JPS632368A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS632368A
JPS632368A JP61145001A JP14500186A JPS632368A JP S632368 A JPS632368 A JP S632368A JP 61145001 A JP61145001 A JP 61145001A JP 14500186 A JP14500186 A JP 14500186A JP S632368 A JPS632368 A JP S632368A
Authority
JP
Japan
Prior art keywords
semiconductor region
region
channel
vertical type
vertical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61145001A
Other languages
Japanese (ja)
Inventor
Kenji Miura
三浦 賢次
Toshibumi Somatani
杣谷 聡文
Ban Nakajima
中島 蕃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP61145001A priority Critical patent/JPS632368A/en
Publication of JPS632368A publication Critical patent/JPS632368A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0214Particular design considerations for integrated circuits for internal polarisation, e.g. I2L
    • H01L27/0229Particular design considerations for integrated circuits for internal polarisation, e.g. I2L of bipolar structures
    • H01L27/0233Integrated injection logic structures [I2L]
    • H01L27/024Integrated injection logic structures [I2L] using field effect injector structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Logic Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To elevate the density of a large-scale integrated circuit and increase working speed thereof by transmitting an input signal over a semiconductor region (e) under the state in which supply voltage is applied to a semiconductor region (a), a semiconductor region (d) is grounded and fixed voltage is applied to a semiconductor region (c). CONSTITUTION:A vertical type MISFET using a semiconductor region (e) as a gate electrode and a section along the inner wall of a groove in a semiconductor region (a) as a channel and a vertical type JFET employing a semiconductor region (c) as a gate electrode and a region, which forms one part of the semiconductor region (a) and the periphery of which is covered with the semiconductor region (c), as a channel are shaped, and the two FETs are connected in a semiconductor region (b), thus forming a signal inversion circuit using the vertical type MISFET as a drive transistor and the vertical type JFET as a load transistor. When input voltage is at a 'high level', the channel 11 in the vertical type MISFET 15 is brought to a conductive state, currents flow through a drain electrode 5-a channel region 13-a source electrode (a drain electrode) 6-channel regions 12, 11-a source electrode 7, and output voltage (a 'low' level) determined by the ON resistanc ratio of the vertical type MISFET 15 and the vertical type JFET is acquired as output voltage.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、縦型絶縁ゲート形電界効果トランジスタ(以
下、縦型MISFETと称する)および縦型接合ゲート
形電界効果トランジスタ(以下、縦型JFETと称する
)とを複合化し、信号反転機能を実現した半導体装置お
よびその製造方法に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to vertical insulated gate field effect transistors (hereinafter referred to as vertical MISFETs) and vertical junction gate field effect transistors (hereinafter referred to as vertical JFETs). The present invention relates to a semiconductor device that realizes a signal inversion function by combining the following functions (referred to as "1") and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

従来、信号反転機能を構成するためには、例えば高密度
化・高速度化に有利として知られているn M OS 
E / D構成を例にとれば、第7図および第8図に示
すような構造で実現されていた。すなわち、エンハンス
メント形MOSトランジスタ71を駆動トランジスタと
し、デイプリージョン形MO3)ランジスタを負荷トラ
ンジスタとして第7図(c)に示す等価回路のように接
続したものであり、トランジスタ70のドレイン72に
電源電圧を印加して、EMO3T71のゲート77に信
号を入力すると、トランジスタ70のソース74とトラ
ンジスタ71のドレイン76の接続点に反転信号が現れ
る。
Conventionally, in order to configure the signal inversion function, nMOS, which is known to be advantageous for high density and high speed, has been used.
Taking the E/D configuration as an example, it has been realized with a structure as shown in FIGS. 7 and 8. That is, the enhancement type MOS transistor 71 is used as a drive transistor, and the depletion type MO3) transistor is used as a load transistor, which is connected as shown in the equivalent circuit shown in FIG. 7(c). When a signal is applied to the gate 77 of the EMO3T71, an inverted signal appears at the connection point between the source 74 of the transistor 70 and the drain 76 of the transistor 71.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、このような平面形MO3FETを用いる構成
では、負荷トランジスタと駆動トランジスタの占める素
子占有面積が大きく高密度化に限界があった。また、n
 M OS E / D構成では、出力端子がn゛接合
負荷トランジスタのゲートの両者に接続されているため
、寄生負荷容量が大きく高速化に限界があった。
However, in a configuration using such a planar MO3FET, the load transistor and the drive transistor occupy a large element area, and there is a limit to high density. Also, n
In the MOS E/D configuration, since the output terminal is connected to both the gates of the n-junction load transistor, the parasitic load capacitance is large and there is a limit to increasing the speed.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体装置は上記問題点に鑑みてなされたもの
であり、第1導電形の半導体領域aと、半導体領域aの
表面に形成された高濃度第1導電形の半導体領域すと、
上端部において半導体領域すの少なくとも一部を取り囲
み底部が半導体領域aの内部に至る溝と、前記溝の底部
の半導体領域aに形成された第2導電形の半導体領域C
と、前記溝底部に沿って半導体領域C内に形成された半
導体領域dと、前記溝の内側面に絶縁膜を介して形成さ
れた導電層eとを有するものである。また、このような
構造を実現するために、本発明の半導体装置の製造方法
は第1導電形の半導体領域aの主面上に第2導電形の半
導体領域すを形成した後、半導体領域すの表面から半導
体領域aの内部に至るまでその平面パターンが閉じてい
る溝を形成し、ついで、前記溝内面および前記半導体領
域aの主面に絶縁層を形成し、前記溝底部の半導体領域
a中に第2導電形の半導体領域Cおよび第1導電形の半
導体領域dを形成し、その後、前記溝内側面の絶縁層上
に導電体層eを形成するものである。
The semiconductor device of the present invention has been made in view of the above-mentioned problems, and includes a semiconductor region a of a first conductivity type, and a highly doped semiconductor region of the first conductivity type formed on the surface of the semiconductor region a.
a groove that surrounds at least a portion of the semiconductor region at the upper end and whose bottom reaches inside the semiconductor region a; and a second conductivity type semiconductor region C formed in the semiconductor region a at the bottom of the groove.
, a semiconductor region d formed in the semiconductor region C along the bottom of the trench, and a conductive layer e formed on the inner surface of the trench with an insulating film interposed therebetween. In addition, in order to realize such a structure, the method for manufacturing a semiconductor device of the present invention includes forming a semiconductor region of the second conductivity type on the main surface of the semiconductor region a of the first conductivity type, and then forming the semiconductor region all over the main surface of the semiconductor region a of the first conductivity type. A trench whose planar pattern is closed from the surface to the inside of the semiconductor region a is formed, and then an insulating layer is formed on the inner surface of the trench and the main surface of the semiconductor region a, and the semiconductor region a at the bottom of the trench is A semiconductor region C of the second conductivity type and a semiconductor region d of the first conductivity type are formed therein, and then a conductor layer e is formed on the insulating layer on the inner side surface of the trench.

〔作用〕[Effect]

このような構成をとることにより、半導体領域eをゲー
ト電極とし半導体領域aの溝の内壁に沿った部分をチャ
ネルとする縦型MISFETと、半導体領域Cをゲート
電極とし半導体領域aの一部であって半導体領域Cによ
って周囲を覆われた領域をチャネルとする縦型JFET
とが形成される。そして、この2つのFETは半導体領
域すにおいて接続されており、縦型MISFETを駆動
トランジスタ、縦型JFETを負荷トランジスタとする
信号反転回路を構成する。すなわち、半導体領域aに電
源電圧を印加し、半導体領域dを接地し、半導体領域C
に固定電圧を印加した状態で、入力信号を半導体領域e
に与えることにより、反転信号を半導体領域すから取り
出すことができる。
By adopting such a configuration, a vertical MISFET with the semiconductor region e as the gate electrode and a channel along the inner wall of the groove of the semiconductor region a, and a vertical MISFET with the semiconductor region C as the gate electrode and a part of the semiconductor region a as the channel. A vertical JFET whose channel is a region surrounded by a semiconductor region C.
is formed. These two FETs are connected in the semiconductor region, and form a signal inversion circuit in which the vertical MISFET is used as a drive transistor and the vertical JFET is used as a load transistor. That is, a power supply voltage is applied to semiconductor region a, semiconductor region d is grounded, and semiconductor region C
With a fixed voltage applied to the semiconductor region e, the input signal is
By applying the inverted signal to the semiconductor region, an inverted signal can be extracted from the semiconductor region.

そして、本発明の製造方法を用いれば、このような半導
体装置を実現することができる。
By using the manufacturing method of the present invention, such a semiconductor device can be realized.

〔実施例〕〔Example〕

以下、実施例と共に本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail along with examples.

第1図は本発明の一実施例を示す図であり、同図(a)
は平面パターン図、同図(b)および(C)はそれぞれ
同図(a)におけるB−B ’断面図、c−c’断面図
である。また、第2図は第1図の半導体装置の等価回路
を示す回路図であり、駆動トランジスタとしての縦型M
ISFET15と負荷トランジスタとしての縦型JFE
T16が図のように接続されている。
FIG. 1 is a diagram showing an embodiment of the present invention, and FIG.
1 is a plan pattern diagram, and FIGS. 3(b) and 3(c) are a BB′ cross-sectional view and a cc′ cross-sectional view, respectively, in FIG. 2(a). FIG. 2 is a circuit diagram showing an equivalent circuit of the semiconductor device of FIG.
ISFET15 and vertical JFE as load transistor
T16 is connected as shown.

1はn形の不純物を含む半導体基板であり、半導体領域
aを構成している。2は縦型M I S F ET15
のゲート絶縁膜であり、平面パターンが枠状に形成され
た溝8の内側側面全周に形成されている。3は縦型MI
SFET15のゲート電極であり、ゲート絶縁膜2上に
形成されたリン添加多結晶シリコンのような導電体層e
から成る。4は縦型JFET16のゲート電極であり、
?ll 8の底部を包むように半導体基板l中に形成さ
れたp形の不純物を含む半導体領域Cから成る。なお、
この半導体領域Cは必ずしも溝8に沿って連続していな
くともよく、後述する領域13をほぼ取り囲むように形
成されていれば一部において分断されていてもよい。5
は縦型JFET16のドレイン電極であり、n形不純物
を含む半導体領域である。
1 is a semiconductor substrate containing n-type impurities, and constitutes a semiconductor region a. 2 is vertical MISFET15
The gate insulating film has a planar pattern formed all around the inner side surface of the groove 8 formed in the shape of a frame. 3 is vertical MI
A conductive layer e such as phosphorus-doped polycrystalline silicon, which is the gate electrode of the SFET 15 and is formed on the gate insulating film 2.
Consists of. 4 is the gate electrode of the vertical JFET 16;
? A semiconductor region C containing p-type impurities is formed in a semiconductor substrate l so as to surround the bottom of a semiconductor substrate l8. In addition,
This semiconductor region C does not necessarily have to be continuous along the groove 8, and may be partially divided as long as it is formed so as to substantially surround a region 13, which will be described later. 5
is the drain electrode of the vertical JFET 16, and is a semiconductor region containing n-type impurities.

6は縦型JFET16のソース電極および縦型MISF
ET15のドレイン電極を兼ねるものであり、n形の不
純物を含む半導体領域すから成る。
6 is the source electrode of vertical JFET16 and vertical MISF
It also serves as the drain electrode of the ET 15 and consists of a semiconductor region containing n-type impurities.

7は縦型MISFET15のソース電極であり、半導体
領域C中に形成されたn形の不純物を含む半導体領域d
から成る。9はp形の不純物を含む導電体(多結晶シリ
コン)からなる引き出し電極であり、10はn形の不純
物を含む導電体(多結晶シリコン)から成る引き出し電
極である。11および12は縦型MISFET15のチ
ャネル領域であり、そのうち領域12はドレイン6の電
圧を弱める吸収領域として機能する。13は縦型JFE
T16のチャネル領域である。
7 is a source electrode of the vertical MISFET 15, which is a semiconductor region d containing n-type impurities formed in the semiconductor region C.
Consists of. 9 is an extraction electrode made of a conductor (polycrystalline silicon) containing p-type impurities, and 10 is an extraction electrode made of a conductor (polycrystalline silicon) containing n-type impurities. 11 and 12 are channel regions of the vertical MISFET 15, of which region 12 functions as an absorption region that weakens the voltage of the drain 6. 13 is vertical JFE
This is the channel region of T16.

このような構造の半導体装置において、縦型JFE71
6のドレイン電極5を電源端子、縦型MISFET15
のソース電極7の引き出し電極10を接地端子、縦型M
ISFET15のドレイン電極すなわち縦型JFET1
6のソース電極6を出力端子、縦型MISFE715の
ゲート電極3を入力端子、縦型JFET16のゲート電
極4の引き出し電極9を固定電圧印加端子とすることに
より、縦型JFET16を負荷トランジスタ、DS A
 (Diffusion Self−Aligned)
形の縦型MI 5FET15を駆動トランジスタとする
信号反転回路が実現できる。
In a semiconductor device with such a structure, vertical JFE71
The drain electrode 5 of 6 is the power supply terminal, and the vertical MISFET 15
The extraction electrode 10 of the source electrode 7 is the ground terminal, and the vertical type M
Drain electrode of ISFET15, that is, vertical JFET1
By using the source electrode 6 of the vertical MISFE 715 as an output terminal, the gate electrode 3 of the vertical MISFE 715 as an input terminal, and the extraction electrode 9 of the gate electrode 4 of the vertical JFET 16 as a fixed voltage application terminal, the vertical JFET 16 can be used as a load transistor or a DS A
(Diffusion Self-Aligned)
A signal inversion circuit using a vertical MI 5FET 15 as a drive transistor can be realized.

つぎに、本実施例の動作を説明する。縦型JFET16
のゲート電極9には固定電圧が印加されて常に導通状態
となっている。ゲート電極3に与えられる入力電圧が接
地電圧(「ロー」レベル)のときは縦型MISFET1
5のチャネル11が切れ、縦型JFET16のドレイン
電極6に現れる出力電圧は半導体基板1と同電位の電源
電圧(「ハイ」レベル)となる。−方、入力電圧が「ハ
イ」レベルのときは、縦型MrSFET15のチャネル
11が導通状態となり、「ドレイン電極5−チャネル領
域13−ソース電極(ドレイン電極)6−チャネル領域
12.11−ソース電極7」と電流が流れ、出力電圧は
縦型MISFET15と縦型JFET16のオン抵抗比
で決定される出力電圧(「ロー」レベル)が得られる。
Next, the operation of this embodiment will be explained. Vertical JFET16
A fixed voltage is applied to the gate electrode 9, so that it is always in a conductive state. When the input voltage applied to the gate electrode 3 is the ground voltage (“low” level), the vertical MISFET 1
The channel 11 of the vertical JFET 16 is cut off, and the output voltage appearing at the drain electrode 6 of the vertical JFET 16 becomes a power supply voltage ("high" level) at the same potential as the semiconductor substrate 1. - On the other hand, when the input voltage is at the "high" level, the channel 11 of the vertical MrSFET 15 becomes conductive, and the "drain electrode 5 - channel region 13 - source electrode (drain electrode) 6 - channel region 12.11 - source electrode 7, a current flows, and an output voltage ("low" level) determined by the on-resistance ratio of the vertical MISFET 15 and the vertical JFET 16 is obtained.

すなわち、本実施例により信号反転機能が実現できる。That is, the signal inversion function can be realized by this embodiment.

なお、固定電圧印加端子である引き出し電極9に印加す
る電圧を零あるいは負とするならば、すべてのpn接合
(たとえば、引き出し電極9とソース電極7、ゲート電
極4と半導体基板1等)が逆バイアス状態となるので、
pn接合における無駄な貫通電流は生じず、低消費電力
化に有効である。
Note that if the voltage applied to the extraction electrode 9, which is a fixed voltage application terminal, is zero or negative, all pn junctions (for example, the extraction electrode 9 and the source electrode 7, the gate electrode 4 and the semiconductor substrate 1, etc.) are reversed. Since it is in a bias state,
No wasteful through current occurs in the pn junction, which is effective in reducing power consumption.

また、半導体基板1はn形の不純物を含むウェル領域と
することも可能であり、その場合は電源端子を半導体表
面から取ることが可能となる。
Further, the semiconductor substrate 1 can also be a well region containing n-type impurities, in which case the power supply terminal can be taken from the semiconductor surface.

第3図は本発明の半導体装置の他の実施例を示すもので
あり、同図(a)は平面パターン図、同図(b)および
(C)はそれぞれ同図(a)におけるB−B ’断面図
、c−c ’断面図である。また、第4図は第3図の半
導体装置の等価回路を示す回路図である。本実施例は第
1図の実施例において、縦型MISFET15の固定電
圧を接地電圧とした場合のものであり、これを可能とす
るために、p形の不純物を含む半導体領域4およびn形
の不純物を含む半導体領域7の双方に対して接続可能な
ように金属あるいはそのシリサイドを埋め込んだもので
ある。本実施例、では1B底部の半導体領域4,7から
の引き出し電極を図に示すように引き出し電極14によ
り共用化することができるため、より高密度化すること
ができる。なお、引き出し電極14は、高密度化を狙っ
て細い溝を用いたときに溝8底部の半導体領域4.7に
電圧を印加するために必要なものであり、コンタクト孔
開けおよびAtのような金属配線での接続が可能な広い
溝を用いた場合は必須ではない。
FIG. 3 shows another embodiment of the semiconductor device of the present invention, in which (a) is a plane pattern diagram, and (b) and (C) are B-B in FIG. 'Cross-sectional view, c-c' cross-sectional view. Further, FIG. 4 is a circuit diagram showing an equivalent circuit of the semiconductor device of FIG. 3. In this embodiment, the fixed voltage of the vertical MISFET 15 is set to the ground voltage in the embodiment shown in FIG. Metal or its silicide is buried so that it can be connected to both sides of the semiconductor region 7 containing impurities. In this embodiment, since the extraction electrodes from the semiconductor regions 4 and 7 at the bottom of 1B can be shared by the extraction electrode 14 as shown in the figure, higher density can be achieved. Note that the extraction electrode 14 is necessary for applying a voltage to the semiconductor region 4.7 at the bottom of the groove 8 when a narrow groove is used with the aim of increasing the density. This is not essential if a wide trench is used that allows connection with metal wiring.

本実施例の動作は第1図の実施例の動作と同様であり、
入力端子が「ロー」レベルのときは、縦型MISFET
15のチャネル11が切れて出力電圧が電源電圧と同じ
すなわち「ハイ」レベルとなり、入力端子が[ハイ」レ
ベルのときには、チャネル11が導通して出力電圧が「
ロー」レベルとなる。
The operation of this embodiment is similar to that of the embodiment shown in FIG.
When the input terminal is at “low” level, the vertical MISFET
When the channel 11 of No. 15 is disconnected and the output voltage becomes the same as the power supply voltage, that is, the "high" level, and the input terminal is at the "high" level, the channel 11 becomes conductive and the output voltage becomes "high".
Low level.

以上2つの実施例かられかるように、出力端子がn形の
不純物を含む小面積の半導体領域6のみになるため、従
来のn M OS E / D構造の出力端子に比べて
寄生負荷容量が減少する。また、縦型MISFETのゲ
ートパターン寸法をリソグラフイー工程における寸法の
制約を受けずに決定できるため、極微細寸法に設定でき
る。さらに、枠状の清8で囲まれた凸領域の4つの側面
をすべてチャネルとて利用できるため、チャネル幅を大
きく設定することができる。そのため、負荷駆動力が向
上して非常に高速に動作させることができる。
As can be seen from the above two embodiments, since the output terminal consists of only the small-area semiconductor region 6 containing n-type impurities, the parasitic load capacitance is lower than that of the output terminal of the conventional n-MOS E/D structure. Decrease. Further, since the gate pattern dimensions of the vertical MISFET can be determined without being subject to dimension restrictions in the lithography process, extremely fine dimensions can be set. Furthermore, since all four sides of the convex region surrounded by the frame-shaped square 8 can be used as a channel, the channel width can be set large. Therefore, the load driving force is improved and the device can be operated at extremely high speed.

つぎに、本発明の半導体装置の製造方法の一実施例を説
明する。第5図(a)〜(q)は第1図の半導体装置の
製造方法を示す工程断面図であり、すべて第1図のB−
B’断面図に対応する部分を示している。
Next, an embodiment of the method for manufacturing a semiconductor device of the present invention will be described. FIGS. 5(a) to 5(q) are process cross-sectional views showing the method for manufacturing the semiconductor device in FIG.
A portion corresponding to the B' cross-sectional view is shown.

まず、処理工程(a)では、素子分離領域Aを形成する
。この素子分離プロセスはフィールド分離、選択酸化分
離、酸化膜埋め込み分離、溝分離等いかなる分離法でも
可能である。
First, in the processing step (a), element isolation regions A are formed. This element isolation process can be performed using any isolation method such as field isolation, selective oxidation isolation, oxide film buried isolation, trench isolation, etc.

処理工程(b)では、半導体基板1の表面に熱酸化法に
より1100n程度の薄いシリコン酸化膜21を形成し
、砒素あるいは燐のイオン注入を行い、n形の表面拡散
層22を形成する。なお、この表面n形層22は後述す
るゲート電極加工後に行うことも可能である。
In the treatment step (b), a thin silicon oxide film 21 of about 1100 nm is formed on the surface of the semiconductor substrate 1 by thermal oxidation, and arsenic or phosphorus ions are implanted to form an n-type surface diffusion layer 22. Note that this surface n-type layer 22 can also be formed after the gate electrode processing, which will be described later.

処理工程(c)では、化学的気相成長法(CVD法)に
より、1100nのシリコン窒化膜23と900nmの
燐珪酸ガラス膜(PSG膜)24の多層膜を付着させ、
リソグラフィー工程によりレジスト25に溝パターンを
形成する。この溝パターンは第1図(a)に示すように
平面形状が枠状になるように形成する。
In the treatment step (c), a multilayer film of a 1100 nm silicon nitride film 23 and a 900 nm phosphosilicate glass film (PSG film) 24 is deposited by chemical vapor deposition (CVD).
A groove pattern is formed in the resist 25 by a lithography process. This groove pattern is formed to have a frame-like planar shape as shown in FIG. 1(a).

処理工程(d)では、このレジストパターンをマスクに
、PSG膜24シリコン窒化膜23およびシリコン酸化
膜21からなる多層膜を反応性イオンエツチング(RI
E)によりエツチング処理し、レジスト25を除去する
In the treatment step (d), using this resist pattern as a mask, the multilayer film consisting of the PSG film 24, silicon nitride film 23, and silicon oxide film 21 is subjected to reactive ion etching (RI).
The resist 25 is removed by etching according to step E).

処理工程(e)では、加工された多層膜をマスクに、R
IEにて基板シリコン1をエツチングし、約1μm深さ
の溝Bを形成する。
In the treatment step (e), using the processed multilayer film as a mask, R
The substrate silicon 1 is etched using IE to form a trench B with a depth of approximately 1 μm.

処理工程(f)では、CVD法などの公知の付着法にて
溝が完全に埋まらないように酸化膜26を堆積させる。
In the treatment step (f), an oxide film 26 is deposited by a known deposition method such as CVD so that the trench is not completely filled.

処理工程(g)では、RIEのエツチングの異方性を利
用したエッチバックにて溝側面の酸化膜26を残しつつ
溝底部の酸化膜26を除去する。
In the treatment step (g), the oxide film 26 at the bottom of the groove is removed while leaving the oxide film 26 at the side surface of the groove by etchback using the anisotropy of RIE etching.

ついで、溝側面酸化膜26を保護膜として、硼素および
砒素のイオン注入によりp形およびn形の不純物を溝底
部のみに導入し、p形の半導体領域Cおよびn形の半導
体領域dを形成する。
Next, using the trench side oxide film 26 as a protective film, p-type and n-type impurities are introduced only into the trench bottom by boron and arsenic ion implantation, thereby forming a p-type semiconductor region C and an n-type semiconductor region d. .

処理工程(h)では、ウェットエツチングにて基板表面
のPSG膜24および溝内側面の酸化膜26を全面的に
除去した後、RIEによる汚染や損傷層の除去のため、
フッ酸と硝酸の混合液により溝内のシリコン表面を5Q
nm程度エツチングする。
In the treatment step (h), after completely removing the PSG film 24 on the substrate surface and the oxide film 26 on the inner surface of the trench by wet etching, in order to remove contamination and damaged layers by RIE,
5Q the silicon surface inside the groove with a mixture of hydrofluoric acid and nitric acid.
Etch about nm.

その後処理工程(i)では、熱酸化によりゲート絶縁膜
となるシリコン酸化膜27を10〜20nm形成し、フ
ォスフイン(PH1)添加のモノシランガス(SiH4
)を用いた減圧CVD法により、縦型MISFETのゲ
ート電極となるn形の不純物を含む多結晶シリコン膜2
8を堆積する。この時、原料ガスの混合比を制御するこ
とにより、シリコン基板の主表面で約700 nm、溝
内面で約30Qnmの厚さとなるようにする。なお、溝
のうち紙面と平行に形成されている不図示の部分には、
多結晶シリコン28が完全に埋め込まれている。
In the subsequent treatment step (i), a silicon oxide film 27 that will become a gate insulating film is formed with a thickness of 10 to 20 nm by thermal oxidation, and a monosilane gas (SiH4) doped with phosphine (PH1) is formed.
) is used to form a polycrystalline silicon film 2 containing n-type impurities, which will become the gate electrode of the vertical MISFET.
Deposit 8. At this time, by controlling the mixing ratio of the raw material gases, the thickness is approximately 700 nm on the main surface of the silicon substrate and approximately 30 Q nm on the inner surface of the groove. In addition, in the part of the groove (not shown) that is formed parallel to the paper surface,
Polycrystalline silicon 28 is completely buried.

処理工程(j)では、RIEによるエッチバック法にて
多結晶シリコン膜28をエツチング処理し、基板主表面
の多結晶シリコンを残しつつ、溝底部の多結晶シリコン
を除去する。なお、多結晶シリコン28が完全に埋め込
まれている溝部分すなわち紙面と平行に形成されている
不図示の溝部分では、基板表面と同様に上部の多結晶シ
リコンがエツチングされているだけである。
In the treatment step (j), the polycrystalline silicon film 28 is etched by an etch-back method using RIE to remove the polycrystalline silicon at the bottom of the trench while leaving the polycrystalline silicon on the main surface of the substrate. Note that in the groove portion where the polycrystalline silicon 28 is completely buried, that is, in the groove portion (not shown) formed parallel to the plane of the paper, only the upper polycrystalline silicon is etched, similar to the substrate surface.

処理工程(k)では、600〜650℃程度のウェット
酸化にて多結晶シリコン28の表面にシリコン酸化膜2
9を形成する。このとき、シリコン基板とリン含有の多
結晶シリコン膜との成長速度の差を利用し、多結晶シリ
コン膜の表面に153nmのシリコン酸化膜を、また、
溝底部のシリコン基板表面に10nm程度のシリコン酸
化膜を形成する。
In the treatment step (k), a silicon oxide film 2 is formed on the surface of the polycrystalline silicon 28 by wet oxidation at about 600 to 650°C.
form 9. At this time, by utilizing the difference in growth rate between the silicon substrate and the phosphorus-containing polycrystalline silicon film, a 153 nm silicon oxide film was formed on the surface of the polycrystalline silicon film.
A silicon oxide film of about 10 nm is formed on the surface of the silicon substrate at the bottom of the trench.

処理工程(1)では、RIEによるエッチバソりにより
、多結晶シリコン表面のシリコン酸化膜29をマスクに
溝底部のシリコン酸化膜29および基板シリコン1をエ
ツチングする。このときのエツチング深さはn形の不純
物注入領域dの深さをやや越える程度とする。
In the processing step (1), the silicon oxide film 29 at the bottom of the trench and the silicon substrate 1 are etched using the silicon oxide film 29 on the surface of the polycrystalline silicon as a mask using an etch bath using RIE. The etching depth at this time is set to be slightly greater than the depth of the n-type impurity implanted region d.

処理工程(m)では、リソグラフィー工程により所望の
ゲート電極のパターニングを行い、ゲート電極加工を行
う。
In the treatment step (m), a desired gate electrode is patterned by a lithography step, and the gate electrode is processed.

続いて処理工程(n)および処理工程(0)では、n形
層とp形層に対する引き出し電極用のpタイプ多結晶シ
リコン30およびnタイプ多結晶シリコン31をリソグ
ラフィー工程を通して所望の溝内に埋め込み、引き出し
電極のバターニングを行う。
Subsequently, in a treatment step (n) and a treatment step (0), p-type polycrystalline silicon 30 and n-type polycrystalline silicon 31 for extraction electrodes for the n-type layer and the p-type layer are embedded in desired grooves through a lithography process. , perform patterning of the extraction electrode.

最後に処理工程(p)および処理工程(q)では、眉間
絶縁膜としてPSG膜32を形成し、リフローさせた後
コンタクト孔を形成・加工し、AIのような配線金属3
3を付着させ、リソグラフィー・エツチング工程を経て
、所望の電極配線パターンを形成する。
Finally, in the processing step (p) and the processing step (q), a PSG film 32 is formed as an insulating film between the eyebrows, and after reflowing, a contact hole is formed and processed, and a wiring metal 3 such as AI is formed.
3 is deposited, and a desired electrode wiring pattern is formed through a lithography and etching process.

第6図(a)〜(g)は、本発明の半導体装置の製造方
法の他の実施例を示すものである。第5図では溝形成工
程がエツチングによるものであった。これに対して本実
施例では、半導体基板表面にリソグラフィー工程に溝パ
ターンを形成し、その他の領域に選択的にシリコンをエ
ピタキシャル成長させることにより溝を形成するもので
ある。
FIGS. 6(a) to 6(g) show another embodiment of the method for manufacturing a semiconductor device of the present invention. In FIG. 5, the groove forming process was performed by etching. In contrast, in this embodiment, a groove pattern is formed on the surface of a semiconductor substrate through a lithography process, and the grooves are formed by selectively epitaxially growing silicon in other regions.

本実施例によれば、溝底部への不純物導入が簡単となる
According to this embodiment, impurities can be easily introduced into the groove bottom.

処理工程(a)では、まず基板表面に熱酸化法により1
100n程度の薄いシリコン酸化膜21を形成する。続
いてCVD法により、約1μm程度の多結晶シリコン膜
41を付着させ、リソグラフィー工程によりレジスト2
5に溝パターンを形成する。
In the treatment step (a), 1 is first applied to the surface of the substrate by thermal oxidation.
A thin silicon oxide film 21 of about 100 nm is formed. Subsequently, a polycrystalline silicon film 41 of about 1 μm is deposited using the CVD method, and the resist 2 is removed using a lithography process.
A groove pattern is formed in 5.

処理工程(b)では、このレジストパターンをマスクに
、多結晶シリコン41をRIEによりエツチング処理し
、硼素および砒素のイオン注入によりp形およびn形の
不純物を溝底部のみに導入し、p形の半導体領域Cおよ
びn形の半導体領域dを形成する。
In the treatment step (b), using this resist pattern as a mask, the polycrystalline silicon 41 is etched by RIE, and p-type and n-type impurities are introduced only into the groove bottoms by boron and arsenic ion implantation. A semiconductor region C and an n-type semiconductor region d are formed.

続いて処理工程(C)では、レジスト25を除去してP
SG膜42を付着させ、エッチバックにより溝パターン
に相当する多結晶シリコンの窪み領域にのみPSG膜4
2を埋め込む。
Subsequently, in the processing step (C), the resist 25 is removed and P
The SG film 42 is deposited and the PSG film 4 is etched back only in the recessed region of the polycrystalline silicon corresponding to the groove pattern.
Embed 2.

処理工程(d)では、多結晶シリコン41およびその下
の熱酸化膜21を除去する。
In the treatment step (d), the polycrystalline silicon 41 and the thermal oxide film 21 thereunder are removed.

処理工程(e)では、PSG膜42が残されている溝領
域以外の領域に選択的にシリコンを約1μmエピタキシ
ャル成長させる。
In the treatment step (e), silicon is selectively epitaxially grown to a thickness of about 1 μm in a region other than the groove region where the PSG film 42 remains.

処理工程(f)では、素子分離領域Aを形成する。この
素子分離プロセスはフィールド分離、選択酸化分離、酸
化膜埋め込み分離、溝分離等いかなる分離法でも可能で
ある。ついで、半導体表面に砒素あるいは燐のイオン注
入を行い、n形の表面拡散層22を形成する。なお、こ
の表面n形層22はゲート電極加工後に行うことも可能
である。
In the processing step (f), element isolation regions A are formed. This element isolation process can be performed using any isolation method such as field isolation, selective oxidation isolation, oxide film buried isolation, trench isolation, etc. Next, arsenic or phosphorus ions are implanted into the semiconductor surface to form an n-type surface diffusion layer 22. Note that this surface n-type layer 22 can also be formed after the gate electrode is processed.

続いて処理工程(g)では、ウェットエツチングにて溝
内のPSG膜42を除去した後、フッ酸と硝酸の混合液
により溝内のシリコン表面を50nm程度エツチングし
、溝Bを形成する。その後の工程は第5図と同様である
Subsequently, in the processing step (g), after removing the PSG film 42 in the trench by wet etching, the silicon surface in the trench is etched by about 50 nm using a mixed solution of hydrofluoric acid and nitric acid to form a trench B. The subsequent steps are similar to those shown in FIG.

なお、第5図および第6図に示した実施例はいずれも第
1図に示す半導体装置の製造方法であるが、引き出し電
極としてのp形多結晶シリコン30およびn形多結晶シ
リコン31に代えて、高融点金属あるいはそれらのシリ
サイドを溝内部に埋め込めば、溝底部の半導体領域Cお
よびdからの引き出し電極を共用化した第3図に示す半
導体装置を作ることができる。
The embodiments shown in FIGS. 5 and 6 are both methods for manufacturing the semiconductor device shown in FIG. By burying a high melting point metal or a silicide thereof into the groove, it is possible to produce a semiconductor device shown in FIG. 3 in which the lead electrodes from the semiconductor regions C and d at the bottom of the groove are shared.

以上の実施例では、n形の導電キャリアを例にとったが
、極性を反転させればp形の導電キャリアの半導体装置
とすることができる。
In the above embodiments, an n-type conductive carrier was used as an example, but by reversing the polarity, a p-type conductive carrier semiconductor device can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の半導体装置は、半導体領域
eをゲート電極とし半導体領域aの溝の内壁に沿った部
分をチャネルとする縦型MISFETと、半導体領域C
をゲート電極とし半導体領域aの一部であって半導体領
域Cによって周囲を覆われた領域をチャネルとする縦型
JPETとが形成され、さらに、この2つのFETは半
導体領域すにおいて接続されており、縦型MISFET
を駆動トランジスタ、縦型JFETを負荷トランジスタ
とする信号反転回路となっている。すなわち、出力端子
が溝で囲まれた小面積の半導体領域のみであるので、従
来のn M OS E / D構造の出力端子に比べて
寄生負荷容量が少ない。また、駆動トランジスタが縦型
構造のMISFETであるのでゲートパターン寸法をリ
ソグラフィー工程における寸法の制約を受けずに決定で
きるため、極微細寸法に設定できる。さらに、溝で囲ま
れた凸領域の4つの側面をすべてチャネルとて利用でき
るため、限られた素子平面面積内においてもチャネル幅
を大きく設定することができる。そのため、負荷駆動力
が向上して非常に高速に動作させることができる。した
がって、本発明の半導体装置は大規模集積回路の高密度
化・高速度化に非常に有効である。また、本発明の製造
方法によれば、このように有効な半導体装置を特殊な工
程を用いることなく容易に製造することができる。
As explained above, the semiconductor device of the present invention includes a vertical MISFET in which the semiconductor region e is used as a gate electrode and a portion along the inner wall of the groove in the semiconductor region a is used as a channel;
A vertical JPET is formed in which the gate electrode is a part of the semiconductor region a and the region surrounded by the semiconductor region C is a channel, and these two FETs are connected in the semiconductor region A. , vertical MISFET
This is a signal inversion circuit that uses a vertical JFET as a drive transistor and a vertical JFET as a load transistor. That is, since the output terminal is only a small semiconductor region surrounded by a groove, the parasitic load capacitance is smaller than that of the output terminal of the conventional nMOS E/D structure. Furthermore, since the drive transistor is a MISFET with a vertical structure, the dimensions of the gate pattern can be determined without being constrained by dimensions in the lithography process, so that it can be set to extremely fine dimensions. Furthermore, since all four side surfaces of the convex region surrounded by the groove can be used as a channel, the channel width can be set large even within a limited device plane area. Therefore, the load driving force is improved and the device can be operated at extremely high speed. Therefore, the semiconductor device of the present invention is very effective in increasing the density and speed of large-scale integrated circuits. Moreover, according to the manufacturing method of the present invention, such an effective semiconductor device can be easily manufactured without using any special process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の半導体装置の一実施例を示す構成図、
第2図はその等価回路図、第3図は本発明の半導体装1
の他の実施例を示す構成図、第4図はその等価回路図、
第5図は本発明の製造方法の一実施例を示す製造工程図
、第6図は本発明の製造方法の他の実施例を示す製造工
程図、第7図および第8図はそれぞれ信号反転機能を有
する従来の半導体装置であるn M OS E / D
構造を示す説明図である。 1・・・半導体基板、2・・・縦型MISFETのゲー
ト絶縁膜、3・・・縦型MISFETのゲート電極、4
・・・縦型JFETのゲート電極、5・・・縦型JFE
Tのドレイン電極、6・・・縦型JFETのソース電極
かつ縦型MISFETのドレイン電極、7・・・縦型M
ISFETのソース電極、8・・・溝領域、9゜10.
14・・・引き出し電極、11.12・・・縦型MIS
FETのチャネル領域、13・・・縦型JFETのチャ
ネル領域、15・・・縦型MISFET、16・・・縦
型JFET。 第3図 第5図 第6図 (C1)             (e)(b)(f
’) (C)(9)
FIG. 1 is a configuration diagram showing an embodiment of a semiconductor device of the present invention;
FIG. 2 is an equivalent circuit diagram thereof, and FIG. 3 is a semiconductor device 1 of the present invention.
A configuration diagram showing another embodiment, FIG. 4 is an equivalent circuit diagram thereof,
FIG. 5 is a manufacturing process diagram showing one embodiment of the manufacturing method of the present invention, FIG. 6 is a manufacturing process diagram showing another embodiment of the manufacturing method of the present invention, and FIGS. 7 and 8 are signal inversion diagrams, respectively. nMOS E/D, which is a conventional semiconductor device with functions
FIG. 2 is an explanatory diagram showing the structure. DESCRIPTION OF SYMBOLS 1... Semiconductor substrate, 2... Gate insulating film of vertical MISFET, 3... Gate electrode of vertical MISFET, 4
... Gate electrode of vertical JFET, 5... Vertical JFE
Drain electrode of T, 6... Source electrode of vertical JFET and drain electrode of vertical MISFET, 7... Vertical M
Source electrode of ISFET, 8... Groove region, 9°10.
14...Extraction electrode, 11.12...Vertical MIS
Channel region of FET, 13... Channel region of vertical JFET, 15... Vertical MISFET, 16... Vertical JFET. Figure 3 Figure 5 Figure 6 (C1) (e) (b) (f
') (C) (9)

Claims (2)

【特許請求の範囲】[Claims] (1)第1導電形の半導体領域aと、半導体領域aの表
面に形成された高濃度第1導電形の半導体領域bと、上
端部において半導体領域bの少なくとも一部を取り囲み
底部が半導体領域aの内部に至る溝と、前記溝の底部の
半導体領域aに形成された第2導電形の半導体領域cと
、前記溝底部に沿って半導体領域c内に形成された半導
体領域dと、前記溝の内側面に絶縁膜を介して形成され
た導電層eとを有する半導体装置。
(1) A semiconductor region a of a first conductivity type, a highly doped semiconductor region b of the first conductivity type formed on the surface of the semiconductor region a, and a semiconductor region surrounding at least a part of the semiconductor region b at the top end and having a bottom part as a semiconductor region. a second conductivity type semiconductor region c formed in the semiconductor region a at the bottom of the trench; a semiconductor region d formed in the semiconductor region c along the trench bottom; A semiconductor device having a conductive layer e formed on the inner surface of the groove with an insulating film interposed therebetween.
(2)第1導電形の半導体領域aの主面上に第2導電形
の半導体領域bを形成する工程と、半導体領域bの表面
から半導体領域aの内部に至る溝であって半導体領域b
の少なくとも一部を取り囲む平面パターンを持つ溝を形
成する工程と、前記溝内面および前記半導体領域aの主
面に絶縁層を形成する工程と、前記溝底部の半導体領域
a中に第2導電形の半導体領域cを形成する工程と、半
導体領域c内に第1導電形の半導体領域dを形成する工
程と、前記溝内側面の絶縁層上に導電体層eを形成する
工程とを有する半導体装置の製造方法。
(2) forming a semiconductor region b of a second conductivity type on the main surface of the semiconductor region a of the first conductivity type, and forming a groove extending from the surface of the semiconductor region b to the inside of the semiconductor region a;
forming a groove having a planar pattern surrounding at least a portion of the semiconductor region a; forming an insulating layer on the inner surface of the groove and the main surface of the semiconductor region a; a step of forming a semiconductor region c of a first conductivity type within the semiconductor region c; and a step of forming a conductor layer e on the insulating layer on the inner surface of the trench. Method of manufacturing the device.
JP61145001A 1986-06-23 1986-06-23 Semiconductor device and manufacture thereof Pending JPS632368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61145001A JPS632368A (en) 1986-06-23 1986-06-23 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61145001A JPS632368A (en) 1986-06-23 1986-06-23 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS632368A true JPS632368A (en) 1988-01-07

Family

ID=15375155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61145001A Pending JPS632368A (en) 1986-06-23 1986-06-23 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS632368A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02156664A (en) * 1988-12-09 1990-06-15 Toshiba Corp Semiconductor device
LT3534B (en) 1989-02-20 1995-11-27 Idemitsu Kosan Co Triazine derivatives, preparation thereof and herbicide containing them
LT3908B (en) 1989-10-12 1996-04-25 Ciba Geigy Ag Heterocyclic compounds, process for preparing thereof, herbicidal and plant growth controlling preparation, method of weed and plant growth control
JP2008186925A (en) * 2007-01-29 2008-08-14 Fuji Electric Device Technology Co Ltd Insulated gate silicon carbide semiconductor device and manufacturing method thereof
WO2013080679A1 (en) * 2011-12-02 2013-06-06 住友電気工業株式会社 Silicon carbide semiconductor apparatus and method for manufacturing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02156664A (en) * 1988-12-09 1990-06-15 Toshiba Corp Semiconductor device
LT3534B (en) 1989-02-20 1995-11-27 Idemitsu Kosan Co Triazine derivatives, preparation thereof and herbicide containing them
LT3908B (en) 1989-10-12 1996-04-25 Ciba Geigy Ag Heterocyclic compounds, process for preparing thereof, herbicidal and plant growth controlling preparation, method of weed and plant growth control
JP2008186925A (en) * 2007-01-29 2008-08-14 Fuji Electric Device Technology Co Ltd Insulated gate silicon carbide semiconductor device and manufacturing method thereof
WO2013080679A1 (en) * 2011-12-02 2013-06-06 住友電気工業株式会社 Silicon carbide semiconductor apparatus and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP3082671B2 (en) Transistor element and method of manufacturing the same
US5688722A (en) CMOS integrated circuit with reduced susceptibility to PMOS punchthrough
TWI394232B (en) Semiconductor apparatus
JPH039631B2 (en)
JPH02166762A (en) Compact cmos device and
US5191401A (en) MOS transistor with high breakdown voltage
JPS632368A (en) Semiconductor device and manufacture thereof
KR100412539B1 (en) BCD device and method of manufacturing the same
EP0386779B1 (en) MOS field-effect transistor having a high breakdown voltage
KR20000066467A (en) Isolation structure and isolation method in seconductor device
US5145796A (en) Method for manufacturing a semiconductor apparatus
JPS6159543B2 (en)
JPH03173175A (en) Semiconductor device
JP3314341B2 (en) Method of forming C-MOS gate array and base contact
KR100259586B1 (en) Method for manufacturing semiconductor device
JPH0812917B2 (en) Method of operating MIS transistor and MIS transistor
JPH10135348A (en) Field effect semiconductor device
JPH06181312A (en) Manufacture of semiconductor device
JPH06151453A (en) High-withstand voltage transistor and its manufacture
JPS62133763A (en) Mos transistor
JPH01208865A (en) Manufacture of semiconductor device
JPH0513758A (en) Mosfet and manufacture thereof
JPH02105576A (en) Field effect transistor
JP2990288B2 (en) Gate array
JPH118389A (en) Semiconductor device