JPS6322610B2 - - Google Patents

Info

Publication number
JPS6322610B2
JPS6322610B2 JP56150244A JP15024481A JPS6322610B2 JP S6322610 B2 JPS6322610 B2 JP S6322610B2 JP 56150244 A JP56150244 A JP 56150244A JP 15024481 A JP15024481 A JP 15024481A JP S6322610 B2 JPS6322610 B2 JP S6322610B2
Authority
JP
Japan
Prior art keywords
substrate
chamber
storage chamber
main surface
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56150244A
Other languages
Japanese (ja)
Other versions
JPS5850737A (en
Inventor
Hayaaki Fukumoto
Hideaki Arima
Tadashi Nishimura
Masahiro Yoneda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP56150244A priority Critical patent/JPS5850737A/en
Publication of JPS5850737A publication Critical patent/JPS5850737A/en
Publication of JPS6322610B2 publication Critical patent/JPS6322610B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Drying Of Semiconductors (AREA)

Description

【発明の詳細な説明】 この発明は大規模集積半導体回路(LSI)素子
などの高密度集積化された半導体素子を製造する
新規な製造装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel manufacturing apparatus for manufacturing highly densely integrated semiconductor devices such as large scale integrated semiconductor circuit (LSI) devices.

従来、LSI素子などの高密度集積化された半導
体素子を製造する場合には、塵埃の極めて少ない
空気清浄室内において、半導体素子を形成すべき
シリコン、ヒ化カリウムなどからなる半導体基板
(以下「被処理基板」と呼ぶ)の主面上に所望の
被膜を成膜する成膜工程、被処理基板の主面部に
所望の不純物拡散層を形成する不純物拡散工程、
被処理基板に残留した熱応力を除去するアニール
工程などの製造工程毎に、当該工程に用いる製造
装置を配置し、各製造工程で処理された被処理基
板をテフロンなどのプラスチツクからなるケース
やラツクに移し換えて次工程へ搬送されていた。
また、必要に応じて被処理基板の成膜状態、不純
物拡散層のシート抵抗、主面上の塵埃、異物など
の発生状態などを調べるためにモニタリング検査
が行なわれていた。このような場合には、特に高
密度集積化されたLSI素子では、被処理基板の移
し換え時、搬送時およびモニタリング検査時での
治工具や作業者に起因する塵埃による被処理基板
の欠陥が生じやすく、この欠陥によつて製品歩留
りが低下していた。
Conventionally, when manufacturing highly densely integrated semiconductor devices such as LSI devices, semiconductor substrates (hereinafter referred to as "covered substrates") made of silicon, potassium arsenide, etc., on which semiconductor devices are to be formed, are stored in an air-cleaning room with extremely low dust. A film formation process of forming a desired film on the main surface of the processing substrate (referred to as "processed substrate"); an impurity diffusion process of forming a desired impurity diffusion layer on the main surface of the processing target substrate;
For each manufacturing process, such as an annealing process that removes thermal stress remaining on the processed substrate, the manufacturing equipment used for that process is placed, and the processed substrate processed in each manufacturing process is placed in a case or rack made of plastic such as Teflon. It was then transferred to the next process.
In addition, monitoring tests were performed as necessary to check the film formation state of the substrate to be processed, the sheet resistance of the impurity diffusion layer, the state of occurrence of dust, foreign matter, etc. on the main surface, and the like. In such cases, especially in highly-integrated LSI devices, defects in the processed substrate may occur due to dust caused by jigs and workers during transfer, transportation, and monitoring inspection of the processed substrate. This defect was likely to cause a decrease in product yield.

この発明は、上述の点に鑑みてなされたもの
で、所望の真空度になし得る容器内に被処理基板
を収容保持した状態で、上記容器内に設けられた
電子ビーム源もしくはイオンビーム源から放射さ
れ電磁場レンズおよび荷電ビーム偏向手段によつ
て加速収束偏向された電子ビームもしくはイオン
ビームまたは上記容器内に導入されレーザ光位置
制御手段によつて位置制御されたレーザー光を上
記被処理基板の主面に走査照射させて上記被処理
基板の上記主面に成膜処理、不純物拡散処理およ
びアニール処理を連続して行い得るようにし、か
つ上記被処理基板の上記主面の状態のモニタリン
グ検査を非接触的に行い得るようにすることによ
つて、外部塵埃による被処理基板の欠陥の発生を
抑制した半導体素子の新規な製造装置を提供する
ことを目的とする。
The present invention has been made in view of the above-mentioned points, and a substrate to be processed is housed and held in a container capable of achieving a desired degree of vacuum, and an electron beam source or an ion beam source provided in the container is An electron beam or an ion beam that is emitted and accelerated and focused and deflected by an electromagnetic field lens and a charged beam deflection means, or a laser beam that is introduced into the container and whose position is controlled by a laser beam position control means, is applied to the substrate to be processed. The main surface of the substrate to be processed is subjected to scanning irradiation so that a film formation process, an impurity diffusion process, and an annealing process can be continuously performed on the main surface of the substrate to be processed, and the state of the main surface of the substrate to be processed is non-monitored and inspected. It is an object of the present invention to provide a novel semiconductor device manufacturing apparatus that suppresses the occurrence of defects in a substrate to be processed due to external dust by making it possible to conduct the process in a contact manner.

図はこの発明の一実施例の半導体素子の製造装
置の構成を模式的に示す構成図である。
FIG. 1 is a block diagram schematically showing the structure of a semiconductor device manufacturing apparatus according to an embodiment of the present invention.

図において、1はこの実施例の本体容器で、こ
の本体容器1は、電子ビームを放射する電子ビー
ム源2およびイオンビームを放射するイオンビー
ム源3が配置された荷電ビーム源室1aと、電子
ビーム源2が放射する電子ビームまたはイオンビ
ーム源3が放射するイオンビームを加速収束する
電場レンズ4、更にこの加速収束された電子ビー
ムまたはイオンビームを収束する磁場レンズ5お
よびこの磁場レンズ5で収束された電子ビームま
たはイオンビームを偏向電極、偏向コイルなどの
荷電ビーム偏向手段6が配置された荷電ビーム制
御室1bと、被処理基板100が収容保持された
基板収容室1cとで構成されている。7および8
はそれぞれ荷電ビーム源室1aと荷電ビーム制御
室1bとの間の仕切り壁および荷電ビーム制御室
1bと基板収容室1cとの間の仕切り壁に設けら
れこれらの室1a,1bおよび1c内をそれぞれ
所望の真空度に排気できるような形状の小さいア
パーチーである。アパーチヤー8には荷電ビーム
制御室1bと基板収容室1cとを完全に分離でき
るエアロツク弁(図示せず)が設けてある。な
お、電子ビーム源2は両アパーチヤー7および8
の中心を通る線上の荷電ビーム源室1aの上部に
固定されており、イオンビーム源3はイオンビー
ムを被処理基板100に照射させないときにはア
パーチヤー7上からはずれた位置に設置され照射
させる際にはアパーチヤー7上の一点鎖線で示す
3′の位置に平行移動させられる。一点鎖線で示
す9は電子ビーム源2またはイオンビーム源3か
ら放射される電子ビームまたはイオンビームが通
過する荷電ビーム路である。10a,10bおよ
び10cはそれぞれ荷電ビーム源室1a、荷電ビ
ーム制御室1bおよび基板収容室1cに連結され
これらの室1a,1bおよび1c内を所望の真空
度に排気する真空装置である。11は基板収容室
1cの外部に設けられたレーザ発振器で、このレ
ーザー発振器11が出力するレーザー光は基板収
容室1cの上部側壁に設けられた透明窓12を通
して基板収容室1c内に導入され反射・スプリツ
ト用のハーフミラー13で反射位置制御され集光
レンズ14を通して被処理基板100の主面上を
走査照射するようになつている。なお、ハーフミ
ラー13および集光レンズ14は、レーザー発振
器11のレーザー出力光を被処理基板100に照
射させないときには被処理基板100の上方から
はずれた位置に設置され照射させる際には被処理
基板100の上方の一点鎖線で示す13′および
14′の位置に平行移動させられる。15はハー
フミラー13を機械的に高速度かつ高精度に制御
するミラー制御機構、16は両アパーチヤー7お
よび8の中心を通る線すなわち荷電ビーム路9と
交差する基板収容室1cの底部に設けられ表面上
に被処理基板100を真空吸着して保持する基板
保持台である。17は基板収容室1cの底部の側
壁を貫通しこの収容室1cに一方の側面側が連通
するように設けられた真空バツフアー室、18は
真空バツフアー室17の他方の側面側に連通する
ように設けられ上面部に被処理基板100が導入
される開口部を有する基板導入室、18aは基板
導入室17の上記開口部を気密に閉鎖することが
できる扉、19は基板収容室1cと真空バツフア
ー室17との連通部に設けられたエアロツク弁、
20は真空バツフアー室17と基板導入室18と
の連通部に設けられたエアロツク弁である。な
お、これらのエアロツク弁19および20を交互
に開閉することによつて、基板収容室1c内の真
空度を低下させることなく、基板導入室18内の
被処理基板100を真空バツフアー室17内を通
して基板収容室1c内へ挿入したり、または基板
収容室1c内の被処理基板100を真空バツフア
ー室17を通して基板導入室18内へ引き出した
りすることができるようになつている。21は基
板収容室1cに連結されこの収容室1c内へ高純
度の酸素、フレオン、窒素などのガスを供給する
ガス供給装置、22は基板収容室1c内に設けら
れこの収容室1c内にガス供給装置21から供給
されたガスをプラズマにするプラズマ形成用電極
である。23は基板収容室1c内に移動可能なよ
うに設けられ被処理基板100の主面部の成膜状
態、不純物拡散層のシート抵抗、主面上の塵埃、
異物などの発生状態などを非接触的にモニタリン
グ検査する検査装置で、この検査装置23は被処
理基板100をモニタリング検査するときには、
被処理基板100の上方の一点鎖線で示す23′
の位置に移動させられる。24は電場レンズ4、
磁場レンズ5および荷電ビーム偏向手段6に接続
され電子ビーム源2またはイオンビーム源3から
放射される荷電ビームの加速収束偏向を制御する
荷電ビーム制御装置。25a,25bおよび25
cはそれぞれ電子ビーム源2、イオンビーム源3
およびレーザー発振器11に接続された直流高圧
電源、26はプラズマ形成用電極22に接続され
たプラズマ発生用電源である。27および28は
それぞれ検査装置23に接続され検査装置23の
検査結果を表示するモニター用TV画像管および
検査装置23の検査結果を集積するデータロガー
で、このデータロガー28はこれに集積されたデ
ータをその基準値と比較して処理上のNO・GO
の判定を行い、この判定結果を直流高圧電源25
a,25bおよび25c、並びにプラズマ発生用
電源26にフイードバツクして処理条件の最適化
を行うことができるようになつている。
In the figure, 1 is the main body container of this embodiment, and this main body container 1 includes a charged beam source chamber 1a in which an electron beam source 2 that emits an electron beam and an ion beam source 3 that emits an ion beam are arranged; An electric field lens 4 accelerates and focuses the electron beam emitted by the beam source 2 or the ion beam emitted by the ion beam source 3, and a magnetic field lens 5 converges the accelerated and focused electron beam or ion beam. It is composed of a charged beam control chamber 1b in which a charged beam deflecting means 6 such as a deflection electrode and a deflection coil for deflecting the electron beam or ion beam is arranged, and a substrate storage chamber 1c in which a substrate 100 to be processed is accommodated and held. . 7 and 8
are provided on the partition wall between the charged beam source chamber 1a and the charged beam control chamber 1b, and on the partition wall between the charged beam control chamber 1b and the substrate storage chamber 1c, respectively. It is a small aperture that can be evacuated to the desired degree of vacuum. The aperture 8 is provided with an air valve (not shown) that can completely separate the charged beam control chamber 1b and the substrate storage chamber 1c. Note that the electron beam source 2 has both apertures 7 and 8.
The ion beam source 3 is fixed at the upper part of the charged beam source chamber 1a on a line passing through the center of It is translated in parallel to a position 3' on the aperture 7 shown by a dashed line. Reference numeral 9 indicated by a dashed line is a charged beam path through which the electron beam or ion beam emitted from the electron beam source 2 or ion beam source 3 passes. 10a, 10b, and 10c are vacuum devices connected to the charged beam source chamber 1a, charged beam control chamber 1b, and substrate storage chamber 1c, respectively, and evacuate the interiors of these chambers 1a, 1b, and 1c to a desired degree of vacuum. Reference numeral 11 denotes a laser oscillator provided outside the substrate storage chamber 1c, and the laser beam outputted by this laser oscillator 11 is introduced into the substrate storage chamber 1c through a transparent window 12 provided on the upper side wall of the substrate storage chamber 1c and is reflected. - The reflection position is controlled by a splitting half mirror 13, and the main surface of the substrate 100 to be processed is scanned and irradiated through a condenser lens 14. Note that the half mirror 13 and the condensing lens 14 are installed at a position away from above the substrate 100 to be processed when the laser output light from the laser oscillator 11 is not irradiated onto the substrate 100 to be processed, and when the laser output light from the laser oscillator 11 is not irradiated to the substrate 100 to be processed, the half mirror 13 and the condensing lens 14 are It is translated in parallel to positions 13' and 14' shown by dashed lines above. 15 is a mirror control mechanism that mechanically controls the half mirror 13 at high speed and with high precision; 16 is provided at the bottom of the substrate storage chamber 1c that intersects a line passing through the centers of both apertures 7 and 8, that is, the charged beam path 9; This is a substrate holding stand that holds the substrate 100 to be processed on its surface by vacuum suction. A vacuum buffer chamber 17 is provided so as to penetrate the bottom side wall of the substrate storage chamber 1c and communicate with the substrate storage chamber 1c on one side, and 18 is provided so as to communicate with the other side of the vacuum buffer chamber 17. 18a is a door that can hermetically close the opening of the substrate introduction chamber 17, and 19 is a substrate storage chamber 1c and a vacuum buffer chamber. an airlock valve provided in the communication section with 17;
Reference numeral 20 denotes an air valve provided in a communication section between the vacuum buffer chamber 17 and the substrate introduction chamber 18. Note that by alternately opening and closing these air valves 19 and 20, the substrate 100 to be processed in the substrate introduction chamber 18 can be passed through the vacuum buffer chamber 17 without reducing the degree of vacuum in the substrate storage chamber 1c. The substrate 100 to be processed in the substrate storage chamber 1c can be inserted into the substrate storage chamber 1c or pulled out into the substrate introduction chamber 18 through the vacuum buffer chamber 17. A gas supply device 21 is connected to the substrate storage chamber 1c and supplies gas such as high-purity oxygen, freon, nitrogen, etc. This is a plasma forming electrode that turns the gas supplied from the supply device 21 into plasma. Reference numeral 23 is movably provided in the substrate storage chamber 1c, and records the film formation state on the main surface of the substrate 100 to be processed, the sheet resistance of the impurity diffusion layer, dust on the main surface,
This inspection device 23 non-contactly monitors and inspects the state of occurrence of foreign matter, etc. When monitoring and inspecting the substrate 100 to be processed,
23' shown by a dashed line above the substrate 100 to be processed
be moved to the position of 24 is an electric field lens 4;
A charged beam control device that is connected to a magnetic field lens 5 and a charged beam deflection means 6 and controls acceleration, convergence and deflection of a charged beam emitted from an electron beam source 2 or an ion beam source 3. 25a, 25b and 25
c are electron beam source 2 and ion beam source 3, respectively.
and a DC high-voltage power supply connected to the laser oscillator 11, and 26 a plasma generation power supply connected to the plasma generation electrode 22. 27 and 28 are a monitor TV picture tube that is connected to the inspection device 23 and displays the inspection results of the inspection device 23, and a data logger that accumulates the inspection results of the inspection device 23; Compare the value with the standard value to determine NO/GO in processing.
This judgment result is sent to the DC high voltage power supply 25.
a, 25b, and 25c as well as the plasma generation power source 26 to optimize the processing conditions.

このように構成されたこの実施例の装置では、
基板収容室1内に保持された被処理基板100の
主面部に窒化膜もしくは酸化膜を成膜する場合に
は、基板収容室1c内へガス供給装置21から窒
素もしくは酸素を注入し、この窒素もしくは酸素
の雰囲気中において、電子ビーム源2から放射さ
れ電場レンズ4、磁場レンズ5および荷電ビーム
偏向手段6によつて加速収束偏向された電子ビー
ムを被処理基板100の主面部に走査照射させて
行うか、またはアパーチヤー8をエアロツク弁
(図示せず)で閉鎖し、基板収容室1c内へガス
供給装置21から注入された窒素もしくは酸素を
プラズマ形成用電極22によつて窒素もしくは酸
素の活性ラジカルが多く存在するプラズマ状態に
して、被処理基板100の主面部にプラズマ成膜
を行うか、更にレーザー発振器11から出力され
ミラー制御機構15で駆動されたハーフミラー1
3によつて位置制御されたレーザー光を被処理基
板100の主面部に走査照射させて行うことがで
きる。また、これと同様に、基板収容室1c内を
酸素もしくはフツ素の活性ラジカルが多く存在す
るプラズマ状態にして、被処理基板100の主面
部をプラズマエツチングすることも、ハーフミラ
ー13によつて位置制御されたレーザー光を被処
理基板100の主面部に成膜された窒化膜に走査
照射させてこの窒化膜の不要部分を直接エツチン
グすることもできる。また、被処理基板100の
主面部に不純物拡散層を形成する場合には、イオ
ンビーム源3から放射され電場レンズ4、磁場レ
ンズ5および荷電ビーム偏向手段6によつて加速
収束偏向された不純物イオンビームを被処理基板
100の主面部に走査照射させ、不純物イオンを
注入させて行うことができる。また、被処理基板
100の主面部に残留した熱応力を除去するアニ
ールの場合には、被処理基板100の主面部に、
電子ビーム源2から放射され電場レンズ4、磁場
レンズ5および荷電ビーム偏向手段6によつて加
速収束偏向された電子ビーム、またはレーザ発振
器11から出力されミラー制御機構15で駆動さ
れたハーフミラー13によつて位置制御されたレ
ーザー光を走査照射させて行うことができる。更
に、検査装置23を用いて、被処理基板100の
主面部の成膜状態、不純物拡散層のシート抵抗、
主面上の塵埃、異物などの発生状態などを非接触
的にモニタリング検査することができ、この検査
結果をモニター用TV画像管27に表示するとと
もにデーターロガー28に集積し、この集積され
たデータをその基準値と比較して、処理条件の最
適化を行うことができる。
In the device of this embodiment configured in this way,
When forming a nitride film or an oxide film on the main surface of the substrate to be processed 100 held in the substrate storage chamber 1, nitrogen or oxygen is injected from the gas supply device 21 into the substrate storage chamber 1c, and the nitrogen or oxygen is injected into the substrate storage chamber 1c. Alternatively, in an oxygen atmosphere, the main surface of the substrate 100 to be processed is scanned and irradiated with an electron beam emitted from the electron beam source 2 and accelerated, focused and deflected by the electric field lens 4, the magnetic field lens 5, and the charged beam deflection means 6. Alternatively, the aperture 8 is closed with an air valve (not shown), and the nitrogen or oxygen injected from the gas supply device 21 into the substrate storage chamber 1c is converted into active radicals of nitrogen or oxygen by the plasma forming electrode 22. A plasma film is formed on the main surface of the substrate 100 to be processed in a plasma state in which a large amount of
This can be carried out by scanning and irradiating the main surface of the substrate 100 to be processed with a laser beam whose position is controlled by 3. Similarly, the main surface of the substrate 100 to be processed can be plasma-etched by making the interior of the substrate storage chamber 1c into a plasma state in which many active radicals of oxygen or fluorine exist. It is also possible to directly etch unnecessary portions of the nitride film by scanning and irradiating the nitride film formed on the main surface of the substrate 100 with controlled laser light. In addition, when forming an impurity diffusion layer on the main surface of the substrate 100 to be processed, impurity ions emitted from the ion beam source 3 are accelerated, focused and deflected by the electric field lens 4, the magnetic field lens 5, and the charged beam deflection means 6. This can be performed by scanning and irradiating the main surface of the substrate 100 with a beam and implanting impurity ions. In addition, in the case of annealing to remove thermal stress remaining on the main surface of the substrate 100 to be processed, the main surface of the substrate 100 to be processed is
An electron beam emitted from an electron beam source 2 and accelerated and focused and deflected by an electric field lens 4, a magnetic field lens 5, and a charged beam deflection means 6, or an electron beam output from a laser oscillator 11 and driven by a mirror control mechanism 15 into a half mirror 13. Therefore, scanning irradiation can be performed with position-controlled laser light. Furthermore, using the inspection device 23, the film formation state on the main surface of the substrate 100 to be processed, the sheet resistance of the impurity diffusion layer,
It is possible to non-contactly monitor and inspect the state of occurrence of dust, foreign matter, etc. on the main surface, display the inspection results on the monitor TV picture tube 27 and accumulate them in the data logger 28, and collect the accumulated data. can be compared with the reference value to optimize the processing conditions.

このように、被処理基板100を基板収容室1
c内に保持した状態のままで、被処理基板100
の主面部に成膜処理、不純物拡散処理およびアニ
ール処理を連続して行うことができる上に、被処
理基板100の主面部の状態のモニタリング検査
も行うことができるので、外部の塵埃によつて被
処理基板100に欠陥が発生するのを抑制するこ
とができる。
In this way, the substrate to be processed 100 is placed in the substrate storage chamber 1.
The substrate to be processed 100 remains held in the
In addition to being able to sequentially perform film formation, impurity diffusion, and annealing on the main surface of the substrate 100, it is also possible to monitor and inspect the state of the main surface of the substrate 100. The occurrence of defects on the substrate 100 to be processed can be suppressed.

以上、説明したように、この発明になる半導体
素子の製造装置では、所望のガスの雰囲気または
所望のガスのプラズマ雰囲気になし得る容器内に
半導体素子を形成すべき半導体基板を収容保持し
た状態で、上記容器内に設けられた電子ビーム源
もしくはイオンビーム源から放射され電磁場レン
ズおよび荷電ビーム偏向手段によつて加速収束偏
向された電子ビームもしくはイオンビームまたは
上記容器内に導入されレーザ光位置制御手段によ
つて偏向されたレーザー光を上記半導体基板の主
面に走査照射させて上記半導体基板の上記主面に
成膜処理、エツチング処理、不純物拡散処理、お
よびアニール処理を行うことができ、また上記プ
ラズマ雰囲気を用いてプラズマ加工を施すことも
でき、更にプラズマ雰囲気中でレーザー光を用い
てプラズマ加工の加速または部分的加工もでき
る。しかもこれらの処理加工を一つの容器内で途
中外気に触れさせることなく遂行できるので品質
の向上、工程の迅速化を達成できる。その上、上
記半導体基板の上記主面の状態のモニタリング検
査を非接触的に行うことができるので、外部の塵
埃によつて上記半導体基板に欠陥が発生するのを
抑制することができる。また、2つのエアロツク
弁と2つの室からなる基板挿入手段を用いること
により、基板収容室内の雰囲気を実質的に変更す
ることなく室内に半導体基板を挿入できる。
As described above, in the semiconductor device manufacturing apparatus according to the present invention, a semiconductor substrate on which a semiconductor device is to be formed is housed and held in a container that can be made into a desired gas atmosphere or a desired gas plasma atmosphere. , an electron beam or an ion beam emitted from an electron beam source or an ion beam source provided in the container and accelerated, focused and deflected by an electromagnetic field lens and a charged beam deflection means; or a laser beam position control means introduced into the container; By scanning and irradiating the main surface of the semiconductor substrate with a laser beam deflected by the semiconductor substrate, film formation processing, etching processing, impurity diffusion processing, and annealing processing can be performed on the main surface of the semiconductor substrate. Plasma processing can be performed using a plasma atmosphere, and furthermore, plasma processing can be accelerated or partial processing can be performed using a laser beam in the plasma atmosphere. Moreover, since these processes can be carried out in one container without exposing the product to outside air during the process, it is possible to improve quality and speed up the process. Furthermore, since the state of the main surface of the semiconductor substrate can be monitored and inspected in a non-contact manner, it is possible to prevent defects from occurring in the semiconductor substrate due to external dust. Further, by using the substrate insertion means consisting of two air valves and two chambers, it is possible to insert a semiconductor substrate into the chamber without substantially changing the atmosphere inside the substrate storage chamber.

【図面の簡単な説明】[Brief explanation of the drawing]

図はこの発明の一実施例の半導体素子の製造装
置の構成を模式的に示す構成図である。 図において、1は本体容器、1aは荷電ビーム
源室、1bは荷電ビーム制御室、1cは基板収容
室、2は電子ビーム源、3はイオンビーム源、4
は電場レンズ、5は磁場レンズ、6は荷電ビーム
偏向手段、7および8はアパーチヤー、10a,
10bおよび10cは真空装置、13はハーフミ
ラー(レーザ光位置制御手段)、15はミラー制
御機構(レーザ光位置制御手段)、17および1
8はそれぞれ真空バツフアー室および基板導入室
(基板挿入手段)、19および20はエアロツク弁
(基板挿入手段)、21はガス供給装置、22はプ
ラズマ形成用電極、23は検査装置、100は被
処理基板(半導体基板)である。
FIG. 1 is a block diagram schematically showing the structure of a semiconductor device manufacturing apparatus according to an embodiment of the present invention. In the figure, 1 is a main body container, 1a is a charged beam source chamber, 1b is a charged beam control chamber, 1c is a substrate storage chamber, 2 is an electron beam source, 3 is an ion beam source, and 4
is an electric field lens, 5 is a magnetic field lens, 6 is a charged beam deflection means, 7 and 8 are apertures, 10a,
10b and 10c are vacuum devices, 13 is a half mirror (laser beam position control means), 15 is a mirror control mechanism (laser beam position control means), 17 and 1
8 is a vacuum buffer chamber and a substrate introduction chamber (substrate insertion means), 19 and 20 are air valves (substrate insertion means), 21 is a gas supply device, 22 is a plasma forming electrode, 23 is an inspection device, and 100 is a processed object. It is a substrate (semiconductor substrate).

Claims (1)

【特許請求の範囲】 1 電子ビームを放射する電子ビーム源およびイ
オンビームを放射するイオンビーム源が配置され
選択された一方のビームをビーム路に放射する荷
電ビーム源室と、上記電子ビーム源が放射する電
子ビームまたは上記イオンビーム源が放射するイ
オンビームを加速収束する電磁場レンズおよびこ
の加速収束された電子ビームまたはイオンビーム
を偏向する荷電ビーム偏向手段が配置された荷電
ビーム制御室と、半導体素子を形成すべき半導体
基板がビーム路上に収容保持された基板収容室と
が順次隣接して設けられ上記各室が上記電子ビー
ムまたは上記イオンビームを通し得るアパーチヤ
ーを介して連通しかつ上記荷電ビーム制御室と上
記基板収容室との間のアパーチヤーを閉鎖できる
ように構成された本体容器、 上記各室に連結され上記各室内を所望の真空度
に排気する真空装置、 上記基板収容室内に設けられ、この室内に導入
されたレーザ光を反射して上記ビーム路に一致さ
せるハーフミラーをビーム路内・外に移動制御す
るレーザ光位置制御手段、 上記基板収容室に連結されこの室内に所望ガス
を供給するガス供給装置、 上記基板収容室内に設けられこの室内に上記ガ
ス供給装置から供給された上記所望ガスをプラズ
マにするプラズマ形成用電極、 上記基板収容室に第1のエアロツク弁を介して
一方の側面が連通するように設けられた真空バツ
フアー室と、この真空バツフアー室の他方の側面
に第2のエアロツク弁を介して側面が連通するよ
うに設けられ半導体基板が導入される開口部を有
するとともにこの開口部を気密に閉鎖できる扉が
設けられた基板導入室とからなる基板挿入手段、 および上記基板収容室内に移動可能なように設
けられ上記半導体基板の主面の状態を非接触的に
検査する検査装置を備え、 上記電子ビーム源もしくは上記イオンビーム源
から放射され上記電磁場レンズおよび上記荷電ビ
ーム偏向手段によつて加速収束偏向された電子ビ
ームもしくはイオンビーム、または上記基板収容
室内に導入され上記レーザ光位置制御手段によつ
て位置制御されたレーザ光を上記半導体基板の上
記主面に走査照射させて上記半導体基板の上記主
面に成膜処理、不純物拡散処理、アニール処理、
およびプラズマ加工を連続して行い得るように
し、かつ上記検査装置を用いて上記半導体基板の
上記主面の状態のモニタリング検査を非接触的に
行い得るようにするとともに、上記基板収容室内
の雰囲気を実質的に変更することなく室内に上記
半導体基板を挿入できるようにしたことを特徴と
する半導体素子の製造装置。
[Scope of Claims] 1. A charged beam source chamber in which an electron beam source that emits an electron beam and an ion beam source that emits an ion beam are arranged and that emits a selected one of the beams to a beam path; a charged beam control room in which an electromagnetic field lens that accelerates and focuses an emitted electron beam or an ion beam emitted by the ion beam source and a charged beam deflection means that deflects the accelerated and focused electron beam or ion beam; and a semiconductor element. A substrate storage chamber in which a semiconductor substrate to be formed is accommodated and held on the beam path is provided in sequence adjacent to each other, and each of the chambers communicates with each other via an aperture through which the electron beam or the ion beam can pass, and the charged beam is controlled. a main container configured to close an aperture between the chamber and the substrate storage chamber; a vacuum device connected to each of the chambers to evacuate each chamber to a desired degree of vacuum; installed in the substrate storage chamber; A laser beam position control means for controlling the movement of a half mirror in and out of the beam path to reflect the laser beam introduced into the chamber and align it with the beam path; and a laser beam position control means connected to the substrate storage chamber to supply a desired gas into the chamber. a gas supply device provided in the substrate storage chamber, a plasma forming electrode that converts the desired gas supplied from the gas supply device into the chamber into plasma; It has a vacuum buffer chamber provided so that its side surfaces communicate with each other, and an opening provided on the other side surface of the vacuum buffer chamber such that its side surfaces communicate with each other via a second air valve, into which the semiconductor substrate is introduced. A substrate insertion means comprising a substrate introduction chamber provided with a door that can airtightly close the opening, and a substrate insertion means movably provided in the substrate storage chamber to non-contactly inspect the condition of the main surface of the semiconductor substrate. an electron beam or an ion beam emitted from the electron beam source or the ion beam source and accelerated and focused and deflected by the electromagnetic field lens and the charged beam deflection means; A laser beam whose position is controlled by a laser beam position control means is scanned and irradiated onto the main surface of the semiconductor substrate to form a film on the main surface of the semiconductor substrate, an impurity diffusion process, an annealing process,
and plasma processing can be performed continuously, and the state of the main surface of the semiconductor substrate can be monitored and inspected in a non-contact manner using the inspection device, and the atmosphere inside the substrate storage chamber can be controlled. A semiconductor device manufacturing apparatus characterized in that the semiconductor substrate can be inserted into a room without being substantially changed.
JP56150244A 1981-09-21 1981-09-21 Manufacture apparatus for semiconductor element Granted JPS5850737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56150244A JPS5850737A (en) 1981-09-21 1981-09-21 Manufacture apparatus for semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56150244A JPS5850737A (en) 1981-09-21 1981-09-21 Manufacture apparatus for semiconductor element

Publications (2)

Publication Number Publication Date
JPS5850737A JPS5850737A (en) 1983-03-25
JPS6322610B2 true JPS6322610B2 (en) 1988-05-12

Family

ID=15492706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56150244A Granted JPS5850737A (en) 1981-09-21 1981-09-21 Manufacture apparatus for semiconductor element

Country Status (1)

Country Link
JP (1) JPS5850737A (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59232413A (en) * 1983-06-16 1984-12-27 Toshiba Corp Method of manufacturing semiconductor device and facilities for manufacturing the same
JPS60216549A (en) * 1984-04-12 1985-10-30 Fuji Electric Corp Res & Dev Ltd Manufacture of semiconductor device
JPS60216555A (en) * 1984-04-12 1985-10-30 Fuji Electric Corp Res & Dev Ltd Manufacture of semiconductor device
JPH0638411B2 (en) * 1984-04-26 1994-05-18 工業技術院長 Pattern formation method by electron beam
JPH0712033B2 (en) * 1984-05-10 1995-02-08 工業技術院長 Fine pattern formation method by ion beam
JPS6137152A (en) * 1984-07-31 1986-02-22 小木曾 誠 Implant for holding denture
JPS61179573A (en) * 1985-02-04 1986-08-12 Agency Of Ind Science & Technol Planar type semiconductor device
JPH0634795B2 (en) * 1985-02-22 1994-05-11 京セラ株式会社 Composite implant and manufacturing method thereof
JPS61248522A (en) * 1985-04-26 1986-11-05 Mitsubishi Electric Corp Impurity layer forming apparatus
JPS62156870A (en) * 1985-12-28 1987-07-11 Matsushita Electronics Corp Manufacture of solid-state image pickup device
JPS63147455A (en) * 1986-12-11 1988-06-20 株式会社神戸製鋼所 Composite implant member
JPH07260698A (en) * 1994-03-18 1995-10-13 Sony Corp Foreign object inspection device and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51140560A (en) * 1975-05-30 1976-12-03 Hitachi Ltd Method of monitoring homoepitaxy film thickness
JPS54162452A (en) * 1978-06-13 1979-12-24 Mitsubishi Electric Corp Manufacture of semiconductor and its unit
JPS5638464A (en) * 1979-09-03 1981-04-13 Mitsubishi Electric Corp Formation of nitride film
JPS5679438A (en) * 1979-12-04 1981-06-30 Toshiba Corp Working device for charged particle beam

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51140560A (en) * 1975-05-30 1976-12-03 Hitachi Ltd Method of monitoring homoepitaxy film thickness
JPS54162452A (en) * 1978-06-13 1979-12-24 Mitsubishi Electric Corp Manufacture of semiconductor and its unit
JPS5638464A (en) * 1979-09-03 1981-04-13 Mitsubishi Electric Corp Formation of nitride film
JPS5679438A (en) * 1979-12-04 1981-06-30 Toshiba Corp Working device for charged particle beam

Also Published As

Publication number Publication date
JPS5850737A (en) 1983-03-25

Similar Documents

Publication Publication Date Title
US9728374B2 (en) Inspection apparatus
KR101248561B1 (en) Detection device and inspection device
KR100875230B1 (en) Inspection device by charged particle beam and device manufacturing method using the inspection device
TWI491873B (en) Inspection method, inspection apparatus and electron beam apparatus
US7157703B2 (en) Electron beam system
JP5129865B2 (en) Electron beam inspection apparatus and wafer defect inspection apparatus using the electron beam inspection apparatus
JP5302423B2 (en) Sheet beam inspection system
US20020148975A1 (en) Apparatus for inspection with electron beam, method for operating same, and method for manufacturing semiconductor device using former
JPS6322610B2 (en)
US7375328B2 (en) Charged particle beam apparatus and contamination removal method therefor
TW200540911A (en) Inspection apparatus and inspection method
KR20120106620A (en) Inspection device
JP2005235777A (en) Inspection apparatus and method by electron beam, and device manufacturing method using the inspection apparatus
US20070022831A1 (en) Integrated in situ scanning electronic microscope review station in semiconductor wafers and photomasks optical inspection system
EP0237220B1 (en) Method and apparatus for forming a film
JP6737598B2 (en) Inspection device and inspection method
JP4939235B2 (en) Sheet beam inspection system
TW539845B (en) Sheet beam-type inspection device
US20100006756A1 (en) Charged particle beam apparatus and method for generating charged particle beam image
JP2007019033A (en) Inspection device and method by electron beam, and device manufacturing method using above inspection device
JP6715603B2 (en) Inspection device
JP6581783B2 (en) Electron beam inspection equipment
JP2011013196A (en) Scanning electron microscope
JPH0786350A (en) Electron beam device
JP2006003129A (en) Inspection device for sample, and method