な焼結性に優れる
超電導セラミックス組成物を提供することが出来る。
(Effects of the Invention) As is clear from the above description, the present invention provides a superconducting ceramic composition in which the temperature at which the electrical resistance becomes zero is equal to or higher than the liquid nitrogen temperature, which avoids the occurrence of cracks, etc., and is easy to sinter. It is possible to provide a superconducting ceramic composition with excellent sintering properties that can be lowered in temperature.

従って、種々の分野への応用が可能になり、その工業的
利用価値は非常に大きいと云える。
Therefore, it can be applied to various fields, and its industrial utility value can be said to be very large.

特許出願人     沖電気工業株式会社手続ネ甫正1
1 昭和63年1月20日
Patent applicant: Oki Electric Industry Co., Ltd.
1 January 20, 1988

Claims (1)

【特許請求の範囲】[Claims] (1)Ho(ホルミウム)−Ba(バリウム)−Cu(
銅)−O(酸素)系の超電導セラミックス組成物におい
て、 組成式がHoBa_2Cu_3O_Y(6≦Y≦7)で
表される主成分に対して、酸化マンガンが5重量%未満
添加されて成る ことを特徴とする超電導セラミックス組成物。
(1) Ho (holmium)-Ba (barium)-Cu(
Copper)-O (oxygen) based superconducting ceramic composition, characterized in that less than 5% by weight of manganese oxide is added to the main component whose composition formula is HoBa_2Cu_3O_Y (6≦Y≦7). A superconducting ceramic composition.
JP62267850A 1987-10-23 1987-10-23 Superconducting ceramic composition Pending JPH01111764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62267850A JPH01111764A (en) 1987-10-23 1987-10-23 Superconducting ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62267850A JPH01111764A (en) 1987-10-23 1987-10-23 Superconducting ceramic composition

Publications (1)

Publication Number Publication Date
JPH01111764A true JPH01111764A (en) 1989-04-28

Family

ID=17450497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62267850A Pending JPH01111764A (en) 1987-10-23 1987-10-23 Superconducting ceramic composition

Country Status (1)

Country Link
JP (1) JPH01111764A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202013101225U1 (en) 2013-03-21 2013-04-25 Athmer Ohg Seal for a latch and seal assembly with such a seal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202013101225U1 (en) 2013-03-21 2013-04-25 Athmer Ohg Seal for a latch and seal assembly with such a seal
EP2787160A2 (en) 2013-03-21 2014-10-08 Athmer oHG Seal for a bolt and seal assembly with such a seal
EP2787160A3 (en) * 2013-03-21 2015-01-21 Athmer oHG Seal for a bolt and seal assembly with such a seal

Similar Documents

Publication Publication Date Title
CA1337149C (en) Devices and systems based on novel superconducting material
JPH01111764A (en) Superconducting ceramic composition
JP3219563B2 (en) Metal oxide and method for producing the same
JP2854338B2 (en) Copper oxide superconductor
JP2523928B2 (en) Oxide superconductor and method for producing the same
JPH01226761A (en) Superconducting ceramic composition
JPH01275433A (en) Multiple oxide superconducting material and production thereof
JP2778100B2 (en) Oxide superconducting material and method for producing the same
JP2855128B2 (en) Oxide superconductor
JP2696691B2 (en) Oxide superconducting material
JPH02153822A (en) Oxide superconductor composition
JPH0380109A (en) Oxide superconductor
JPH01160855A (en) Production of superconductor
JPH01108149A (en) Oxide superconducting material
JPH01172259A (en) Production of ceramic superconducting molded body
JPS63282154A (en) Production of oxide superconductor
JPH02107518A (en) Oxide superconducting material
JPH0521848B2 (en)
JPH02107556A (en) Production of oxide superconductor composition
JPH01278466A (en) Production of superconductor
JPH01188455A (en) Superconducting ceramic and its production
JPH0274557A (en) Pottery device
JPS63288945A (en) Superconductor
JPH01141868A (en) Production of superconducting ceramics
JPS63288953A (en) Production of superconductor