JP2565894B2 - Method for producing oxide superconducting material - Google Patents

Method for producing oxide superconducting material

Info

Publication number
JP2565894B2
JP2565894B2 JP62073284A JP7328487A JP2565894B2 JP 2565894 B2 JP2565894 B2 JP 2565894B2 JP 62073284 A JP62073284 A JP 62073284A JP 7328487 A JP7328487 A JP 7328487A JP 2565894 B2 JP2565894 B2 JP 2565894B2
Authority
JP
Japan
Prior art keywords
superconducting material
raw material
sintering
superconducting
oxide superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62073284A
Other languages
Japanese (ja)
Other versions
JPS63239147A (en
Inventor
成雄 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62073284A priority Critical patent/JP2565894B2/en
Publication of JPS63239147A publication Critical patent/JPS63239147A/en
Application granted granted Critical
Publication of JP2565894B2 publication Critical patent/JP2565894B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、高い臨界温度を持つセラミックス系超電
導材料の製造方法に関するものである。
The present invention relates to a method for producing a ceramics-based superconducting material having a high critical temperature.

[従来の技術] 最近脚光を浴びているセラミックス系超電導材料は、
その構成元素の酸化物粉末を高温度下で焼結させ、粉末
粒子同士の界面に臨界温度の高い超電導層を生成したも
のである。このとき、用いられる原材料粉末は、一般的
には平均粒径1μm以上のものである。
[Prior Art] Ceramic-based superconducting materials, which have recently been spotlighted,
The oxide powder of the constituent elements is sintered at a high temperature to form a superconducting layer having a high critical temperature at the interface between the powder particles. At this time, the raw material powder used generally has an average particle size of 1 μm or more.

[発明が解決しようとする問題点] 上述のように原材料粉末の平均粒径が1μm以上であ
るため、均一混合が困難であるとともに、粒子同士の界
面の表面積が少ないので焼結体全体に占める超電導層の
割合が低かった。また、焼結時の構成元素の拡散が超電
導層生成の律速となるので、焼結温度を高く、かつ、焼
結時間を長くしたり、焼結回数を増加させる必要があっ
た。さらに、焼結温度が高くなるため、その超電導材料
をシースする材料を見出すのが困難であった。
[Problems to be Solved by the Invention] As described above, since the raw material powder has an average particle size of 1 μm or more, uniform mixing is difficult, and the surface area of the interface between the particles is small, so that it occupies the entire sintered body. The ratio of the superconducting layer was low. Further, since the diffusion of the constituent elements during sintering is the rate-determining factor for the formation of the superconducting layer, it is necessary to increase the sintering temperature, lengthen the sintering time, and increase the number of times of sintering. Furthermore, since the sintering temperature becomes high, it has been difficult to find a material for sheathing the superconducting material.

そこで、この発明は、上記問題点を解消するためにな
されたもので、均一な超電導材料を得ることができる超
電導材料の製造方法を提供することを目的とする。
Then, this invention was made in order to solve the said problem, and an object of this invention is to provide the manufacturing method of the superconducting material which can obtain a uniform superconducting material.

[問題点を解決するための手段] この発明に従った酸化物超電導材料の製造方法は、原
材料粉末を混合して焼結することによって酸化物超電導
材料を製造する方法において、その原材料粉末の平均粒
径が1μm以下であることを特徴とするものである。
[Means for Solving the Problems] A method for producing an oxide superconducting material according to the present invention is a method for producing an oxide superconducting material by mixing raw material powders and sintering the raw material powders. It is characterized in that the particle size is 1 μm or less.

[発明の作用効果] 本発明において、使用する原材料粉末の平均粒径を1
μm以下、好ましくは0.5μm以下にすることにより以
下に述べる作用がある。
[Advantageous Effects of the Invention] In the present invention, the average particle size of the raw material powder used is 1
When the thickness is less than or equal to μm, preferably less than or equal to 0.5 μm, the following effects are obtained.

すなわち、均一混合が容易になるとともに、粒子同士
の界面の表面積が増加するため生成される超電導層の割
合が増加する。その結果、焼結体全体を超電導層とする
ことが可能となり、均一な性質を示す超電導材料を生成
することが可能となる。それにより高い通電電流を得る
ことができる。また、焼結時において構成元素の拡散距
離が短くてすむので拡散反応が容易となる。さらに粒子
同士の界面エネルギが高いため、低いエネルギで焼結反
応が進みやすい。それゆえに焼結温度を低くすること、
焼結時間を短くすること、焼結回数を減らすことが可能
となり、製造工程のコスト削減を図ることができる。焼
結温度が低くなるので超電導材料のシース材料として使
用可能な材料の種類が増加する。
That is, uniform mixing is facilitated, and the surface area of the interface between particles is increased, so that the ratio of the superconducting layer generated is increased. As a result, the entire sintered body can be used as a superconducting layer, and a superconducting material having uniform properties can be produced. Thereby, a high current can be obtained. In addition, since the diffusion distance of the constituent elements is short during sintering, the diffusion reaction becomes easy. Furthermore, since the interfacial energy between particles is high, the sintering reaction easily proceeds with low energy. Therefore lowering the sintering temperature,
By shortening the sintering time and the number of times of sintering, it is possible to reduce the cost of the manufacturing process. Since the sintering temperature is lowered, the types of materials that can be used as the sheath material of the superconducting material are increased.

以上説明したように、本発明によれば高均一かつ高品
質な超電導材料を得ることができるので、高臨界温度を
有する超電導材料の製造に用いるとさらに効果があり、
超電導材料の臨界温度Tcを向上させることができる。好
ましくは、原材料粉末としては以下の化合物から構成さ
れればよい。それは、周期律表中のII a族元素のうちの
少なくとも1種と酸素を含む化合物、周期律表中のIII
a族元素のうちの少なくとも1種と酸素を含む化合物、
銅と酸素を含む化合物で、原材料粉末としてはそれらの
化合物をそれぞれ1種以上含んだものからなればよい。
As described above, according to the present invention, since it is possible to obtain a highly uniform and high-quality superconducting material, it is further effective when used for producing a superconducting material having a high critical temperature,
The critical temperature Tc of the superconducting material can be improved. Preferably, the raw material powder may be composed of the following compounds. It is a compound containing at least one of Group IIa elements in the Periodic Table and oxygen, III in the Periodic Table.
a compound containing at least one of group a elements and oxygen,
The raw material powder may be a compound containing copper and oxygen, and may contain at least one of these compounds.

[実施例] 原材料粉末として、Y2O3、BaCO3、CuOからなる各粉末
を用いた。各粉末の平均粒径が1.5μmのもの(比較
例)と、0.5μmのもの(実施例)を用いて、それぞれ
上記各化合物の粉末を同一比率で混合焼結して超電導材
料からなる焼結体を作製した。得られた2種の超電導材
料の臨界温度Tcを測定したところ、第1図(実施例)お
よび第2図(比較例)で示すように温度−電気抵抗の関
係は平均粒径0.5μmのものを用いた場合の方が完全に
超電導になる温度が高く、かつ常電導−超電導の遷移温
度幅も小さくなることが判明した。これにより平均粒径
が小さい方が均質かつ高品質の材料ができていると考え
られる。
[Examples] As raw material powders, powders of Y 2 O 3 , BaCO 3 , and CuO were used. Sintering of a superconducting material by mixing and sintering the powders of the respective compounds in the same ratio by using powders having an average particle diameter of 1.5 μm (comparative example) and 0.5 μm (example) The body was made. When the critical temperature T c of the two kinds of superconducting materials obtained was measured, as shown in FIG. 1 (Example) and FIG. 2 (Comparative Example), the relationship between temperature and electric resistance was that the average particle size was 0.5 μm. It was found that the temperature of completely superconducting was higher and the transition temperature range of normal conducting-superconducting was smaller when the material was used. Therefore, it is considered that the smaller the average particle size is, the more homogeneous and high-quality material is produced.

さらに平均粒径0.5μmの混合粉末の焼結温度を平均
粒径1.5μmのものよりも50℃低くしても、温度−電気
抵抗の関係が似た挙動を示すことが判明した。これによ
り類似の特性を得るための焼結温度は平均粒径が小さい
方が低いということが考えられる。
Further, it was found that even if the sintering temperature of the mixed powder having an average particle size of 0.5 μm is lower than that of the powder having an average particle size of 1.5 μm by 50 ° C., the behavior of the temperature-electric resistance relationship is similar. Therefore, it is considered that the sintering temperature for obtaining similar characteristics is lower when the average particle size is smaller.

【図面の簡単な説明】[Brief description of drawings]

第1図は、実施例において得られた超電導材料の温度−
電気抵抗の関係を示す図である。第2図は、比較例にお
いて得られた超電導材料の温度−電気抵抗の関係を示す
図である。
FIG. 1 shows the temperature of the superconducting material obtained in the example--
It is a figure which shows the relationship of an electrical resistance. FIG. 2 is a diagram showing a temperature-electrical resistance relationship of the superconducting material obtained in the comparative example.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】原材料粉末を混合して焼結することによっ
て酸化物超電導材料を製造する方法において、 前記原材料粉末の平均粒径が1μm以下であることを特
徴とする、酸化物超電導材料の製造方法。
1. A method for producing an oxide superconducting material by mixing raw material powders and sintering the raw material powders, wherein the raw material powders have an average particle diameter of 1 μm or less. Method.
【請求項2】前記原材料粉末は、周期律表中のII a族元
素のうちの少なくとも1種と酸素を含む化合物、周期律
表中のIII a族元素のうちの少なくとも1種と酸素を含
む化合物、銅と酸素を含む化合物である、特許請求の範
囲第1項記載の酸化物超電導材料の製造方法。
2. The raw material powder contains a compound containing at least one group IIa element in the periodic table and oxygen, and at least one group IIIa element in the periodic table and oxygen. The method for producing an oxide superconducting material according to claim 1, wherein the compound is a compound containing copper and oxygen.
JP62073284A 1987-03-26 1987-03-26 Method for producing oxide superconducting material Expired - Lifetime JP2565894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62073284A JP2565894B2 (en) 1987-03-26 1987-03-26 Method for producing oxide superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62073284A JP2565894B2 (en) 1987-03-26 1987-03-26 Method for producing oxide superconducting material

Publications (2)

Publication Number Publication Date
JPS63239147A JPS63239147A (en) 1988-10-05
JP2565894B2 true JP2565894B2 (en) 1996-12-18

Family

ID=13513691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62073284A Expired - Lifetime JP2565894B2 (en) 1987-03-26 1987-03-26 Method for producing oxide superconducting material

Country Status (1)

Country Link
JP (1) JP2565894B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6483516A (en) * 1987-09-25 1989-03-29 Ube Industries Superconducting ceramic powder
US5006504A (en) * 1989-08-28 1991-04-09 At&T Bell Laboratories Preparing superconducting ceramic materials
JPH0397655A (en) * 1989-09-07 1991-04-23 Dowa Mining Co Ltd Production of sintered body of perovskite type copper-containing oxide superconductor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Physical Review Letters 58(9)P.908−912(1987−3−2)

Also Published As

Publication number Publication date
JPS63239147A (en) 1988-10-05

Similar Documents

Publication Publication Date Title
JPS63927B2 (en)
JP2565894B2 (en) Method for producing oxide superconducting material
US4992415A (en) Method for fabricating ceramic superconductors
EP0284354B1 (en) Method of manufacturing superconducting ceramics
US5110789A (en) Superconductive ceramic wire and method for making same
EP0284189B1 (en) Method of manufacturing superconducting ceramics
JP4617493B2 (en) Oxide superconducting synthetic powder and manufacturing method thereof
JP2634187B2 (en) Method for producing thallium-based oxide superconductor
JP2821568B2 (en) Method for producing superconducting whisker composite
DE1811761A1 (en) Process for producing a ferrite laminate
JP2817199B2 (en) Method for producing sintered body of B ▲ i superconducting oxide with high critical current density
JPS63307111A (en) Production of electric conductor
JP2701161B2 (en) Method for producing high-density oxide superconductor
JPH02120226A (en) Superconducting material of oxide
JP2699407B2 (en) Superconductor manufacturing method
JP2699077B2 (en) Manufacturing method of ceramic superconductor coil
JPH05330900A (en) Production of ceramic superconductor
JPH0969419A (en) Method of manufacturing varistor
KR0174383B1 (en) Fabricating method of superconducting thin film layer
JP2621344B2 (en) Superconductor manufacturing method
JPS63308814A (en) Forming method for oxide superconductor
JPH01194214A (en) Manufacture of oxide superconductive compact
JPH02207422A (en) Manufacture of oxide superconducting wire rod
JPH09263447A (en) Superconductive precursor composite powder and manufacture of superconductor therefrom
JPH0375103A (en) Production of superconductive layer

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071003

Year of fee payment: 11