JPS6210215A - Ultra-low iron loss grain oriented silicon steel sheet and its production - Google Patents

Ultra-low iron loss grain oriented silicon steel sheet and its production

Info

Publication number
JPS6210215A
JPS6210215A JP60146709A JP14670985A JPS6210215A JP S6210215 A JPS6210215 A JP S6210215A JP 60146709 A JP60146709 A JP 60146709A JP 14670985 A JP14670985 A JP 14670985A JP S6210215 A JPS6210215 A JP S6210215A
Authority
JP
Japan
Prior art keywords
ultra
steel sheet
steel plate
annealing
silicon steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60146709A
Other languages
Japanese (ja)
Other versions
JPS6335687B2 (en
Inventor
Masao Iguchi
征夫 井口
Isao Ito
伊藤 庸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP60146709A priority Critical patent/JPS6210215A/en
Publication of JPS6210215A publication Critical patent/JPS6210215A/en
Publication of JPS6335687B2 publication Critical patent/JPS6335687B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1288Application of a tension-inducing coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To produce a grain oriented silicon steel sheet having an extremely small iron loss by finishing the surface of a finish-annealed steel sheet from which surface oxides are removed near the center line thereof to a specular surface then forming microstrains thereto to form a mixed phase in which fine crystal grain groups mixedly exist and further forming an insulating film consisting of a specific material. CONSTITUTION:After a silicon steel contg. 2-4% Si is hot rolled, the steel is subjected to homogenization annealing, then to cold rolling to form the steel sheet having the final sheet thickness. The sheet is subjected to a decarburization primary recrystallization annealing treatment in succession of the above; thereafter, a separating agent for annealing essentially consisting of MgO is coated thereon and the sheet is subjected to secondary recrystallization annealing and further to purification annealing in dry hydrogen. The surface is finished to a specular surface having <=0.4mum center line average height by polishing and thereafter the local microstrains are formed thereto. The ultra-thin tensile film which has <=1.0mm fine crystal grain groups mixedly existing in the secondary recrystal groups and consists of the nitride, carbide, boride, etc. of various metals is successively formed at >=500 deg.C by a CVD method, etc. and finally the insulating film essentially consisting of a phosphate and colloidal silica is coated thereon and is baked, by which the silicon steel sheet having the extremely small iron loss is produced.

Description

【発明の詳細な説明】 (産業上の利用分野) 一方向性珪素鋼板の電気・磁気的特性の改善、なかでも
、鉄損の低減に係わる極限的に要請を満たそうとして近
年来の目覚ましい開発努力が傾けられているがその実効
を挙げつつあるものでも、実施に伴う重大な弊害として
、一方向性珪素鋼板の使用に当たっての加工、組立てを
経たのち、いわゆるひずみ取り焼鈍がほどこされた場合
に、特性劣化の随伴を不可避に生じて、使途についての
制限を受ける不利が指摘される。
[Detailed Description of the Invention] (Industrial Application Field) Remarkable developments have been made in recent years in an effort to meet the ultimate requirements for improving the electrical and magnetic properties of unidirectional silicon steel sheets, particularly for reducing iron loss. Even though efforts are being made and the efforts are beginning to be effective, a serious problem associated with implementation is that when using unidirectional silicon steel sheets, after processing and assembly, so-called strain relief annealing is applied. However, it has been pointed out that the disadvantage is that it inevitably causes characteristic deterioration, and that its usage is limited.

この明細書では、ひずみ取り焼鈍のような高温の熱履歴
を経ると否とに拘わらず、上記要請を有利に充足し得る
新たな方途を拓くことについての開発研究の成果に関連
して以下に述べる。
In this specification, the following is related to the results of research and development to open up a new method that can advantageously meet the above requirements, regardless of whether or not it undergoes a high-temperature thermal history such as strain relief annealing. state

ところで一方向性珪素鋼板は、よく知られているとおり
製品の2次再結晶粒を(11,0) [001) 、す
なわちゴス方位に、高度に集積させたもので、主として
変圧器その他の電気機器の鉄心として使用され電気・磁
気的特性として製品の磁束密度(B+。
As is well known, unidirectional silicon steel sheets are products in which secondary recrystallized grains are highly concentrated in the (11,0) [001), that is, Goss orientation, and are mainly used in transformers and other electrical appliances. The magnetic flux density (B+) of the product is used as the iron core of equipment and has electrical and magnetic properties.

値で代表される〕が高く、鉄損(WIT/S。値で代表
される)の低いことが要求される。
It is required that the iron loss (WIT/S, represented by the value) is high and the iron loss (WIT/S, represented by the value) is low.

この一方向性珪素鋼板は複雑多岐にわたる工程を経て製
造されるが、今までにおびただしい発明・改善が加えら
れ、今日では板厚0.30mmの製品の磁気特性が8.
。1.90T以上、WIヮysa 1.05W/Kg以
下、また板厚0.23mmの製品の磁気特性がB161
.89T以上、1,7.。0.90W/Kg以下程度の
低鉄損一方向性珪素鋼板の製造はむしろ一般化して来て
いる。
This unidirectional silicon steel plate is manufactured through a wide variety of complicated processes, but numerous inventions and improvements have been made so far, and today a product with a thickness of 0.30 mm has magnetic properties of 8.
. 1.90T or more, WIwaysa 1.05W/Kg or less, and the magnetic properties of products with a plate thickness of 0.23mm are B161
.. 89T or more, 1,7. . The production of unidirectional silicon steel sheets with a low core loss of about 0.90 W/Kg or less is rather becoming common.

特に最近では省エネの見地から電力損失の低減を特徴と
する請が著しく強まり、欧米では損失の少ない変圧器を
作る場合に鉄損の減少分を金額に換算して変圧器価格に
上積みする「ロス・エバリユエーション」 (鉄損評価
)制度が普及しこれがはじめに触れた極限的要請にほか
ならない。
Particularly recently, there has been a marked increase in demand for power loss reduction features from an energy-saving perspective, and in Europe and the United States, when creating a transformer with low loss, the reduction in iron loss is converted into a monetary value and added to the transformer price. The ``evaluation'' (iron loss evaluation) system has become widespread, and this is nothing but the ultimate requirement mentioned at the beginning.

(従来の技術) このような状況下において最近、一方向性珪素鋼板の仕
上焼鈍後の鋼板表面に圧延方向にほぼ直角方向でのレー
ザ照射により局部微小ひずみを導入して磁区を細分化し
、もって鉄損を低下させることが提案(特公昭57−2
252号、特公昭57−53419号、特公昭58−2
6405号及び特公昭58−26406号各公報参照)
されたがこの磁区細分化技術はひずみ取り焼鈍を施さな
い、積鉄心向はトランス材料として効果的であっても、
ひずみ取り焼鈍を施す、主として巻鉄心トランス材料に
あっては、レーザー照射によって折角に導入された局部
微小ひずみが焼鈍処理により開放されて磁区幅が広くな
るため、レーザー照射効果が失われるという欠点がある
(Prior art) Under these circumstances, recently, the surface of a unidirectional silicon steel plate after finish annealing is irradiated with a laser in a direction approximately perpendicular to the rolling direction to introduce local microstrain to subdivide the magnetic domains. Proposal to reduce iron loss
No. 252, Special Publication No. 57-53419, Special Publication No. 58-2
6405 and Special Publication No. 58-26406)
However, this magnetic domain refining technology does not apply strain relief annealing, and even though stacked iron core orientation is effective as a transformer material,
The disadvantage of mainly wound core transformer materials that undergo strain relief annealing is that the laser irradiation effect is lost because the annealing process releases the local minute strain introduced by laser irradiation and widens the magnetic domain width. be.

一方これより先に特公昭52−24499号公報におい
ては、一方向性珪素鋼板の仕上げ焼鈍後の鋼板表面を鏡
面仕上げするか又は、その鏡面仕上げ面上に金属薄めっ
きや、さらにその上に絶縁被膜を塗布焼付けする、こと
による、超低鉄損一方向性珪素鋼板の製造方法が提案さ
れている。
On the other hand, earlier in Japanese Patent Publication No. 52-24499, the surface of the unidirectional silicon steel plate after finish annealing was mirror-finished, or the mirror-finished surface was coated with thin metal plating, and furthermore, insulation was applied on the mirror-finished surface. A method of manufacturing an ultra-low core loss unidirectional silicon steel sheet by applying and baking a film has been proposed.

しかしながらこの鏡面仕上げによる鉄損向上手法は、工
程的に採用するには、著しいコストアップになる割りに
鉄損低減への寄与が充分でない上、とくに鏡面仕上後に
不可欠な絶縁被膜を塗布焼付した後の密着性に問題があ
るため、現在の製造工程において採用されるに至っては
いない。
However, this method of improving iron loss through mirror finishing cannot be adopted from a process perspective, as it does not contribute enough to reducing iron loss despite the significant increase in cost. Due to problems with adhesion, it has not been adopted in current manufacturing processes.

また特公昭56−4150号公報においても鋼板表面を
鏡面仕上げした後、酸化物系セラミックス薄膜を蒸着す
る方法が提案されている。しかしながらこの方法も60
0℃以上の高温焼鈍を施すと鋼板とセラミックス層とが
はく離するため、実際の製造工程では採用できない。
Japanese Patent Publication No. 56-4150 also proposes a method in which a steel plate surface is mirror-finished and then an oxide-based ceramic thin film is vapor-deposited. However, this method also has 60
If high-temperature annealing is performed at a temperature of 0° C. or higher, the steel sheet and the ceramic layer will separate, so it cannot be used in actual manufacturing processes.

さらに、特公昭60−14827号公報、特開昭59−
23822号公報においては仕上焼鈍後の鋼板に微小ひ
ずみを、機械的な導入又はレーザー照射痕跡によって形
成させた上で、その後500°C以上の高い温度で加熱
し、ひずみ導入領域に微細再結晶粒群を生成させること
によって、高温焼鈍を施しても特性劣化のない超低鉄損
一方向性珪素鋼板の製造方法が提案されている。これら
の製造方法は上記の仕上焼鈍後のレーザー照射による局
部微小ひずみ導入による磁区細分化の場合とは異なり、
高温焼鈍によって特性向上効果が消滅しないという利点
があるが、フォルステライト被膜を用いるためなお充分
な超低鉄損化を達成したとはいいがたい。
Furthermore, Japanese Patent Publication No. 14827/1982, Japanese Patent Application Publication No. 59/1983
In Publication No. 23822, microstrains are formed in a steel plate after final annealing by mechanical introduction or traces of laser irradiation, and then heated at a high temperature of 500°C or higher to form microrecrystallized grains in the strain introduction region. A method of manufacturing an ultra-low core loss unidirectional silicon steel sheet, which does not deteriorate in properties even when subjected to high-temperature annealing, has been proposed by producing a group of unidirectional silicon steel sheets. These manufacturing methods differ from the above-mentioned case of magnetic domain refining by introducing local minute strain by laser irradiation after final annealing.
Although high-temperature annealing has the advantage that the effect of improving properties does not disappear, it is still difficult to say that sufficient ultra-low iron loss has been achieved due to the use of a forsterite coating.

(発明が解決しようとする問題点) 発明者らは上記した鏡面仕上による鉄損向上を自損した
実効を、より有利に引き出すに当って、特に今日の省エ
ネ材料開発の観点では上記のごときコストアップの不利
を凌駕する特性、なかでも高温処理での特性劣化を伴う
ことなくして極薄張力被膜の密着性、耐久性の問題をよ
り有利に克服することが肝要と考え、この基本認識に立
脚し、仕上焼鈍済みの方向性珪素鋼板表面上の酸化物を
除去した後に研磨を施して鏡面状態にする場合につき、
該酸化物除去後における鋼板処理方法の抜本的な改善に
よってとくに有利に超鉄損化を達成することが発明の目
的である。
(Problems to be Solved by the Invention) In order to more advantageously take advantage of the above-mentioned improvement in iron loss due to the mirror finish, the inventors have decided to reduce the above-mentioned costs, especially from the perspective of today's development of energy-saving materials. Based on this basic understanding, we believe that it is important to more advantageously overcome the problems of adhesion and durability of ultra-thin tensile coatings without degrading the properties during high-temperature treatment, and in particular, without deteriorating the properties during high-temperature treatment. However, when the oxides on the surface of a grain-oriented silicon steel sheet that has been finish annealed are removed and then polished to a mirror-like state,
It is an object of the invention to particularly advantageously achieve ultra-high iron loss by radically improving the steel sheet processing method after removing the oxides.

(問題点を解決するための手段) 上記の問題点は、次の事項を骨子とする構成により、効
果的に充足される。
(Means for Solving the Problems) The above problems can be effectively satisfied by a configuration based on the following matters.

仕上焼鈍を経て中心線平均粗さ0.4μm以下に鏡面仕
上げをした鋼板表面近傍の2次再結晶粒がそれに混在し
た1 、 0mm以下の微細結晶粒群を含み、該鋼板表
面上に、該混在相を介し強力に被着した極薄張力被膜を
有する、超低鉄損一方向性珪素鋼板(第1発明)、 第1発明の極薄張力被膜上に、りん酸塩とコロイダルシ
リカを主成分とするコーティング被膜をさらにそなえる
、超低鉄損一方向性珪素鋼板(第2発明)ならびに、 仕上焼鈍済みの鋼板表面上における酸化物を除去し、つ
いで研磨により中心線平均粗さ0.4μm以下の鏡面状
態にした鋼板に対して、その表面上の局部位置に人為的
な微小ひずみを導入しついで500℃以上の温度でのC
VO,イオンプレーティング又はイオンインプランテー
ションにより、鋼板表面近傍の2次再結晶粒中に1.0
mm以下の微細結晶粒群を混在生成させた混合相を形成
し、これと同時に該混合相を介し鋼板表面上で強固に被
着した Tj、Zr、Hf、V、Nb、Ta+Mn、Cr、Mo
、W、Co、Ni、A l 、  B及びSiの窒化物
及び/又は炭化物。
Contains a group of fine crystal grains of 1.0 mm or less mixed with secondary recrystallized grains near the surface of a steel sheet that has been mirror-finished to a centerline average roughness of 0.4 μm or less through final annealing, An ultra-low iron loss unidirectional silicon steel sheet having an ultra-thin tensile coating strongly adhered through a mixed phase (first invention), a super-low core loss unidirectional silicon steel plate having an ultra-thin tensile coating of the first invention, which mainly contains phosphate and colloidal silica on the ultra-thin tensile coating of the first invention. An ultra-low core loss unidirectional silicon steel sheet (second invention) further provided with a coating film as a component, and oxides on the surface of the finish annealed steel sheet are removed, and then polished to a center line average roughness of 0.4 μm. The following mirror-finished steel plate was subjected to carbon dioxide treatment at a temperature of 500°C or higher after introducing artificial minute strain to local positions on its surface.
1.0 in the secondary recrystallized grains near the steel sheet surface by VO, ion plating or ion implantation.
Forms a mixed phase in which microcrystal grain groups of mm or less are mixed together, and at the same time, Tj, Zr, Hf, V, Nb, Ta + Mn, Cr, Mo adhere firmly on the steel plate surface via the mixed phase.
, W, Co, Ni, Al, B and Si nitrides and/or carbides.

A 7!、Si+Ti+Sn、Fe、Zr+Ta及びC
eの酸化物。
A7! , Si+Ti+Sn, Fe, Zr+Ta and C
oxide of e.

Si、Ti、Nb、 Ta、A E 、Zr、llf、
V、及び−のほう化物。
Si, Ti, Nb, Ta, AE, Zr, llf,
V, and - boride.

Mo+W、Ti+Zr及びVのけい化物。Mo+W, Ti+Zr and V silicides.

B及びSiのりん化物ならびにFe及びZnの硫化物よ
り成る群のうちから選んだ少なくとも1種からなる極薄
張力被膜を形成させる工程を含むことを特徴とする超低
鉄損一方向性けい素鋼板の製造方法(第3発明)である
An ultra-low core loss unidirectional silicon film comprising the step of forming an ultra-thin tensile coating made of at least one member selected from the group consisting of B and Si phosphides and Fe and Zn sulfides. This is a method for manufacturing a steel plate (third invention).

この発明による一方向性珪素鋼板の製造工程について一
般的な説明を含めてより詳しく述べる。
The manufacturing process of the unidirectional silicon steel sheet according to the present invention will be described in more detail, including a general explanation.

まず出発素材は従来公知の一方向性珪素鋼板素材成分、
例えば ■C: 0.03〜0.050!:、 St : 2.
50〜4.5X、Mn : 0.01〜0.2L Mo
 : 0.003〜0.1χ、Sb : 0.005〜
0.2χ、SあるいはSeの1種あるいは2種合計で、
o、oos〜0.05χを含有する組成■C: 0.0
3〜0.08χ、St : 2.0〜4.0χ、S:0
.005〜0.05L  N:0.001〜0.0mm
Z、Sn : 0.’01〜0.5χ、CLI : 0
.01〜0.3χ、Mn:0.01〜0.2χを含有す
る組成■ C: 0.03〜0.06χ、Si : 2
.0〜4.0χ、S : 0.005〜0.05χ、 
B : 0.0003〜0.0040χ、N : Q、
001〜0.01X、Mn : 0.01〜0.22を
含有する組成 の如きにおいて適用可能である。
First, the starting materials are conventionally known unidirectional silicon steel sheet material components,
For example ■C: 0.03~0.050! :, St: 2.
50~4.5X, Mn: 0.01~0.2L Mo
: 0.003~0.1χ, Sb: 0.005~
0.2χ, the total of one or two types of S or Se,
Composition containing o, oos ~ 0.05χ ■C: 0.0
3~0.08χ, St: 2.0~4.0χ, S: 0
.. 005~0.05L N:0.001~0.0mm
Z, Sn: 0. '01~0.5χ, CLI: 0
.. Composition containing 01-0.3χ, Mn: 0.01-0.2χ, C: 0.03-0.06χ, Si: 2
.. 0~4.0χ, S: 0.005~0.05χ,
B: 0.0003-0.0040χ, N: Q,
001-0.01X, Mn: 0.01-0.22.

次に熱延板は800〜1100℃の均一化焼鈍を経て1
回の冷間圧延で最終板厚とする1回冷延法か又は、通常
850℃から1050℃の中間焼鈍をはさんでさらに冷
延する2回冷延法にて、後者の場合最初の圧下率は50
%から80%程度、最終の圧下率は50%から85%程
度で0.15mmから0.35mm厚の最終冷延板厚と
する。
Next, the hot-rolled sheet undergoes uniform annealing at 800 to 1100°C.
One-time cold rolling method, in which the final plate thickness is obtained by two cold rolling steps, or two-step cold rolling method, in which intermediate annealing is usually performed at 850°C to 1050°C, and then further cold rolling is performed.In the latter case, the first rolling rate is 50
% to about 80%, the final rolling reduction is about 50% to 85%, and the final cold rolled plate thickness is 0.15 mm to 0.35 mm.

最終冷延を終わり製品板厚に仕上げた鋼板は、表面脱脂
後750℃から850℃の湿水素中の脱炭1次再結晶焼
鈍処理を施す。
After finishing the final cold rolling, the steel plate finished to the product thickness is surface degreased and then subjected to decarburization primary recrystallization annealing treatment in wet hydrogen at 750°C to 850°C.

その後は通常、鋼板表面にMgOを主成分とする焼鈍分
離剤を塗布する。この際、一般的には仕上げ焼鈍後の形
成を不可欠としていたフォルステライトをとくに形成さ
せない方がその後の鋼板の鏡面処理を簡便にするのに有
効であるので、焼鈍分離剤としてA7!zoz + Z
r0z 、 TE01等の50%以上をMgOに混入し
て使用するのが好ましい。
After that, an annealing separator containing MgO as a main component is usually applied to the surface of the steel sheet. At this time, it is generally more effective to prevent the formation of forsterite, which is indispensable to be formed after final annealing, in order to simplify the subsequent mirror finishing of the steel sheet, so A7 is used as an annealing separator. zoz + Z
It is preferable to use MgO mixed with 50% or more of r0z, TE01, etc.

その後2次再結晶焼鈍を行うが、この工程は(110)
 <001>方位の2次再結晶粒を充分発達させるため
に施されるもので、通常箱焼鈍によって直ちに1000
℃以上に昇温し、その温度に保持することによって行わ
れる。
After that, secondary recrystallization annealing is performed, but this step is (110)
This is done to sufficiently develop secondary recrystallized grains with <001> orientation, and is usually box annealed to immediately
This is done by raising the temperature above ℃ and maintaining it at that temperature.

この場合(100) <001>方位に、高度に揃った
2次再結晶粒組織を発達させるためには820℃から9
00℃の低温で保持焼鈍する方が有利であり、そのほか
例えば0.5〜b 鈍でもよい。
In this case, in order to develop a highly uniform secondary recrystallized grain structure in the (100) <001> orientation, the
It is more advantageous to carry out holding annealing at a low temperature of 00°C, and in addition, for example, 0.5 to b annealing may be used.

2次再結晶焼鈍後の純化焼鈍は飽水素中で1100℃以
上で1〜20時間焼鈍を行なって、鋼板の純化を達成す
ることが必要である。
Purification annealing after secondary recrystallization annealing requires annealing in saturated hydrogen at 1100° C. or higher for 1 to 20 hours to achieve purification of the steel sheet.

この純化焼鈍後に鋼板表面の酸化物被膜を公知の酸洗な
どの化学的除去法や切削、研削などの機械的除去法又は
それらの組合せにより除去する。
After this purification annealing, the oxide film on the surface of the steel sheet is removed by known chemical removal methods such as pickling, mechanical removal methods such as cutting and grinding, or a combination thereof.

この酸化物除去処理後、化学研磨、電解研磨などの化学
的研磨や、パフ研磨などの機械的研磨あるいはそれらの
組合せなど従来の手法により鋼板表面を鏡面状態つまり
中心線平均粗さ0.4μm以下に仕上げる。
After this oxide removal treatment, conventional methods such as chemical polishing such as chemical polishing and electrolytic polishing, mechanical polishing such as puff polishing, or a combination thereof are used to polish the steel plate surface to a mirror-like state, that is, to a center line average roughness of 0.4 μm or less. Finish it.

次に鏡面鋼板表面上に局所微小ひずみを導入するがその
手法は従来公知の方法例えば ■剛体片を鋼板に圧接しかつ掻引する方法(特公昭50
−35699号公報参照)として、ナイフやカミソリの
刃先、金剛砂、金たわしなどで鋼板表面を鋤いたり、ひ
っかいたりすること。
Next, a local microstrain is introduced onto the surface of the mirror-finished steel plate using a conventionally known method, such as the method of pressing a rigid piece against the steel plate and scratching it (Japanese Patent Publication No. 50
- plowing or scratching the surface of a steel plate with the edge of a knife or razor, diamond sand, a metal scrubber, etc.

■線状の鋭い先端を有する剛体を鋼板に圧接する方法。■A method in which a rigid body with a sharp linear tip is pressed against a steel plate.

■液体または剛い粉体ないしはそれらの混合物を高圧で
鋼板上に噴射しかつ必要に応じて掻引する方法。
■A method in which liquid or hard powder or a mixture thereof is injected onto the steel plate at high pressure and scratched as necessary.

■微小に絞られた点状あるいは線状のレーザー照射ある
いは高エネルギーの電子線などを走査する方法 などを用いても良い。
(2) A method of scanning finely focused dot or line laser irradiation or high-energy electron beams may also be used.

その後CVO,イオンプレーティング又はイオンインプ
ランテーションより500℃以上の高温状態にして局所
ひずみ導入位置を再結晶させて微細結晶粒群の混在する
混合相を鋼板表面近傍に形成させるとともに、鋼板表面
上に該混合相を介し強力に被着した極薄張力被膜を形成
させる。
After that, CVO, ion plating, or ion implantation is performed at a high temperature of 500°C or higher to recrystallize the local strain introduced position to form a mixed phase containing fine crystal grains near the steel sheet surface. An ultra-thin tensile film strongly adhered via the mixed phase is formed.

このときの張力被膜はTt、Zr、Hf、V+Nb、T
a+Mn、Cr。
The tension coatings at this time are Tt, Zr, Hf, V+Nb, T
a+Mn, Cr.

Mo、W、Co、Ni、A 1 、B、Stの窒化物及
び/又は炭化物。
Nitride and/or carbide of Mo, W, Co, Ni, A 1 , B, St.

^(! 、SitTi、Sn+Fe+Zr、Ta、Ce
の酸化物+ Sit Ti、 Nb。
^(!, SitTi, Sn+Fe+Zr, Ta, Ce
oxide + Sit Ti, Nb.

Ta、A A 、 Zr、)If、V、Hのほう化物+
 Mo、W、Ti、Zr、Vのけい化物、 B、Stの
りん化物そしてFe、Znの硫化物のうちから選んだ少
くとも1種からなる極薄のものが何れも適切であり、と
くに極薄張力被膜は0.1〜2μm程度の厚みをもつこ
とが効果的である。CVO,イオンプレーティング又は
イオンインプランテーションの施工が500℃未満の温
度では再結晶しにくいため、処理温度は500℃以上と
する。
Ta, A A, Zr,) If, V, H boride +
An ultra-thin material made of at least one selected from silicides of Mo, W, Ti, Zr, and V, phosphides of B, St, and sulfides of Fe and Zn is suitable, especially ultra-thin materials. It is effective that the thin tension coating has a thickness of about 0.1 to 2 μm. Since it is difficult to recrystallize CVO, ion plating, or ion implantation at temperatures below 500°C, the processing temperature is set to 500°C or higher.

さらにこのように生成した極薄張力被膜上に、りん酸塩
とコロイダルシリカを主成分とする絶縁被膜の塗布焼付
を行うことが、100万KVAにも上る大容量トランス
の使途において当然に必要であり、この絶縁性塗布焼付
層の形成の如きは、従来公知の手法をそのまま用いて良
い。
Furthermore, it is naturally necessary to apply and bake an insulating film mainly composed of phosphate and colloidal silica on the ultra-thin tension film produced in this way when using a large capacity transformer of up to 1,000,000 KVA. However, for the formation of this insulating coated and baked layer, conventionally known methods may be used as they are.

さて1掲した各発明の成功が導かれた具体的実験の経過
に従って説明を進める。C:0.042重景重量以下単
に%で示す) 、Si : 3.38%、Mn:0.0
62%、Se:0.021%、Sb:0.025%およ
びMo:0.026%を含有する珪素鋼連鋳スラブを1
360’cで4時間加熱後熱間圧延して2.0111℃
厚の熱延板とした。
Now, the explanation will proceed according to the progress of specific experiments that led to the success of each of the inventions listed above. C: 0.042 (weight below), Si: 3.38%, Mn: 0.0
62%, Se: 0.021%, Sb: 0.025% and Mo: 0.026%.
After heating at 360'c for 4 hours, hot rolling to 2.0111°C
It was made into a thick hot-rolled plate.

その後900°Cで3分間の均一化焼鈍後950℃で3
分間の中間焼鈍をはさむ2回の冷間圧延を施して0.2
3mm厚の最終冷延板とした。
Then, after homogenization annealing at 900°C for 3 minutes, at 950°C for 3 minutes.
Cold rolled twice with intermediate annealing for 0.2 min.
A final cold-rolled sheet with a thickness of 3 mm was obtained.

その後820℃の湿水素雰囲気中で脱炭・1次再結晶焼
鈍を施した後、鋼板表面に不活性A120111(80
χ)とMgO(20%)からなる焼鈍分離剤を塗布し、
ついで850℃で50時間の2次再結晶焼鈍と1200
℃で飽水素中で5時間の純化焼鈍を施した。
After that, after decarburization and primary recrystallization annealing in a wet hydrogen atmosphere at 820°C, the steel plate surface was coated with inert A120111 (80
Apply an annealing separator consisting of χ) and MgO (20%),
Then, secondary recrystallization annealing was performed at 850°C for 50 hours and
Purification annealing was performed for 5 hours in saturated hydrogen at °C.

その後酸洗にて鋼板表面の酸化物を除去したのち、3χ
HPとI(,0□混合液中で化学研磨を施した後(八)
:圧延方向と直角方向に8mm間隔でナイフにより局所
的に機械的微小ひずみ(0,1mm幅のきず)を導入 (B);パルスレーザ−を用いて圧延方向と直角方向に
8mm間隔(スポット中心間隔−2,0mm、スポット
の直径=0.5mmφ1@射エネルギー:μ=20J/
cm”)で局所微小ひずみを導入 する、2通りに分けた条件で処理した2種類の試料のお
のおのに、CVD装置を使用して750℃で20時間に
わたりTiCjl’aとNtおよびH2の混合ガス雰囲
気中でCVD処理して、m板表面近傍の2次再結晶粒中
に0.05〜0.51の微細結晶粒群を混在生成させた
混合相を形成し、これと同時に該混合相を介し鋼板表面
上で強力に被着したTiNの極薄張力被膜(0,6μm
厚)を形成させた。また1部の試料については、張力被
膜の上にりん酸塩とコロイダルシリカを主成分とするコ
ーティング被膜を形成した。そのときの製品の磁気特性
を通常工程材(比較材)ととともに表1にまとめて示す
After that, after removing the oxides on the steel plate surface by pickling, 3χ
HP and I (,0□After chemical polishing in mixed solution (8)
: Microscopic mechanical strain (0.1 mm wide flaws) is locally introduced with a knife at 8 mm intervals in the direction perpendicular to the rolling direction (B); Spacing -2.0mm, spot diameter = 0.5mm φ1 @ radiation energy: μ = 20J/
Each of the two samples treated under two different conditions was exposed to a mixed gas of TiCjl'a, Nt and H2 at 750°C for 20 hours using a CVD apparatus to introduce local microstrains (cm"). CVD treatment is performed in an atmosphere to form a mixed phase in which 0.05 to 0.51 fine crystal grain groups are mixedly generated in the secondary recrystallized grains near the surface of the m plate, and at the same time, the mixed phase is An ultra-thin tension coating (0.6 μm) of TiN strongly adhered to the surface of the intervening steel plate.
thickness) was formed. For some samples, a coating film containing phosphate and colloidal silica as main components was formed on the tension film. The magnetic properties of the products at that time are summarized in Table 1 together with the normal process material (comparative material).

第  1  表 表1から磁気特性は[1+oが1.91〜1.92T、
W+tzs。
Table 1 From Table 1, the magnetic properties are [1+o is 1.91 to 1.92T,
W+tzs.

が0.60〜0.65匈/Kgで通常工程材(比較材)
にくらべてB1゜で0.02〜0.03T、W+tzs
。で0.23〜0.28讐/Kgと極端に良好(特に鉄
損特性の向上は顕著である)であることが注目される。
Normal process material (comparison material) with 0.60 to 0.65 匈/Kg
0.02~0.03T, W+tzs at B1° compared to
. It is noteworthy that the ratio is 0.23 to 0.28/Kg, which is extremely good (in particular, the improvement in iron loss characteristics is remarkable).

(作 用) このような特性向上は、鋼板表面を鏡面状態にした後、
局所微小ひずみを導入し、ついで、CVD処理中に微小
ひずみ導入位置に微細結晶粒を生成させると同時に、T
iNの極薄張力被膜を形成させることに帰因し、鉄損の
効果的な低下が導かれる。
(Function) This improvement in properties is achieved by making the surface of the steel sheet mirror-like.
A local microstrain is introduced, and then, during the CVD process, fine crystal grains are generated at the microstrain introducing position, and at the same time, T
Due to the formation of an ultra-thin tensile coating of iN, an effective reduction in iron loss is led.

(実施例) 去崖班1 (A) C:0.041χ、Si:3.48χ、Mn:
0.062χ、Mo:0.025χ。
(Example) Cliff group 1 (A) C: 0.041χ, Si: 3.48χ, Mn:
0.062χ, Mo: 0.025χ.

Se:0.022χ、Sb:0.025χを含有する熱
延板および(B) C:0.053χ、Si:3.32
χ、Mn:0.072x、S:0.018χ。
Hot rolled sheet containing Se: 0.022χ, Sb: 0.025χ and (B) C: 0.053χ, Si: 3.32
χ, Mn: 0.072x, S: 0.018x.

A 1 :0.025’X、N:0.066%を含有す
る熱延板を用いた。まず最初に(A)の熱延板は900
℃で3分間の均−化焼鈍後、950℃の中間焼鈍をはさ
んで2回の冷間圧延を行なって0.23mm厚の最終冷
延板とした。
A hot rolled sheet containing A 1 :0.025'X and N:0.066% was used. First of all, the hot rolled sheet (A) is 900
After equalization annealing at 950° C. for 3 minutes, cold rolling was performed twice with intermediate annealing at 950° C. to obtain a final cold rolled sheet having a thickness of 0.23 mm.

一方(B)の熱延板は1050℃で3分間の均一化焼鈍
を施した後急冷しその後300℃の温間圧延を施しなが
ら0 、23mm厚の最終冷延板とした。
On the other hand, the hot-rolled sheet (B) was uniformly annealed at 1050° C. for 3 minutes, then rapidly cooled, and then warm-rolled at 300° C. to form a final cold-rolled sheet with a thickness of 0.23 mm.

これら(A)および(B)の冷延板は何れも表面を脱脂
した後、830℃の湿水素中で脱炭焼鈍後鋼板表面にA
 l zoi (70り 、 MgO(252) 、 
Zr□z (5χ)から成る焼鈍分離剤を塗布した。
After degreasing the surface of these cold-rolled sheets (A) and (B), the steel sheet surface was decarburized and annealed in wet hydrogen at 830°C.
l zoi (70 ri, MgO (252),
An annealing separator consisting of Zr□z (5χ) was applied.

その後(八)の試料は850℃で50時間の2次再結晶
焼鈍を行なった後、1200℃で6時間軸水素中で純化
焼鈍を行なった。
Thereafter, the sample (8) was subjected to secondary recrystallization annealing at 850°C for 50 hours, and then purified annealing in hydrogen at 1200°C for 6 hours.

また(B)の試料は820℃から5℃/hrで1050
°Cまで昇温して2次再結晶させた後、1200℃で8
時間軟水素中で純化焼鈍を行なった。
In addition, the sample (B) was heated at 1050°C at 5°C/hr from 820°C.
After secondary recrystallization at 1200°C,
Purification annealing was performed in soft hydrogen for an hour.

その後(八)および(B)の各試料は酸洗により酸化被
膜を除去後、化学研磨して中心線平均粗さ0.05μm
以下の鏡面状態とした後、鋼板表面上に圧延方向に直角
方向に8mm間隔でナイフで局所微小ひずみを導入した
。また一部の試料はYAGレーザーを使用し局所微小ひ
ずみを導入した。その使用条件はエネルギーが20J/
cm2.スポット直径0.2mm。
After that, each sample (8) and (B) was pickled to remove the oxide film, and then chemically polished to a center line average roughness of 0.05 μm.
After forming the following mirror-like state, local microstrains were introduced onto the surface of the steel plate using a knife at intervals of 8 mm in a direction perpendicular to the rolling direction. In addition, local microstrain was introduced into some samples using a YAG laser. The usage conditions are that the energy is 20J/
cm2. Spot diameter 0.2mm.

スポット中心間隔0.5〜l mm、  レーザー走査
痕間隔8mm(圧延方向に直角方向にレーザー照射)で
行なった。
This was carried out with a spot center spacing of 0.5 to 1 mm and a laser scanning trace spacing of 8 mm (laser irradiation in a direction perpendicular to the rolling direction).

その後600℃以上の温度でCVD、イオンプレーティ
ング(表の中の◎印)およびイオンインプランテーショ
ン(表の中の△印)により種々の薄膜を(約0゜6〜0
.7μm厚)形成させた。その後1部の試料はコロイダ
ルシリカとリン酸塩を主成分とするコーティング被膜を
形成させた。そのときの製品の磁気特性を表2にまとめ
て示す。
Thereafter, various thin films (approximately 0°6 to 0
.. 7 μm thick). Thereafter, a coating film containing colloidal silica and phosphate as main components was formed on one part of the sample. The magnetic properties of the products at that time are summarized in Table 2.

(発明の効果) この発明によれば、超低鉄損一方向性珪素鋼板が安定に
しかも容易に得られ、その鉄損特性は、ひすみ取り焼鈍
の如き高温熱履歴の如何には無関係に維持される。
(Effect of the invention) According to this invention, an ultra-low iron loss unidirectional silicon steel sheet can be stably and easily obtained, and its iron loss characteristics are independent of high temperature thermal history such as chasing annealing. maintained.

Claims (1)

【特許請求の範囲】 1、仕上焼鈍を経て中心線平均粗さ0.4μm以下に鏡
面仕上げをした鋼板の表面近傍において、その表面近傍
の2次再結晶粒中に1.0mm以下の微細結晶粒群が混
在した混合相をそなえ、かつ該混在相を介して強力に被
着した極薄張力被膜を有する、超低鉄損一方向性珪素鋼
板。 2、仕上焼鈍を経て中心線平均粗さ0.4μm以下に鏡
面仕上げをした鋼板表面近傍においてその表面近傍の2
次再結晶粒中に1.0mm以下の微細結晶粒群が混在し
た混合相をそなえ、かつ該混合相を介し強力に被着した
極薄張力被膜を有し、さらにこの極薄張力被膜上にりん
酸塩とコロイダルシリカを主成分とするコーティング被
膜を有する、超低鉄損一方向性珪素鋼板。 3、仕上焼鈍済みの鋼板表面上における酸化物を除去し
、ついで研磨により中心線平均粗さ0.4μm以下の鏡
面状態にした鋼板に対して、その表面上の局部位置に人
為的な微小ひずみを導入し ついで500℃以上の温度でのCVD、イオンプレーテ
ィング又はイオンインプランテーションにより、 鋼板表面近傍の2次再結晶粒中に1.0mm以下の微細
結晶粒群を混在生成させた混合相を形成し、これと同時
に該混合相を介し鋼板表面上で強固に被着した Ti、Zr、Hf、V、Nb、Ta、Mn、Cr、Mo
、W、Co、Ni、Al、B及びSiの窒化物及び/又
は炭化物、 Al、Si、Ti、Sn、Fe、Zr、Ta及びCeの
酸化物、Si、Ti、Nb、Ta、Al、Zr、Hf、
V、及びWのほう化物、 Mo、W、Ti、Zr及びVのけい化物。 B及びSiのりん化物ならびにFe及びZnの硫化物 より成る群のうちから選んだ少なくとも1 種からなる極薄張力被膜を形成させる工程を含むことを
特徴とする超低鉄損一方向性けい素鋼板の製造方法。
[Claims] 1. In the vicinity of the surface of a steel plate that has been mirror-finished to a centerline average roughness of 0.4 μm or less through final annealing, fine crystals of 1.0 mm or less are present in secondary recrystallized grains near the surface. An ultra-low core loss unidirectional silicon steel sheet that has a mixed phase in which grain groups are mixed, and has an ultra-thin tensile coating strongly adhered through the mixed phase. 2. Near the surface of a steel plate that has been mirror finished to a center line average roughness of 0.4 μm or less through final annealing, 2.
It has a mixed phase in which fine crystal grain groups of 1.0 mm or less are mixed in the next recrystallized grain, and has an ultra-thin tension coating that is strongly adhered through the mixed phase, and further has an ultra-thin tension coating on this ultra-thin tension coating. An ultra-low core loss unidirectional silicon steel sheet with a coating mainly composed of phosphate and colloidal silica. 3. After removing oxides on the surface of the final annealed steel plate, the steel plate is polished to a mirror-like state with a centerline average roughness of 0.4 μm or less, and artificial micro-strains are applied to local positions on the surface of the steel plate. Then, by CVD, ion plating, or ion implantation at a temperature of 500°C or higher, a mixed phase in which fine grain groups of 1.0 mm or less are mixed and generated in the secondary recrystallized grains near the steel plate surface is created. At the same time, Ti, Zr, Hf, V, Nb, Ta, Mn, Cr, Mo were formed and firmly adhered on the steel plate surface through the mixed phase.
, W, Co, Ni, Al, B and Si nitrides and/or carbides, Al, Si, Ti, Sn, Fe, Zr, Ta and Ce oxides, Si, Ti, Nb, Ta, Al, Zr , Hf,
Borides of V and W, silicides of Mo, W, Ti, Zr and V. An ultra-low iron loss unidirectional silicon film comprising the step of forming an ultra-thin tensile coating made of at least one selected from the group consisting of B and Si phosphides and Fe and Zn sulfides. Method of manufacturing steel plates.
JP60146709A 1985-07-05 1985-07-05 Ultra-low iron loss grain oriented silicon steel sheet and its production Granted JPS6210215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60146709A JPS6210215A (en) 1985-07-05 1985-07-05 Ultra-low iron loss grain oriented silicon steel sheet and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60146709A JPS6210215A (en) 1985-07-05 1985-07-05 Ultra-low iron loss grain oriented silicon steel sheet and its production

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP3183388A Division JPS63227722A (en) 1988-02-16 1988-02-16 Manufacture of grain-oriented magnetic steel sheet having very small iron loss
JP3183488A Division JPS63232303A (en) 1988-02-16 1988-02-16 Superlow iron loss and one-way grain oriented silicon steel plate

Publications (2)

Publication Number Publication Date
JPS6210215A true JPS6210215A (en) 1987-01-19
JPS6335687B2 JPS6335687B2 (en) 1988-07-15

Family

ID=15413766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60146709A Granted JPS6210215A (en) 1985-07-05 1985-07-05 Ultra-low iron loss grain oriented silicon steel sheet and its production

Country Status (1)

Country Link
JP (1) JPS6210215A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05304016A (en) * 1992-04-28 1993-11-16 Nippon Steel Corp Low iron loss unidirectional electromagnetic steel plate
EP4269651A4 (en) * 2020-12-22 2024-06-19 POSCO Co., Ltd Grain oriented electrical steel sheet and method for manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05304016A (en) * 1992-04-28 1993-11-16 Nippon Steel Corp Low iron loss unidirectional electromagnetic steel plate
EP4269651A4 (en) * 2020-12-22 2024-06-19 POSCO Co., Ltd Grain oriented electrical steel sheet and method for manufacturing same

Also Published As

Publication number Publication date
JPS6335687B2 (en) 1988-07-15

Similar Documents

Publication Publication Date Title
JPH0672266B2 (en) Method for manufacturing ultra low iron loss unidirectional silicon steel sheet
JPS61235514A (en) Production of extra-low iron loss grain oriented silicon steel sheet having thermal stability
JPS6210215A (en) Ultra-low iron loss grain oriented silicon steel sheet and its production
JPS6332849B2 (en)
JPH0699824B2 (en) Thermally stable ultra-low iron loss unidirectional silicon steel sheet and method for producing the same
JPS637333A (en) Production of low iron loss grain oriented electrical steel sheet having excellent glass film characteristic
JPS63227722A (en) Manufacture of grain-oriented magnetic steel sheet having very small iron loss
JPS63232303A (en) Superlow iron loss and one-way grain oriented silicon steel plate
JPH0327633B2 (en)
JPH0619113B2 (en) Method for producing grain-oriented electrical steel sheet with extremely low iron loss
JPH0375354A (en) Production of grain-oriented silicon steel sheet with superlow iron loss free from deterioration in characteristic due to stress relief annealing
JPS621820A (en) Grain oriented silicon steel sheet having thermal stability and ultra-low iron loss
JPS6332850B2 (en)
JPH01159322A (en) Production of ultra-low iron loss grain oriented silicon steel sheet
JPH0699822B2 (en) Method for manufacturing ultra low iron loss unidirectional silicon steel sheet
JPH0699823B2 (en) Method for manufacturing ultra low iron loss unidirectional silicon steel sheet
JPH0374486B2 (en)
JPS6230302A (en) Manufacture of super-low iron loss unidirectional silicon steel plate
JPS6318605A (en) Unidirectional silicon steel plate of extremely low iron loss
JPS6335685B2 (en)
JPH0374488B2 (en)
JPH0413426B2 (en)
JPS6229107A (en) Manufacture of ultralow iron loss unidirectional silicon steel plate
JPS63278209A (en) Silicon steel plate having thermostable, extremely low core loss, and unidirectional properties
JPH0327631B2 (en)