JPS63227722A - Manufacture of grain-oriented magnetic steel sheet having very small iron loss - Google Patents

Manufacture of grain-oriented magnetic steel sheet having very small iron loss

Info

Publication number
JPS63227722A
JPS63227722A JP3183388A JP3183388A JPS63227722A JP S63227722 A JPS63227722 A JP S63227722A JP 3183388 A JP3183388 A JP 3183388A JP 3183388 A JP3183388 A JP 3183388A JP S63227722 A JPS63227722 A JP S63227722A
Authority
JP
Japan
Prior art keywords
steel sheet
grain
iron loss
annealing
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3183388A
Other languages
Japanese (ja)
Inventor
Masao Iguchi
征夫 井口
Isao Ito
伊藤 庸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP3183388A priority Critical patent/JPS63227722A/en
Publication of JPS63227722A publication Critical patent/JPS63227722A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment

Abstract

PURPOSE:To obtain a grain-oriented magnetic steel sheet having a very small iron loss by mirror-finishing the surface of a finish-annealed grain-oriented magnetic steel sheet, partially producing small strain, forming a mixed phase contg. a group of fine grains and further forming a very thin tension film of a specified metallic compd. CONSTITUTION:A silicon steel sheet subjected to final cold rolling is finished- annealed, the surface oxide is removed and the surface of the steel sheet is mirror-finished to <=0.4mum central average roughness by chemical polishing, buffing or other method. The surface is then processed to locally produce small stain and recrystallization is caused at the strain produced positions at a high temp. of >=500 deg.C by CVD, ion plating or other method to form a mixed phase contg. a group of fine grains of <=1.0mm grain size in secondary recrystallized grains near the surface of the steel sheet. A very thin tension film of at lest one of the nitrides, carbides, oxides, borides, silicides, phosphides or sulfides of specified elements having 0.1-2mum thickness is further formed.

Description

【発明の詳細な説明】 〔産業上の利用分野) 一方向性珪素鋼板の電気・磁気的特性の改善、なかでも
、鉄損の低減に係わる極限的に要請を満たそうとして近
年来の目覚ましい開発努力が傾けられているがその実効
を挙げつつあるものでも、実施に伴う重大な弊害として
、一方向性珪素tlJ板の使用に当たっての加工、組立
てを経たのち、いわゆるひずみ取り焼鈍がほどこされた
場合に、特性劣化の随伴を不可避に生じて、使途につい
ての制限を受ける不利が指摘される。
[Detailed Description of the Invention] [Field of Industrial Application] Remarkable developments have been made in recent years in an effort to meet the ultimate demands for improving the electrical and magnetic properties of unidirectional silicon steel sheets, particularly for reducing iron loss. Even though efforts are being made and the efforts are beginning to be effective, a serious problem associated with implementation is that when using unidirectional silicon TLJ plates, after processing and assembly, so-called strain relief annealing is applied. However, it has been pointed out that there is a disadvantage in that it inevitably causes deterioration of characteristics and limits its usage.

この明細書では、ひずみ取り焼鈍のような高温の熱履歴
を経ると否とに拘わらず、上記要請を有利に充足し得る
新たな方途を拓くことについての開発研究の成果に関連
して以下に述べる。
In this specification, the following is related to the results of research and development to open up a new method that can advantageously meet the above requirements, regardless of whether or not it undergoes a high-temperature thermal history such as strain relief annealing. state

ところで一方向性珪素鋼板は、よ(知られているとおり
製品の2次再結晶粒を(110) (001) 、すな
わちゴス方位に、高度に集積させたもので、主として変
圧器その他の電気機器の鉄心として使用され電気・磁気
的特性として製品の磁束密度(Bo。
By the way, unidirectional silicon steel sheets are products in which secondary recrystallized grains are highly concentrated in the (110) (001), or Goss orientation, and are mainly used in transformers and other electrical equipment. The magnetic flux density (Bo.

値で代表される)が高く、鉄損(WI4/S。値で代表
される)の低いことが要求される。
It is required that the iron loss (WI4/S, represented by the value) be high and the iron loss (WI4/S, represented by the value) be low.

この一方向性珪素鋼板は複雑多岐にわたる工程を経て製
造されるが、今までにおびただしい発明・改善が加えら
れ、今日では板厚0.30m+wの製品の磁気特性が8
1゜1.90T以上、讐、、/、。1.05W/Kg以
下、また板厚0.23m+wの製品の磁気特性がB、。
This unidirectional silicon steel plate is manufactured through a wide variety of complicated processes, but numerous inventions and improvements have been made so far, and today a product with a thickness of 0.30 m + W has magnetic properties of 8.
1゜1.90T or more, /,. The magnetic properties of the product are 1.05W/Kg or less and the plate thickness is 0.23m+W.

1.89T以上、W+?15゜0.90葬/Kg以下程
度の低鉄損一方向性珪素鋼板の製造はむしろ一般化して
来ている。
1.89T or more, W+? The production of unidirectional silicon steel sheets with a low core loss of about 15° 0.90 m/kg or less is becoming rather common.

特に最近では省エネの見地から電力損失の低減を特徴と
する請が著しく強まり、欧米では損失の少ない変圧器を
作る場合に鉄損の減少分を金額に換算して変圧器価格に
上積みする「ロス・エバリュエーシッン」 (鉄損評価
)制度が普及しこれが゛はじめに触れた極限的要請にほ
かならない。
Particularly recently, there has been a marked increase in demand for power loss reduction features from an energy-saving perspective, and in Europe and the United States, when creating a transformer with low loss, the reduction in iron loss is converted into a monetary value and added to the transformer price.・The ``evaluation'' (iron loss evaluation) system has become widespread, and this is nothing but the ultimate requirement mentioned in the beginning.

(従来の技術) このような状況下において最近、一方向性珪素鋼板の仕
上焼鈍後の鋼板表面に圧延方向にほぼ直角方向でのレー
ザ照射により局部微小ひずみを導入して磁区を細分化し
、もって鉄損を低下させることが提案(特公昭57−2
252号、特公昭57−53419号、特公昭5B−2
6405号及び特公昭58−26406号各公報参照)
されたがこの磁区細分化技術はひずみ取り焼鈍を施さな
い、積鉄心向はトランス材料として効果的であっても、
ひずみ取り焼鈍を施す、主として巻鉄心トランス材料に
あっては、レーザー照射によって折角に導入された局部
微小ひずみが焼鈍処理により開放されて磁区幅が広くな
るため、レーザー照射効果が失われるという欠点がある
(Prior art) Under these circumstances, recently, the surface of a unidirectional silicon steel plate after finish annealing is irradiated with a laser in a direction approximately perpendicular to the rolling direction to introduce local microstrain to subdivide the magnetic domains. Proposal to reduce iron loss
No. 252, Special Publication No. 57-53419, Special Publication No. 5B-2
6405 and Special Publication No. 58-26406)
However, this magnetic domain refining technology does not apply strain relief annealing, and even though stacked iron core orientation is effective as a transformer material,
The disadvantage of mainly wound core transformer materials that undergo strain relief annealing is that the laser irradiation effect is lost because the annealing process releases the local minute strain introduced by laser irradiation and widens the magnetic domain width. be.

一方これより先に特公昭52−24499号公報におい
ては、一方向性珪素鋼板の仕上げ焼鈍後の鋼板表面を鏡
面仕上げするか又は、その鏡面仕上げ面上に金属薄めっ
きや、さらにその上に絶縁被膜を塗布焼付けする、こと
による、超低鉄損一方向性珪素鋼板の製造方法が提案さ
れている。
On the other hand, earlier in Japanese Patent Publication No. 52-24499, the surface of the unidirectional silicon steel plate after finish annealing was mirror-finished, or the mirror-finished surface was coated with thin metal plating, and furthermore, insulation was applied on the mirror-finished surface. A method of manufacturing an ultra-low core loss unidirectional silicon steel sheet by applying and baking a film has been proposed.

しかしながらこの鏡面仕上げによる鉄損向上手′法は、
工程的に採用するには、著しいコストアップになる割り
に鉄損低減への寄与が充分でない上、と(に鏡面仕上後
に不可欠な絶縁被膜を塗布焼付した後の密着性に問題が
あるため、現在の製造工程において採用されるに至って
はいない。
However, this method of improving iron loss through mirror finishing is
In order to adopt it in terms of process, it would result in a significant cost increase and its contribution to iron loss reduction would not be sufficient, and (after mirror finishing, an indispensable insulating film was applied and baked, and there would be problems with adhesion.) It has not yet been adopted in current manufacturing processes.

また特公昭56−4150号公報においても鋼板表面を
鏡面仕上げした後、酸化物系セラミックス薄膜を蒸着す
る方法が提案されている。しかしながらこの方法も60
0°C以上の高温焼鈍を施すと鋼板とセラミックス層と
がはく離するため、実際の製造工程では採用できない。
Japanese Patent Publication No. 56-4150 also proposes a method in which a steel plate surface is mirror-finished and then an oxide-based ceramic thin film is vapor-deposited. However, this method also has 60
High-temperature annealing at 0°C or higher causes the steel plate and the ceramic layer to separate, so it cannot be used in actual manufacturing processes.

さらに、特公昭60−14827号公報、特開昭59−
23822号公報においては仕上焼鈍後の鋼板に微小ひ
ずみを、機械的な導入又はレーザー照射痕跡によって形
成させた上で、その後500℃以上の高い温度で加熱し
、ひずみ導入領域に微細再結晶粒群を生成させることに
よって、高温焼鈍を施しても特性劣化のない超低鉄損一
方向性珪素鋼板の製造方法が提案されている。これらの
製造方法は上記の仕上焼鈍後のレーザー照射による局部
微小ひずみ導入による磁区細分、化の場合とは異なり、
高温焼鈍によって特性向上効果が消滅しないという利点
があるが、フォルステライト被膜を用いるためなお充分
な超低鉄損化を達成したとはいいがたい。
Furthermore, Japanese Patent Publication No. 14827/1982, Japanese Patent Application Publication No. 59/1983
In Publication No. 23822, micro-strains are formed in a steel plate after finish annealing by mechanical introduction or traces of laser irradiation, and then heated at a high temperature of 500°C or higher to form micro-recrystallized grain groups in the strain-introduced region. A method of manufacturing an ultra-low core loss unidirectional silicon steel sheet that does not cause property deterioration even after high-temperature annealing has been proposed. These manufacturing methods differ from the above-mentioned case of magnetic domain refining and formation by introducing local minute strain by laser irradiation after final annealing.
Although high-temperature annealing has the advantage that the effect of improving properties does not disappear, it is still difficult to say that sufficient ultra-low iron loss has been achieved due to the use of a forsterite coating.

(発明が解決しようとする問題点) 発明者らは上記した鏡面仕上による鉄損向上を目指した
実効を、より有利に引き出すに当って、特に今日の省エ
ネ材料開発の観点では上記のごときコストアップの不利
を凌駕する特性、なかでも高温処理での特性劣化を伴う
ことなくして極薄張力被膜の密着性、耐久性の問題をよ
り有利に克服することが肝要と考え、この基本認識に立
脚し、仕上焼鈍済みの方向性珪素鋼板表面上の酸化物を
除去した後に研磨を施して鏡面状態にする場合につき、
該酸化物除去後における鋼板処理方法の抜本的な改善に
よってとくに有利に超鉄損化を達成することが発明の目
的である。
(Problems to be Solved by the Invention) In order to take advantage of the above-mentioned effectiveness of improving iron loss through mirror finishing, the inventors have found that, especially from the perspective of today's development of energy-saving materials, the above-mentioned cost increase has been avoided. Based on this basic understanding, we believe that it is important to more advantageously overcome the problems of adhesion and durability of ultra-thin tensile coatings without deteriorating their properties during high-temperature treatment. , when polishing to a mirror-like state after removing oxides on the surface of a grain-oriented silicon steel sheet that has been finish annealed,
It is an object of the invention to particularly advantageously achieve ultra-high iron loss by radically improving the steel sheet processing method after removing the oxides.

(問題点を解決するための手段) 上記の問題点は、次の事項を骨子とする構成により、効
果的に充足される。
(Means for Solving the Problems) The above problems can be effectively satisfied by a configuration based on the following matters.

仕上焼鈍を経て中心線平均粗さ0.4μ糟以下に鏡面仕
上げをした鋼板表面近傍の2次再結晶粒がそれに混在し
た1 、 0mm以下の微細結晶粒群を含み、該鋼板表
面上に、該混在相を介し強力に被着した極薄張力被膜を
有する、超低鉄損一方向性珪素鋼板(第1発明)、 第1発明の極薄張力被膜上に、りん酸塩とコロイダルシ
リカを主成分とするコーティング被膜をさらにそなえる
、超低鉄損一方向性珪素鋼板(第2発明)ならびに、 仕上焼鈍済みの鋼板表面上における酸化物を除去し、つ
いで研磨により中心線平均粗さ0.4μ鋼以下の鏡面状
態にした鋼板に対して、その表面上の局部位置に人為的
な微小ひずみを導入しついで500℃以上の温度でのC
VD、イオンプレーティング又はイオンインブランテー
シぢンにより、鋼板表面近傍の2次再結晶粒中に1.0
mm以下の微細結晶粒群を混在生成させた混合相を形成
し、これと同時に該混合相を介し鋼板表面上で強固に被
着した Ti、Zr1HflV、Nb1Ta、Mn、Cr、MO
,WICO,Ni、A f IB及びStの窒化物及び
/又は炭化物。
Contains a group of fine crystal grains of 1.0 mm or less mixed with secondary recrystallized grains near the surface of a steel sheet that has been mirror-finished to a centerline average roughness of 0.4 μm or less through final annealing, and on the surface of the steel sheet, An ultra-low iron loss unidirectional silicon steel sheet having an ultra-thin tensile coating strongly adhered via the mixed phase (first invention), phosphate and colloidal silica are applied on the ultra-thin tensile coating of the first invention. An ultra-low iron loss unidirectional silicon steel sheet (second invention) further provided with a coating film as a main component, and oxides on the surface of the finish annealed steel sheet are removed and then polished to a center line average roughness of 0. A steel plate made into a specular state of 4μ steel or less is subjected to artificial microstrain at local positions on its surface, and then subjected to carbon dioxide treatment at a temperature of 500℃ or higher.
By VD, ion plating or ion implantation, 1.0
Forms a mixed phase in which microcrystal grain groups of mm or less are mixed, and at the same time, Ti, Zr1HflV, Nb1Ta, Mn, Cr, MO are firmly adhered on the steel plate surface via the mixed phase.
, WICO, Ni, A f IB and St nitride and/or carbide.

Affi 、St、Ti、Sn+Fe、Zr、Ta及び
Ceの酸化物。
Affi, oxides of St, Ti, Sn+Fe, Zr, Ta and Ce.

5irTi、 Nb+ Ta、A J! lZr+ H
f t L及び賀のほう化物。
5irTi, Nb+ Ta, A J! lZr+H
f t L and Ka boride.

Mo、 W、 Ti、 Zr及びVのけい化物。Silicides of Mo, W, Ti, Zr and V.

B及びStのりん化物ならびにFe及びZnの硫化物よ
り成る群のうちから選んだ少なくとも1種からなる極薄
張力被膜を形成させる工程を含むことを特徴とする超低
鉄損一方向性けい素鋼板の製造方法(第3発明)である
An ultra-low core loss unidirectional silicon film comprising the step of forming an ultra-thin tensile coating made of at least one member selected from the group consisting of B and St phosphides and Fe and Zn sulfides. This is a method for manufacturing a steel plate (third invention).

この発明による一方向性珪素鋼板の製造工程について一
般的な説明を含めてより詳しく述べる。
The manufacturing process of the unidirectional silicon steel sheet according to the present invention will be described in more detail, including a general explanation.

まず出発素材は従来公知の一方向性珪素鋼板素材成分、
例えば ■c : o、oas〜0.050χ、St : 2.
50〜4.5χ、Mn : 0.01〜0.2χ、Mo
 : 0.003〜0.1χ、Sb : 0.005〜
0.2χ、SあるいはSeの1種あるいは2種合計で、
0.005〜0.05χを含有する組成■C: 0.0
03〜0.08χ、Si : 2.0〜4.0χ、S 
: 0.005〜0.05χ、 N : 0.001〜
0.O1χ、Sn : 0.01〜0.5χ、Cu :
 0.01〜0.3χ、Mn : 0.01〜0.2χ
を含有する組成■C: 0.003〜0.06χ、St
 : 2.0〜4.0χ、s : 0.005〜0.0
5X、  B : 0.0003〜0.0040χ、N
 : 0.001〜0.01χ、Mn : 0.01〜
0.2χを含有する組成 の如きにおいて適用可能である。
First, the starting materials are conventionally known unidirectional silicon steel sheet material components,
For example, ■c: o, oas~0.050χ, St: 2.
50~4.5χ, Mn: 0.01~0.2χ, Mo
: 0.003~0.1χ, Sb: 0.005~
0.2χ, the total of one or two types of S or Se,
Composition containing 0.005 to 0.05χ ■C: 0.0
03~0.08χ, Si: 2.0~4.0χ, S
: 0.005~0.05χ, N: 0.001~
0. O1χ, Sn: 0.01~0.5χ, Cu:
0.01~0.3χ, Mn: 0.01~0.2χ
Composition containing ■C: 0.003 to 0.06χ, St
: 2.0~4.0χ, s: 0.005~0.0
5X, B: 0.0003-0.0040χ, N
: 0.001~0.01χ, Mn: 0.01~
It is applicable to compositions containing 0.2χ.

次に熱延板は800〜1100°Cの均一化焼鈍を経て
1回の冷間圧延で最終板厚とする1回冷延法か又は、通
常850″Cから1050℃の中間焼鈍をはさんでさら
に冷延する2回冷延法にて、後者の場合最初の圧下率は
50%から80%程度、最終の圧下率は50%から85
%程度で0.15mmから0.35mn+厚の最終冷延
板厚とする。
Next, the hot-rolled sheet is either uniformly annealed at 800 to 1100°C and then cold-rolled once to reach the final thickness, or it is usually subjected to intermediate annealing at 850" to 1050°C. In the second cold rolling method, the initial rolling reduction is about 50% to 80%, and the final rolling reduction is about 50% to 85%.
The final cold-rolled plate thickness is from 0.15 mm to 0.35 mm+ thickness in terms of %.

最終冷延を終わり製品板厚に仕上げた鋼板は、表面脱脂
後750℃から850℃の湿水素中の脱炭1次再結晶焼
鈍処理を施す。
After finishing the final cold rolling, the steel plate finished to the product thickness is surface degreased and then subjected to decarburization primary recrystallization annealing treatment in wet hydrogen at 750°C to 850°C.

その後は通常、鋼板表面にMgOを主成分とする焼鈍分
離剤を塗布する。この際、一般的には仕上げ焼鈍後の形
成を不可欠としていたフォルステライトをとくに形成さ
せない方がその後の鋼板の鏡面処理を簡便にするのに有
効であるので、焼鈍分離剤としてA2□Oa + Zr
0g + Ti1t等の50%以上をMgOに混入して
使用するのが好ましい。
After that, an annealing separator containing MgO as a main component is usually applied to the surface of the steel sheet. At this time, it is effective to avoid the formation of forsterite, which is generally essential to form after finish annealing, in order to simplify the subsequent mirror finishing of the steel sheet, so A2□Oa + Zr is used as an annealing separator.
It is preferable to use MgO mixed with 50% or more of 0g + Ti1t, etc.

その後2次再結晶焼鈍を行うが、この工程は(110)
 <001>方位の2次再結晶粒を充分発達させるため
に施されるもので、通常箱焼鈍によって直ちに1000
℃以上に昇温し、その温度に保持することによって行わ
れる。
After that, secondary recrystallization annealing is performed, but this step is (110)
This is done to sufficiently develop secondary recrystallized grains with <001> orientation, and is usually box annealed to immediately
This is done by raising the temperature above ℃ and maintaining it at that temperature.

この場合(100) <001>方位に、高度に揃った
2次再結晶粒組織を発達させるためには820°Cから
900″Cの低温で保持焼鈍する方が有利であり、その
ほか例えば0.5〜15°C/hの昇温速度の除熱焼鈍
でもよい。
In this case, in order to develop a highly uniform secondary recrystallized grain structure in the (100) <001> orientation, it is advantageous to perform holding annealing at a low temperature of 820°C to 900″C; Heat-removal annealing at a heating rate of 5 to 15°C/h may also be used.

2次再結晶焼鈍後の純化焼鈍は水氷素中で1100°C
以上で1〜20時間焼鈍を行なって、鋼板の純化を達成
することが必要である。
Purification annealing after secondary recrystallization annealing is carried out at 1100°C in water and hydrogen.
It is necessary to perform annealing for 1 to 20 hours to achieve purification of the steel plate.

この純化焼鈍後に鋼板表面の酸化物被膜を公知の酸洗な
どの化学的除去法や切削、研削などの機械的除去法又は
それらの組合せにより除去する。
After this purification annealing, the oxide film on the surface of the steel sheet is removed by known chemical removal methods such as pickling, mechanical removal methods such as cutting and grinding, or a combination thereof.

この酸化物除去処理後、化学研磨、電解研磨などの化学
的研摩や、パフ研磨などの機械的研磨あるいはそれらの
組合せなど従来の手法により鋼板表面を鏡面状態つまり
中心線平均粗さ0.4μ醜以下に仕上げる。
After this oxide removal treatment, the steel plate surface is polished to a mirror-like state, that is, with a center line average roughness of 0.4 μm, using conventional methods such as chemical polishing such as chemical polishing and electrolytic polishing, mechanical polishing such as puff polishing, or a combination thereof. Finish as below.

次に鏡面鋼板表面上に局所微小ひずみを導入するがその
手法は従来公知の方法例えば ■剛体片を鋼板に圧接しかつ掻引する方法(特公昭50
−35699号公報参照)として、ナイフやカミソリの
刃先、金剛砂、金たわしなどで鋼板表面を動いたり、ひ
っかいたりすること。
Next, a local microstrain is introduced onto the surface of the mirror-finished steel plate using a conventionally known method, such as the method of pressing a rigid piece against the steel plate and scratching it (Japanese Patent Publication No. 50
(Refer to Publication No. 35699), moving or scratching the surface of a steel plate with the edge of a knife or razor, diamond sand, a metal scrubber, etc.

■線状の鋭い先端を有する剛体を鋼板に圧接する方法。■A method in which a rigid body with a sharp linear tip is pressed against a steel plate.

■液体または剛い粉体ないしはそれらの混合物を高圧で
鋼板上に噴射しかつ必要に応じて掻引する方法。
■A method in which liquid or hard powder or a mixture thereof is injected onto the steel plate at high pressure and scratched as necessary.

■微小に絞られた点状あるいは線状のレーザー照射ある
いは高エネルギーの電子線などを走査する方法 などを用いても良い。
(2) A method of scanning finely focused dot or line laser irradiation or high-energy electron beams may also be used.

その後CVD、イオンプレーティング又はイオンインプ
ランテーションより500℃以上の高温状態にして局所
ひずみ導入位置を再結晶させて微細結晶粒群の混在する
混合相を鋼板表面近傍に形成させるとともに、鋼板表面
上に該混合相を介し強力に被着した極薄張力被膜を形成
させる。
Then, by CVD, ion plating, or ion implantation, the temperature is raised to 500°C or higher to recrystallize the local strain introduction position to form a mixed phase containing fine crystal grains near the steel sheet surface. An ultra-thin tensile film strongly adhered via the mixed phase is formed.

このときの張力被膜はTitZr+Hf+VtNb+T
a、Mn+CrtMo+ lt+ Co、 Ni、 A
 f 、 B、 Stの窒化物及び/又は炭化物。
The tension coating at this time is TitZr+Hf+VtNb+T
a, Mn+CrtMo+ lt+ Co, Ni, A
f, B, St nitride and/or carbide.

Aj! 、Si、Ti、Sn、Fe、Zr+Ta+Ce
の酸化物、Si、Ti、Nb+Ta、Ajl!、 Zr
、1ILV、−のほう化物+ Mo、LTLZr、Vの
けい化物、 B、Siのりん化物そしてFe、Znの硫
化物のうちから選んだ少くとも1種からなる極薄のもの
が何れも適切であり、とくに極薄張力被膜は0.1〜2
μI程度の厚みをもつことが効果的である。CVO,イ
オンプレーティング又はイオンインプランテーションの
施工が500°C未満の温度では再結晶しにくいため、
処理温度は500°C以上とする。
Aj! , Si, Ti, Sn, Fe, Zr+Ta+Ce
oxides, Si, Ti, Nb+Ta, Ajl! , Zr
, 1ILV, − boride + Mo, LTLZr, V silicide, B, Si phosphide, and at least one selected from Fe and Zn sulfides. Yes, especially for ultra-thin tension coatings 0.1 to 2
It is effective to have a thickness of approximately μI. CVO, ion plating or ion implantation is difficult to recrystallize at temperatures below 500°C.
The treatment temperature is 500°C or higher.

さらにこのように生成した極薄張力被膜上に、りん酸塩
とコロイダルシリカを主成分とする絶縁被膜の塗布焼付
を行うことが、100万KVAにも上る大容量トランス
の使徐において当然に必要であり、この絶縁性塗布焼付
層の形成の如きは、従来公知の手法をそのまま用いて良
い。
Furthermore, it is necessary to apply and bake an insulating film mainly composed of phosphate and colloidal silica on the ultra-thin tension film produced in this way when using a large-capacity transformer of up to 1 million KVA. For the formation of this insulating coated and baked layer, conventionally known methods may be used as they are.

さて止揚した各発明の成功が導かれた具体的実験の経過
に従って説明を進める。C:0.042重量%(以下単
に%で示す) 、Si : 3.38%、Mn:0.0
62%、Se:0.021%、Sb:0.025%およ
びMo:0.026%を含有する珪素鋼連鋳スラブを1
360℃で4時間加熱後熱間圧延して2.0mm厚の熱
延板とした。
Now, we will proceed with the explanation according to the progress of the specific experiments that led to the success of each of the invented inventions. C: 0.042% by weight (hereinafter simply expressed as %), Si: 3.38%, Mn: 0.0
62%, Se: 0.021%, Sb: 0.025% and Mo: 0.026%.
After heating at 360° C. for 4 hours, it was hot rolled to obtain a hot rolled sheet with a thickness of 2.0 mm.

その後900°Cで3分間の均−化焼鈍後950″Cで
3分間の中間焼鈍をはさむ2回の冷間圧延を施して0.
23mm厚の最終冷延板とした。
After that, it was subjected to equalization annealing at 900°C for 3 minutes and cold rolling twice, including an intermediate annealing at 950''C for 3 minutes.
A final cold-rolled sheet with a thickness of 23 mm was obtained.

その後820℃の湿水素雰囲気中で脱炭・1次再結晶焼
鈍を施した後、鋼板表面に不活性A l go3(80
χ)とMgO(20%)からなる焼鈍分離剤を塗布し、
ついで850°Cで50時間の2次再結晶焼鈍と120
0°Cで雑水素中で5時間の純化焼鈍を施した。
Thereafter, after decarburization and primary recrystallization annealing in a wet hydrogen atmosphere at 820°C, the surface of the steel plate was coated with inert Al go3 (80°C).
Apply an annealing separator consisting of χ) and MgO (20%),
Then, secondary recrystallization annealing was performed at 850°C for 50 hours and
Purification annealing was performed at 0°C in miscellaneous hydrogen for 5 hours.

その後酸洗にて鋼板表面の酸化物を除去したのち、3χ
IFとHtOz混合液中で化学研磨を施した後(A):
圧延方向と直角方向に8IIIIl+間隔でナイフによ
り局所的に機械的微小ひずみ(0,In++++幅のさ
ず)を導入 (B):パルスレーザーを用いて圧延方向と直角方向に
8a+s+間隔(スポット中心間隔−2,0In1m、
スポットの直径−0,5mmφ、照射エネルギー:μm
20J/cm”)で局所微小ひずみを導入 する、2通りに分けた条件で処理した2種類の試料のお
のおのに、CVD装置を使用して750°Cで20時間
にわたりTiC24とN2およびH,の混合ガス雰囲気
中でCVD処理して、鋼板表面近傍の2次再結晶粒中に
0.05〜0.511III+の微細結晶粒群を混在生
成させた混合相を形成し、これと同時に該混合相を介し
鋼板表面上で強力に被着したTiNの極薄張力被膜(0
,6μm厚)を形成させた。また1部の試料については
、張力被膜の上にりん酸塩とコロイダルシリカを主成分
とするコーティング被膜を形成した。そのときの製品の
磁気特性を通常工程材(比較材)ととともに表1にまと
めて示す。
After that, after removing the oxides on the steel plate surface by pickling, 3χ
After chemical polishing in IF and HtOz mixture (A):
Introducing small mechanical strains (0, In++++ width) locally with a knife at 8IIIl+ intervals in the direction perpendicular to the rolling direction (B): Using a pulsed laser to introduce 8a+s+ intervals (spot center spacing) in the direction perpendicular to the rolling direction. -2,0In1m,
Spot diameter -0.5mmφ, irradiation energy: μm
Two types of samples were treated under two different conditions, each of which introduced a local microstrain at 20 J/cm"), and were treated with TiC24, N2, and H for 20 hours at 750°C using a CVD apparatus. CVD treatment is performed in a mixed gas atmosphere to form a mixed phase in which fine crystal grain groups of 0.05 to 0.511III+ are mixedly generated in secondary recrystallized grains near the surface of the steel sheet, and at the same time, the mixed phase is An ultra-thin tensile coating of TiN (0
, 6 μm thick). For some samples, a coating film containing phosphate and colloidal silica as main components was formed on the tension film. The magnetic properties of the products at that time are summarized in Table 1 together with the normal process material (comparative material).

第1表 表1から磁気特性はB1゜が1.91〜1.92T、W
+、/s。
From Table 1 Table 1, the magnetic properties are B1°: 1.91-1.92T, W
+, /s.

が0.60〜0.65W/Kgで通常工程材(比較材)
にくらべてB、。で0.02〜0.03T、W+w/s
。で0.23〜0.28W/Kgと極端に良好(特に鉄
損特性の向上は顕著である)であることが注目される。
Normal process material (comparison material) with 0.60 to 0.65 W/Kg
Compared to B. at 0.02~0.03T, W+w/s
. It is noteworthy that the performance is 0.23 to 0.28 W/Kg, which is extremely good (in particular, the improvement in iron loss characteristics is remarkable).

(作 用) このような特性向上は、鋼板表面を鏡面状態にした後、
局所微小ひずみを導入し、ついで、CvD処理中に微小
ひずみ導入位置に微細結晶粒を生成させると同時に、T
iNの極薄張力被膜を形成させることに帰因し、鉄損の
効果的な低下が導かれる。
(Function) This improvement in properties is achieved by making the surface of the steel sheet mirror-like.
A local microstrain is introduced, and then, during CvD processing, fine crystal grains are generated at the microstrain introducing position, and at the same time, T
Due to the formation of an ultra-thin tensile coating of iN, an effective reduction in iron loss is led.

(実施例) 裏施五工 (A) C:0.041χ、St:3.48χ、Mn:
0.062χ、Mo:0.025χ。
(Example) Back construction (A) C: 0.041χ, St: 3.48χ, Mn:
0.062χ, Mo: 0.025χ.

Se:0.022χ、Sb:0.025χを含有する熱
延板および(B) C:0.053X、Si:3.32
X、Mn:0.072X、S:0.018X。
Hot rolled sheet containing Se: 0.022χ, Sb: 0.025χ and (B) C: 0.053X, Si: 3.32
X, Mn: 0.072X, S: 0.018X.

A乏:0.025χ、N:0.066χを含有する熱延
板を用いた。まず最初に(A)の熱延板は900℃で3
分間の均−化焼鈍後、950℃の中間焼鈍をはさんで2
回の冷間圧延を行なって0.23+u+厚の最終冷延板
とした。
A hot rolled sheet containing A deficiency: 0.025χ and N: 0.066χ was used. First, hot-rolled sheet (A) was heated to 900℃ for 3
After equalization annealing for 2 minutes, intermediate annealing at 950°C was performed for 2 minutes.
Cold rolling was performed twice to obtain a final cold rolled sheet having a thickness of 0.23+u+.

一方(B)の熱延板は1050℃で3分間の均一化焼鈍
を施した後急冷しその後300″Cの温間圧延を施しな
からO−23m−厚の最終冷延板とした。
On the other hand, the hot-rolled sheet (B) was uniformly annealed at 1050° C. for 3 minutes, then rapidly cooled, and then warm-rolled at 300″C to obtain a final cold-rolled sheet with a thickness of O-23 m.

これら(A)および(B)の冷延板は何れも表面を脱脂
した後、830°Cの湿水素中で脱炭焼鈍後鋼板表面に
A j! t’3(70χ) 、 MgO(25χ)、
Zr0t(5χ)から成る焼鈍分離剤を塗布した。
Both of these cold rolled sheets (A) and (B) had their surfaces degreased and then decarburized and annealed in wet hydrogen at 830°C. t'3(70χ), MgO(25χ),
An annealing separator consisting of Zr0t(5χ) was applied.

その後(A)の試料は850℃で50時間の2次再結晶
焼鈍を行なった後、1200℃で6時間乾水素中で純化
焼鈍を行なった。
Thereafter, the sample (A) was subjected to secondary recrystallization annealing at 850°C for 50 hours, and then purified annealing in dry hydrogen at 1200°C for 6 hours.

また(B)の試料は820°Cから5℃/hrで105
0°Cまで昇温して2次再結晶させた後、1200°C
で8時間乾水素中で純化焼鈍を行なった。
In addition, the sample (B) was heated at 105°C at 5°C/hr from 820°C.
After raising the temperature to 0°C and performing secondary recrystallization, it was heated to 1200°C.
Purification annealing was performed in dry hydrogen for 8 hours.

その後(^)および(B)の各試料は酸洗により酸化被
膜を除去後、化学研磨して中心線平均粗さ0.05μ鋼
以下の鏡面状態とした後、鋼板表面上に圧延方向に直角
方向に8mn+間隔でナイフで局所微小ひずみを導入し
た。また一部の試料はYAGレーザーを使用し局所微小
ひずみを導入した。その使用条件はエネルギーが20J
/cn”、スポット直径0.2++m、スポット中心間
隔0.5〜l+wm、 レーザー走査痕間隔8mm(圧
延方向に直角方向にレーザー照射)で行なった。
After that, each sample in (^) and (B) was pickled to remove the oxide film, and then chemically polished to a mirror-like state with a centerline average roughness of 0.05μ or less. Local minute strain was introduced with a knife at 8 m+ intervals in the direction. In addition, local microstrain was introduced into some samples using a YAG laser. The usage condition is that the energy is 20J.
/cn'', a spot diameter of 0.2++ m, a spot center spacing of 0.5 to l+wm, and a laser scanning trace spacing of 8 mm (laser irradiation in a direction perpendicular to the rolling direction).

その後600″C以上の温度でCVD、イオンプレーテ
ィング(表の中の◎印)およびイオンインプランテーシ
ョン(表の中のΔ印)により種々の薄膜を(約0.6〜
0.7μM厚)形成させた。その後1部の試料はコロイ
ダルシリカとリン酸塩を主成分とするコーティング被膜
を形成させた。そのときの製品の磁気特性を表2にまと
めて示す。
Thereafter, various thin films (approximately 0.6~
0.7 μM thick) was formed. Thereafter, a coating film containing colloidal silica and phosphate as main components was formed on one part of the sample. The magnetic properties of the products at that time are summarized in Table 2.

笛  9  裏 (発明の効果) この発明によれば、超低鉄損一方向性珪素鋼板が安定に
しかも容易に得られ、その鉄損特性は、ひすみ取り焼鈍
の如き高温熱履歴の如何には無関係に維持される。
Whistle 9 Back (Effects of the Invention) According to this invention, an ultra-low iron loss unidirectional silicon steel plate can be obtained stably and easily, and its iron loss characteristics are not affected by high-temperature thermal history such as chamfer annealing. is kept irrelevant.

特許出願人  川崎製鉄株式会社 代理人弁理士  杉  村  暁  査問弁理士 杉 
村 興 作
Patent applicant Kawasaki Steel Co., Ltd. Representative patent attorney Akira Sugimura Inquiry patent attorney Sugi
Written by Ko Mura

Claims (1)

【特許請求の範囲】 1、仕上焼鈍済みの鋼板表面上における酸化物を除去し
、ついで研磨により中心線平均粗さ0.4μm以下の鏡
面状態にした鋼板に対して、その表面上の局部位置に微
小ひずみを導入しついで500℃以上の温度でのCVD
、イオンプレーティング又はイオンインプランテーショ
ンにより、 鋼板表面近傍の2次再結晶粒中に1.0mm以下の微細
結晶粒群を混在生成させた混合相を形成し、これと同時
に該混合相を介し鋼板表面上で強固に被着した Al、Si、Ti、Sn、Fe、Zr、Ta及びCeの
酸化物、Si、Ti、Nb、Ta、Al、Zr、Hf、
V、及びWのほう化物、 Mo、W、Ti、Zr及びVのけい化物、 B及びSiのりん化物ならびにFe及びZnの硫化物 より成る群のうちから選んだ少なくとも1 種からなる極薄張力被膜を形成させる工程を含むことを
特徴とする超低鉄損一方向性けい素鋼板の製造方法。
[Claims] 1. Local positions on the surface of a steel plate that has been finish annealed to remove oxides and then polished to a mirror-like state with a center line average roughness of 0.4 μm or less CVD at a temperature of 500℃ or higher after introducing microstrain into the
, ion plating or ion implantation to form a mixed phase in which fine crystal grains of 1.0 mm or less are mixedly generated in the secondary recrystallized grains near the surface of the steel sheet, and at the same time, the steel sheet is formed through the mixed phase. Oxides of Al, Si, Ti, Sn, Fe, Zr, Ta and Ce, Si, Ti, Nb, Ta, Al, Zr, Hf, strongly adhered on the surface.
Ultra-thin tension made of at least one member selected from the group consisting of V and borides of W, silicides of Mo, W, Ti, Zr and V, phosphides of B and Si, and sulfides of Fe and Zn. A method for producing an ultra-low iron loss unidirectional silicon steel sheet, the method comprising the step of forming a film.
JP3183388A 1988-02-16 1988-02-16 Manufacture of grain-oriented magnetic steel sheet having very small iron loss Pending JPS63227722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3183388A JPS63227722A (en) 1988-02-16 1988-02-16 Manufacture of grain-oriented magnetic steel sheet having very small iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3183388A JPS63227722A (en) 1988-02-16 1988-02-16 Manufacture of grain-oriented magnetic steel sheet having very small iron loss

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP60146709A Division JPS6210215A (en) 1985-07-05 1985-07-05 Ultra-low iron loss grain oriented silicon steel sheet and its production

Publications (1)

Publication Number Publication Date
JPS63227722A true JPS63227722A (en) 1988-09-22

Family

ID=12342071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3183388A Pending JPS63227722A (en) 1988-02-16 1988-02-16 Manufacture of grain-oriented magnetic steel sheet having very small iron loss

Country Status (1)

Country Link
JP (1) JPS63227722A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0819241A (en) * 1994-06-24 1996-01-19 Fuji Elelctrochem Co Ltd Stator yoke and manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0819241A (en) * 1994-06-24 1996-01-19 Fuji Elelctrochem Co Ltd Stator yoke and manufacture

Similar Documents

Publication Publication Date Title
JPH0672266B2 (en) Method for manufacturing ultra low iron loss unidirectional silicon steel sheet
JPS6335684B2 (en)
JPS6332849B2 (en)
JPS63227722A (en) Manufacture of grain-oriented magnetic steel sheet having very small iron loss
JPH0699824B2 (en) Thermally stable ultra-low iron loss unidirectional silicon steel sheet and method for producing the same
JPS6210215A (en) Ultra-low iron loss grain oriented silicon steel sheet and its production
JPS63232303A (en) Superlow iron loss and one-way grain oriented silicon steel plate
JPH0375354A (en) Production of grain-oriented silicon steel sheet with superlow iron loss free from deterioration in characteristic due to stress relief annealing
JPS6332850B2 (en)
JPS621820A (en) Grain oriented silicon steel sheet having thermal stability and ultra-low iron loss
JPH0327633B2 (en)
JPS6230302A (en) Manufacture of super-low iron loss unidirectional silicon steel plate
JPH0222421A (en) Production of unidirectional type silicon steel sheet having superlow iron loss
JPH01159322A (en) Production of ultra-low iron loss grain oriented silicon steel sheet
JPS6335685B2 (en)
JPH0374486B2 (en)
JPH0453084B2 (en)
JPH0327629B2 (en)
JPS63227719A (en) Manufacture of grain-oriented magnetic steel sheet having very small iron loss
JPH0699823B2 (en) Method for manufacturing ultra low iron loss unidirectional silicon steel sheet
JPS6270520A (en) Manufacture of ultralow iron loss grain oriented silicon steel sheet
JPS62192581A (en) Production of extra-low iron loss grain oriented silicon steel sheet
JPH0374488B2 (en)
JPS6335686B2 (en)
JPS6269502A (en) Manufacture of very low iron loss grain oriented silicon steel plate