JPH0969419A - Method of manufacturing varistor - Google Patents

Method of manufacturing varistor

Info

Publication number
JPH0969419A
JPH0969419A JP7223290A JP22329095A JPH0969419A JP H0969419 A JPH0969419 A JP H0969419A JP 7223290 A JP7223290 A JP 7223290A JP 22329095 A JP22329095 A JP 22329095A JP H0969419 A JPH0969419 A JP H0969419A
Authority
JP
Japan
Prior art keywords
component
grain boundary
particle
varistor
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7223290A
Other languages
Japanese (ja)
Inventor
Iwao Ueno
巌 上野
Yasuo Wakahata
康男 若畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7223290A priority Critical patent/JPH0969419A/en
Publication of JPH0969419A publication Critical patent/JPH0969419A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To resultantly facilitate and stabilize the control of the electric characteristics by a method wherein respective particles comprising particle component and grain boundary component are previously sintered for mixing, molding and baking these calcined particles later to control the solid phase reaction. SOLUTION: The particle component is mixed (3) and calcinated (9) in the air for the main component to be crushed (5) later for the formation of the calcined particles of the particle component. Besides, the particle component is added and mixed (6) and after the calcination in the air to be crushed (8) for the formation of the calcined particles of the particle component. Next, after the adjustment to make the mean particle diameter of the calcinated particles of the particle component exceed that of the calcinated particles of grain boundary component, the calcined particles of the particle component and grain boundary component are added and mixed (9) to be granulated by adding an organic binder for molding (10) in a specific shape. Next, the molding is deashed (11) in the air to be baked in the reducing atmosphere (12). Finally, after finishing the baking step, the surface of the element is coated with an electrode paste (13) to be heat-treated in the air (14) and then the reoxidation and the electrode seizure are simultaneously performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、バリスタの製造方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a varistor.

【0002】[0002]

【従来の技術】従来の製造方法では、原料粉末の反応性
や機能を無視し、各種原料粉末を一度に混合し、バリス
タを製造している。
2. Description of the Related Art In a conventional manufacturing method, varistor is manufactured by ignoring reactivity and function of raw material powder and mixing various raw material powders at once.

【0003】[0003]

【発明が解決しようとする課題】従来の製造方法では、
各種原料粉末を一度に混合しているため、焼成過程で固
相反応を制御することが困難となり、結果として電気特
性の制御が困難であるという問題を有していた。
In the conventional manufacturing method,
Since various raw material powders are mixed at once, it is difficult to control the solid-phase reaction in the firing process, and as a result, it is difficult to control the electrical characteristics.

【0004】そこで本発明は、上記問題点を解決するも
ので、固相反応を制御し、結果として電気特性の制御が
容易でかつ安定なバリスタの製造方法を提供することを
目的とするものである。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a method for producing a varistor in which the solid-state reaction is controlled and, as a result, the electrical characteristics can be easily controlled and which is stable. is there.

【0005】[0005]

【課題を解決するための手段】この目的を達成するため
に本発明は、粒子成分、粒界成分となる各粉末を予め仮
焼し、その後、これらの仮焼粉を混合、成形、焼成を行
いバリスタを作製するものである。
In order to achieve this object, the present invention is to pre-calculate each powder that becomes a particle component and a grain boundary component, and then mix, mold and fire these calcined powders. The varistor is manufactured.

【0006】[0006]

【作用】以上の方法によれば、配合に用いる原料粉末の
一部を予め仮焼することにより、同一の化学組成であっ
ても、固相反応を制御することが可能となり、結果とし
て電気特性の制御が容易となり、かつ安定した電気特性
を有するバリスタを作製することが出来る。
According to the above method, even if the chemical composition is the same, it is possible to control the solid-phase reaction by pre-calcining a part of the raw material powder used for blending. Can be controlled easily, and a varistor having stable electric characteristics can be manufactured.

【0007】[0007]

【実施例】【Example】

(実施例1)以下、本発明の第1の実施例について図面
を用いて説明する。
(Embodiment 1) Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.

【0008】図3において、1はバリスタ素子で、その
表裏面には電極2が設けられている。バリスタ素子1
は、SrTiO3を主成分とし、副成分として、Nb2
5,MnO,SiO2,CuOなどを添加して形成したも
のである。また電極2は、Ag,Ag−Pdで形成した
ものである。
In FIG. 3, reference numeral 1 is a varistor element, and electrodes 2 are provided on the front and back surfaces thereof. Varistor element 1
Contains SrTiO 3 as a main component and Nb 2 O as a secondary component.
It is formed by adding 5 , MnO, SiO 2 , CuO or the like. The electrode 2 is made of Ag or Ag-Pd.

【0009】以上の構成において、バリスタ素子1の微
細構造は、Nb25などにより半導体化されたSrTi
3を主成分とする粒子と、この粒子を取り囲むように
Mn,Cuなどの金属酸化物が偏析し、粒界を形成する
主成分となっているものである。
In the above structure, the fine structure of the varistor element 1 is SrTi made into semiconductor by Nb 2 O 5 or the like.
Particles containing O 3 as a main component and metal oxides such as Mn and Cu segregate so as to surround the particles and become a main component forming a grain boundary.

【0010】図1に製造工程を示す。まず、粒子成分と
して、SrTiO3 100wt分に対して、Nb25
0.1〜0.5wt分添加、混合(3)し、空気中で1
000〜1300℃の温度範囲で仮焼(4)した。仮焼
後、平均粒径が0.9〜1.3μm程度まで粉砕(5)
し、粒子成分の仮焼粉を形成した。また、粒界成分とし
て、MnO 52±5wt%、TiO2 14±5wt
%、SiO2 34±5wt%の三成分を添加、混合
(6)し、空気中で1150〜1200℃の温度範囲で
仮焼(7)した。仮焼後、平均粒径が0.7〜1.1μ
m程度まで粉砕(8)し、粒界成分の仮焼粉を形成し
た。
FIG. 1 shows the manufacturing process. First, as a particle component, 0.1 to 0.5 wt% of Nb 2 O 5 was added to 100 wt% of SrTiO 3 and mixed (3), and 1
Calcination (4) was performed in the temperature range of 000 to 1300 ° C. After calcination, crush to an average particle size of 0.9-1.3 μm (5)
Then, a calcined powder of particle components was formed. Further, as grain boundary components, MnO 52 ± 5 wt% and TiO 2 14 ± 5 wt%
%, SiO 2 34 ± 5 wt%, three components were added, mixed (6), and calcined (7) in the temperature range of 1150 to 1200 ° C. in air. After calcination, average particle size is 0.7-1.1μ
The powder was pulverized (8) to about m to form a calcined powder of grain boundary components.

【0011】次に、(粒子成分の仮焼粉の平均粒径)が
(粒界成分の仮焼粉の平均粒径)と同じかそれより大き
くなるように調整した後、前者仮焼粉100wt分に対
して、後者仮焼粉0.5〜2.5wt分を添加、混合
(9)し、さらに有機バインダーを加え造粒し、所定の
形状(直径13mm、厚さ1.0mm)に成形(10)し
た。成形後、空気中で脱バイ(11)し、還元雰囲気中
で1200〜1400℃の温度範囲で焼成(12)し
た。焼成後、素子の表面にAgまたはAg−Pd電極ペ
ーストを塗布(13)し、空気中で700〜850℃の
温度範囲で熱処理(14)し、素子の再酸化を電極焼付
け(電極面積0.5cm2)を同時に実施し、バリスタ素
子1を作製した。
Next, after adjusting so that (the average particle size of the calcined powder of the particle component) is equal to or larger than the (average particle size of the calcined powder of the grain boundary component), the former calcined powder 100 wt 0.5 to 2.5 wt of the latter calcined powder is added and mixed (9), and then an organic binder is added and granulated to form a predetermined shape (diameter 13 mm, thickness 1.0 mm). (10) I did. After molding, the mold was degassed (11) in air and fired (12) in a temperature range of 1200 to 1400 ° C. in a reducing atmosphere. After firing, an Ag or Ag-Pd electrode paste was applied (13) to the surface of the device and heat-treated (14) in the temperature range of 700 to 850 ° C. in air to re-oxidize the device by electrode baking (electrode area of 0. 5 cm 2 ) was carried out at the same time to fabricate a varistor element 1.

【0012】(実施例2)次に、本発明の第2の実施例
について説明する。
(Second Embodiment) Next, a second embodiment of the present invention will be described.

【0013】実施例1で記載した粒子成分、粒界成分の
他に、図2のごとくCuO粉末を0.1〜2.0wt分
添加、混合(15)し、その後、実施例1と同様の製造
方法でバリスタ素子1を作製した。なお、(CuOの平
均粒径)は(粒子成分の仮焼粉の平均粒径)と同じかそ
れよりも小さくなるように調整した。
In addition to the particle component and grain boundary component described in Example 1, 0.1 to 2.0 wt% of CuO powder was added and mixed (15) as shown in FIG. 2, and then the same as in Example 1. The varistor element 1 was manufactured by the manufacturing method. The (average particle diameter of CuO) was adjusted to be equal to or smaller than (average particle diameter of calcined powder of particle component).

【0014】実施例1,2で得られたバリスタ素子1の
電気特性を示すと(但し、焼成温度:1250℃、Ag
焼付け温度850℃)、実施例1の場合では、バリスタ
電圧V1.0mA/mm:15V、見掛け誘電率ε:1.5×1
4、実施例2の場合では、V1.0mA/mm:33V、ε:
5.5×104であった。また、微細構造に関して、走
査型電子顕微鏡やX線マイクロアナライザーで解析した
結果、平均粒径は4〜5μmで、粒界部分にはMn,C
u元素が偏析しており、緻密な組織になっていることを
確認した。また、両実施例のV1.0mA/mmの工程能力指数
Cp(但し、規格範囲を平均値の±10%とした)は、
Cp=1.1で安定しており、バラツキが非常に少ない
バリスタ素子1を得た。
The electrical characteristics of the varistor element 1 obtained in Examples 1 and 2 are shown below (note that the firing temperature: 1250 ° C., Ag
(Baking temperature: 850 ° C.), in the case of Example 1, varistor voltage V 1.0 mA / mm : 15 V, apparent dielectric constant ε: 1.5 × 1
0 4 , in the case of Example 2, V 1.0mA / mm : 33V, ε:
It was 5.5 × 10 4 . Further, as a result of analyzing the fine structure with a scanning electron microscope or an X-ray microanalyzer, the average grain size is 4 to 5 μm, and Mn and C are present in the grain boundary portion.
It was confirmed that the u element was segregated and had a dense structure. In addition, the process capability index Cp of V 1.0 mA / mm in both examples (however, the standard range was ± 10% of the average value) was
A varistor element 1 which is stable at Cp = 1.1 and has very little variation is obtained.

【0015】また、比較として、従来の製造方法で同一
の化学組成のバリスタ素子1を作製したところ、工程能
力指数Cp=0.7となりバラツキが大きくなった。さ
らに、微細構造を観察した結果、粒径のバラツキや空孔
が多く存在し、前者実施例とは明らかに異なった組織で
あることを確認した。
Further, as a comparison, when a varistor element 1 having the same chemical composition was manufactured by a conventional manufacturing method, the process capability index Cp was 0.7 and the variation was large. Furthermore, as a result of observing the fine structure, it was confirmed that there are many variations in grain size and many pores, and the structure is clearly different from the former example.

【0016】このように、同一の化学組成でありなが
ら、出来上がったバリスタ素子1の電気特性や組織が異
なる理由としては、焼成過程での固相反応の相異による
ものであると考えられる。つまり従来の製造方法のよう
に、各種原料粉末を一度に大量に混合し、焼成する工法
では、より複雑な固相反応が起こり、結果として、電気
特性や組織の制御が困難となる。
As described above, it is considered that the reason why the finished varistor elements 1 have different electrical characteristics and structures even though they have the same chemical composition is that the solid-phase reaction in the firing process is different. That is, in the method of mixing various raw material powders in a large amount at the same time as in the conventional manufacturing method and firing the mixture, a more complicated solid phase reaction occurs, and as a result, it becomes difficult to control the electrical characteristics and the structure.

【0017】また、混合時の各成分の平均粒径に関して
も、固相反応に大きく影響を与える要因となり、粒子成
分の平均粒径が粒界成分やCuOの平均粒径より同等も
しくは大きい方が、発明の効果がより向上することを確
認した。この理由は、粒界成分やCuOが細かい方が、
粒子成分のまわりをくまなく覆い易くなるためであると
考えられる。
Also, regarding the average particle size of each component at the time of mixing, it becomes a factor that greatly affects the solid phase reaction, and the average particle size of the particle component is equal to or larger than the average particle size of the grain boundary component or CuO. It was confirmed that the effect of the invention was further improved. The reason is that finer grain boundary components and CuO
It is considered that this is because it becomes easy to cover the entire area of the particle component.

【0018】さらに、粒界成分の仮焼温度は、液相の状
態になる温度より高温にし反応させておいた方が、バリ
スタ素子1の収縮率や電気特性のバラツキの面で良好で
あった。
Further, it was better in that the calcination temperature of the grain boundary component was higher than the temperature at which it was in the liquid phase and the reaction was performed, in terms of the shrinkage ratio of the varistor element 1 and the variation in the electrical characteristics. .

【0019】その理由は、SiO2の反応性によるもの
で、高温に仮焼しMnO−TiO2−SiO2系の反応を
完了させ、単体のSiO2の残留を極力避けるためであ
る。
The reason for this is that it is due to the reactivity of SiO 2 , and it is because it is calcined at a high temperature to complete the reaction of the MnO--TiO 2 --SiO 2 system and to avoid the residual of SiO 2 as a simple substance.

【0020】以上、実施例1,2に関しては、ディスク
タイプのバリスタ素子1に関して説明したが、次に、積
層タイプのバリスタ素子21に関して説明する。
Although the disk type varistor element 1 has been described in the first and second embodiments, the laminated type varistor element 21 will be described next.

【0021】(実施例3)以下、本発明の第3の実施例
について説明する。
(Embodiment 3) A third embodiment of the present invention will be described below.

【0022】図4において、21は積層バリスタ素子
で、その内部には複数の内部電極22が設けられ、その
両端には外部電極23が設けられている。内部電極22
は、Niを主成分とし、副成分としてLi2CO3などを
添加して形成したものである。さらに外部電極23は、
下層23aをNiを主成分とし、副成分としてLi2
3などを添加して形成し、上層23bをAgで形成し
たものである。
In FIG. 4, reference numeral 21 denotes a laminated varistor element, inside of which a plurality of internal electrodes 22 are provided, and external electrodes 23 are provided at both ends thereof. Internal electrode 22
Is formed by adding Ni as a main component and Li 2 CO 3 or the like as a subcomponent. Furthermore, the external electrode 23 is
The lower layer 23a contains Ni as a main component and Li 2 C as a sub-component.
It is formed by adding O 3 or the like, and the upper layer 23b is formed of Ag.

【0023】図5は、製造工程を示し、(24)に示す
ごとく、各種成分の配合、混合、仮焼、粉砕、仮焼粉の
混合、スラリー化、シート成形によりセラミックシート
21aを作製した。
FIG. 5 shows the manufacturing process. As shown in (24), a ceramic sheet 21a was produced by blending, mixing, calcining, crushing, mixing calcined powder, making slurry, and sheet forming.

【0024】セラミックシート21aと、内部電極22
とを積層(25)し、それを切断(26)、脱バイ・仮
焼(27)、面とり(28)した。
The ceramic sheet 21a and the internal electrodes 22
And were laminated (25), which were cut (26), de-baked and calcined (27), and chamfered (28).

【0025】次に、積層バリスタ素子21の端面に、下
層23aとなるNi外部電極を塗布(29)し、120
0〜1300℃で還元焼成(30)し、その後、上層3
bとなるAg外部電極を塗布(31)し、700〜85
0℃で熱処理(32)し、素子の再酸化とAg外部電極
焼付けを同時に実施し、積層バリスタ素子21を作製し
た。
Next, an Ni external electrode to be the lower layer 23a is applied (29) to the end face of the laminated varistor element 21, and 120
Reduction firing (30) at 0 to 1300 ° C., then upper layer 3
The Ag external electrode which becomes b is applied (31) and 700-85
Heat treatment (32) was carried out at 0 ° C., element reoxidation and Ag external electrode baking were carried out at the same time, and a laminated varistor element 21 was produced.

【0026】なお、この時の粒子成分、粒界成分、Cu
Oの平均粒径は、それぞれ0.9,0.7,0.7μm
の仮焼粉を使用した。
At this time, particle components, grain boundary components, Cu
The average particle diameters of O are 0.9, 0.7 and 0.7 μm, respectively.
Of calcined powder was used.

【0027】実施例3で得られた積層バリスタ素子21
では、前記実施例1,2と同様に安定したバリスタ電
圧、容量を出現した。
Multilayer varistor element 21 obtained in Example 3
Then, the stable varistor voltage and capacitance appeared as in Examples 1 and 2.

【0028】また、微細構造に関して解析した結果、平
均粒径は2〜3μm,粒界部にMn,Cu元素の偏析を
確認した。
As a result of analyzing the fine structure, the average grain size was 2 to 3 μm, and segregation of Mn and Cu elements was confirmed at the grain boundary portion.

【0029】ここで、積層タイプの製造工程上、特にス
ラリー配合時の仮焼粉の平均粒径で重要だと思われた事
項を挙げると、 (1)スラリー配合時の仮焼粉の平均粒径では0.7〜
1.0μmが好ましい。その理由は、セラミックシート
21aの空気透過に優れ、デラミネーションの発生が極
力抑えられることにおおきな理由がある。
Here, the items considered to be important particularly in the average particle size of the calcined powder when the slurry is compounded in the manufacturing process of the laminated type are: (1) the average particle size of the calcined powder when the slurry is compounded. 0.7 to the diameter
1.0 μm is preferred. The reason is that the ceramic sheet 21a is excellent in air permeation, and the occurrence of delamination can be suppressed as much as possible.

【0030】(2)平均粒径が0.7μmより小さい場
合には、空気透過が長くなり、デラミネーションが頻繁
に発生すると共に、スラリー粉が凝集し、分散性の悪い
セラミックシート21aが作製され易くなるためであ
る。
(2) When the average particle size is smaller than 0.7 μm, air permeation becomes long, delamination frequently occurs, and slurry powder agglomerates to produce a ceramic sheet 21a having poor dispersibility. This is because it becomes easier.

【0031】(3)逆に、平均粒径が1.0μmより大
きくなると、セラミックシート21aのパッキング密度
の低下や、表面の平滑性の劣化が起こり易くなるためで
ある。
(3) On the contrary, if the average particle size is larger than 1.0 μm, the packing density of the ceramic sheet 21a tends to decrease and the smoothness of the surface tends to deteriorate.

【0032】以上の様に、積層バリスタ素子21を作製
する場合には、ディスクタイプのバリスタ素子1を作製
する場合に比べ配合粉の平均粒径を厳しく管理する必要
がある。
As described above, when the laminated varistor element 21 is manufactured, it is necessary to strictly control the average particle diameter of the mixed powder as compared with the case where the disk type varistor element 1 is manufactured.

【0033】また、本実施例の焼成過程を推測すると、 (1)1100〜1150℃の温度範囲で、粒界成分の
MnO−TiO2−SiO2系が液相の状態となる。
Inferring the firing process of this example, (1) in the temperature range of 1100 to 1150 ° C., the MnO—TiO 2 —SiO 2 system of the grain boundary component is in the liquid phase.

【0034】(2)固相の状態で存在する粒子成分のま
わりを液相がくまなく覆いぬらす。 (3)液相が粒界深く浸入することで毛管圧力が作用
し、粒子を強く引きつけ緻密化する。また一部は粒子内
部に拡散し焼結が進行する。
(2) The liquid phase covers the particle components existing in the solid phase all over. (3) When the liquid phase penetrates deeply into the grain boundaries, capillary pressure acts to strongly attract and densify the particles. In addition, a part of them diffuses inside the particles and sintering proceeds.

【0035】(4)第2の熱処理(再酸化)時に、粒界
や粒子内部に拡散した粒界成分が再配列し粒界部分に偏
析する。
(4) During the second heat treatment (reoxidation), the grain boundaries and the grain boundary components diffused inside the grains are rearranged and segregated at the grain boundary portions.

【0036】これに対して従来の製造方法のように、各
種原料粉末を一度に大量に混合し、焼成する工法では、
上記(1)〜(4)の反応がスムーズに起こりにくく、
より複雑な固相反応を起こし、結果として、電気特性の
バラツキが多数発生する。
On the other hand, as in the conventional manufacturing method, in the method of mixing various raw material powders in a large amount at a time and firing,
The above reactions (1) to (4) are less likely to occur smoothly,
A more complicated solid-phase reaction occurs, resulting in a large number of variations in electrical characteristics.

【0037】次にCuOの効果について説明すると、C
uOは第2の熱処理(再酸化)時に粒界に拡散し、粒界
を高抵抗化し、かつ強固にする働きを有するものであ
る。そして、添加するCuOの粒径は、粒子成分の仮焼
粉に比べ、同等もしくは小さい方がより効果が発揮され
る。また、実施例2,3では、CuO単体で添加したが
CuOを主成分とする複合形にしても同様の効果が得ら
れることを確認した。
Next, the effect of CuO will be described. C
uO has a function of diffusing into the grain boundary during the second heat treatment (reoxidation), increasing the resistance of the grain boundary, and strengthening the grain boundary. Further, the particle size of CuO added is equal to or smaller than that of the calcined powder of the particle component, and the effect is more exhibited. In addition, in Examples 2 and 3, although CuO was added alone, it was confirmed that the same effect can be obtained even in the composite type containing CuO as a main component.

【0038】また、本実施例1,2,3では、半導体化
剤としてNb25を用いたが、Ta 25,La23,Y
23など他の半導体化剤を用いても同様の効果が得られ
ることを確認した。
Further, in the first, second, and third embodiments, a semiconductor is used.
Nb as an agent2OFiveWas used, but Ta 2OFive, La2OThree, Y
2OThreeSimilar effects can be obtained by using other semiconductor agents such as
I was sure that.

【0039】[0039]

【発明の効果】以上のように本発明は、粒子成分、粒界
成分となる各粉末を予め仮焼し、その後、これらの仮焼
粉を混合、成形、焼成を行いバリスタを作製するもので
あり、以上の方法によれば、配合に用いる原料粉末の一
部を予め仮焼することにより、同一の化学組成であって
も、固相反応を制御することが可能となり、結果として
電気特性の制御が容易となり、かつ安定した電気特性を
有するバリスタを作製することが出来る。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, each powder that becomes a particle component and a grain boundary component is preliminarily calcined, and then these calcined powders are mixed, molded and fired to produce a varistor. According to the above method, even if the chemical composition is the same, it is possible to control the solid-phase reaction by pre-calcining a part of the raw material powder used for compounding, and as a result, the electrical characteristics A varistor that is easy to control and has stable electrical characteristics can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における製造工程図FIG. 1 is a manufacturing process diagram in a first embodiment of the present invention.

【図2】本発明の第2の実施例における製造工程図FIG. 2 is a manufacturing process diagram in the second embodiment of the present invention.

【図3】本発明の第1の実施例のバリスタ素子を示す断
面図
FIG. 3 is a sectional view showing a varistor element according to a first embodiment of the present invention.

【図4】本発明の第3の実施例の積層バリスタ素子を示
す断面図
FIG. 4 is a sectional view showing a laminated varistor element according to a third embodiment of the present invention.

【図5】本発明の第3の実施例における製造工程図FIG. 5 is a manufacturing process diagram in the third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 バリスタ素子 2 電極 21 積層バリスタ素子 22 内部電極 23 外部電極 1 Varistor Element 2 Electrode 21 Multilayer Varistor Element 22 Internal Electrode 23 External Electrode

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 粒子成分、粒界成分となる各粉末と予め
仮焼し、その後、これらの仮焼粉を混合、成形、焼成す
るバリスタの製造方法。
1. A method of manufacturing a varistor, which comprises pre-calcining each of powders to be a particle component and a grain boundary component, and then mixing, molding and firing these calcined powders.
【請求項2】 粒子成分の仮焼粉の粒径は、粒界成分の
仮焼粉の粒径に比べ、同等もしくは大きいことを特徴と
する請求項1記載のバリスタの製造方法。
2. The method for producing a varistor according to claim 1, wherein the particle size of the calcined powder of the particle component is equal to or larger than the particle size of the calcined powder of the grain boundary component.
【請求項3】 粒界成分は、粒子成分に比べ、低温で液
相の状態となる請求項1記載のバリスタの製造方法。
3. The method for producing a varistor according to claim 1, wherein the grain boundary component is in a liquid state at a lower temperature than the grain component.
【請求項4】 粒界成分の仮焼温度は、液相の状態にな
る温度より高温であることを特徴とする請求項1記載の
バリスタの製造方法。
4. The method for producing a varistor according to claim 1, wherein the calcination temperature of the grain boundary component is higher than the temperature at which it becomes in a liquid phase.
【請求項5】 粒子成分は、SrTiO3を主成分とす
る請求項1記載のバリスタの製造方法。
5. The method of manufacturing a varistor according to claim 1, wherein the particle component contains SrTiO 3 as a main component.
【請求項6】 粒界成分は、MnO−TiO2−SiO2
系を主成分とする請求項1記載のバリスタの製造方法。
6. The grain boundary component is MnO—TiO 2 —SiO 2
The method of manufacturing a varistor according to claim 1, wherein the main component is a system.
【請求項7】 粒子成分、粒界成分の他に、CuO系を
主成分とする仮焼粉末を混合、成形、焼成するバリスタ
の製造方法。
7. A method for producing a varistor, which comprises mixing, molding and firing a calcined powder containing CuO as a main component in addition to the particle component and the grain boundary component.
【請求項8】 CuO系を主成分とする仮焼粉の粒径
は、粒子成分の仮焼粉に比べ、同等もしくは小さいこと
を特徴とする請求項7記載のバリスタの製造方法。
8. The method of manufacturing a varistor according to claim 7, wherein the particle size of the calcined powder containing CuO as a main component is equal to or smaller than that of the calcined powder of the particle component.
JP7223290A 1995-08-31 1995-08-31 Method of manufacturing varistor Pending JPH0969419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7223290A JPH0969419A (en) 1995-08-31 1995-08-31 Method of manufacturing varistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7223290A JPH0969419A (en) 1995-08-31 1995-08-31 Method of manufacturing varistor

Publications (1)

Publication Number Publication Date
JPH0969419A true JPH0969419A (en) 1997-03-11

Family

ID=16795828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7223290A Pending JPH0969419A (en) 1995-08-31 1995-08-31 Method of manufacturing varistor

Country Status (1)

Country Link
JP (1) JPH0969419A (en)

Similar Documents

Publication Publication Date Title
JPH08169774A (en) Ceramics and its production
EP0412167A1 (en) Laminated type grain boundary insulated semiconductor ceramic capacitor and method of producing the same
JPH06302403A (en) Lamination type semiconductor ceramic element
JP2002255646A (en) Dielectric ceramic fired at low temperature, multilayer type dielectric element, method of producing the dielectric ceramic and auxiliary oxide
JP4029170B2 (en) Manufacturing method of negative characteristic thermistor
CN1635592A (en) High dielectric and reduction resistant ceramic material and prepared ceramic capacitor
JPH0969419A (en) Method of manufacturing varistor
JP2565894B2 (en) Method for producing oxide superconducting material
JP2689439B2 (en) Grain boundary insulation type semiconductor porcelain body
JP3784427B2 (en) Manufacturing method of ceramic capacitor
JP3220846B2 (en) Semiconductor porcelain and method of manufacturing semiconductor porcelain electronic component
JPH07335474A (en) Manufacture of ceramic capacitor
JP2580374B2 (en) Method for producing composite perovskite type dielectric porcelain powder
KR19990083131A (en) Semiconducting ceramic and semiconducting ceramic electronic element
JP7318611B2 (en) Multilayer ceramic capacitor
JP2850355B2 (en) Ceramic capacitor and method of manufacturing the same
JP2682824B2 (en) Method for manufacturing grain boundary layer insulated semiconductor ceramic capacitor
JP2934388B2 (en) Manufacturing method of semiconductor porcelain
JPH0248458A (en) Ceramic superconductor and production thereof
JP3414123B2 (en) Method for manufacturing grain boundary insulating multilayer ceramic element
JP2722457B2 (en) Manufacturing method of ceramic capacitor
JP2566571B2 (en) Mixed sintered porcelain and manufacturing method thereof
JPH06287069A (en) Production of semiconductor porcelain
JP2646734B2 (en) Ceramic capacitor and method of manufacturing the same
JP2001093706A (en) Laminated ceramic varistor and method for manufacture thereof