JPS63223458A - Solar heat utilizing hot water heater - Google Patents

Solar heat utilizing hot water heater

Info

Publication number
JPS63223458A
JPS63223458A JP62057296A JP5729687A JPS63223458A JP S63223458 A JPS63223458 A JP S63223458A JP 62057296 A JP62057296 A JP 62057296A JP 5729687 A JP5729687 A JP 5729687A JP S63223458 A JPS63223458 A JP S63223458A
Authority
JP
Japan
Prior art keywords
heat exchanger
heat
during
defrosting operation
solenoid valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62057296A
Other languages
Japanese (ja)
Inventor
Yoshitsugu Fujimoto
藤本 佳嗣
Masahisa Tajima
田島 正久
Hiromi Awatsuji
粟辻 寛美
Masaji Hattori
服部 正次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62057296A priority Critical patent/JPS63223458A/en
Publication of JPS63223458A publication Critical patent/JPS63223458A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Abstract

PURPOSE:To prevent the freezing of water in a heat exchanger when a defrosting operation is performed by a method wherein an electromagnetic valve opened during a defrosting operation is arranged in a bypass circuit placed in parallel with a heat exchanger at a thermal collecting circuit and an electromagnetic valve closed during a defrosting operation is arranged in the heat exchanger. CONSTITUTION:Liquid coolant of low temperature liquefied with a thermal collector 6 during a defrosting operation is not passed through a heat exchanger 3 with a second solenoid valve 12 controlled to be opened during a thermal collecting operation and closed during a defrosting operation under a control circuit 15 with a signal from a coolant temperature sensor 14, but passed through a first solenoid valve 11 controlled to be closed during a thermal collecting operation and opened during a defrosting operation by the control circuit 15 with a signal from a bypass circuit 10 and a coolant temperature sensor 14 and then returned back to a compressor 1. Due to this fact, it is possible to prevent deformation and breakage of the heat exchanger 3 caused by the thermal absorption of the low temperature liquid coolant within the heat exchanger 3 and the freezing of the water within the heat exchanger 3.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、太陽熱を利用したヒートポンプ式給湯装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a heat pump water heater that utilizes solar heat.

従来の技術 従来のこの種の太陽熱利用給湯装置を第3図に示す。Conventional technology FIG. 3 shows a conventional solar hot water supply system of this type.

図示のように、蓄熱槽り内の水は、全体が均一に徐々に
昇温してゆく多循環廊下げ方式であり、その除霜運転時
には冷媒温度検知センサー/≠の信号により制御回路l
jを介して四方弁λを切換えて、冷媒は集熱運転時と逆
方向に流れ、集熱器乙の霜を溶かし、逆止弁j1集熱配
管13、熱交換器3、四方弁コ、アキュームレータ7を
通り、圧縮機/へ戻る。この時、給湯水加熱回路側は、
循環ポンプgにより蓄熱槽り内の水が熱交換器3内を循
環しており、熱交換器3で冷媒に熱を与え、冷却された
水が蓄熱槽タヘ戻るようになっていた。
As shown in the figure, the temperature of the water in the heat storage tank is raised uniformly and gradually through a multi-circulation system, and during defrosting operation, the control circuit l
By switching the four-way valve λ through J, the refrigerant flows in the opposite direction to that during heat collection operation, melting the frost on the heat collector B, and connecting the check valve J1, the heat collection pipe 13, the heat exchanger 3, the four-way valve B, It passes through the accumulator 7 and returns to the compressor. At this time, on the hot water heating circuit side,
The water in the heat storage tank was circulated through the heat exchanger 3 by the circulation pump g, and the heat exchanger 3 gave heat to the refrigerant, and the cooled water returned to the heat storage tank.

発明が解決しようとする問題点 しかしながら第4図に示すような積層廊下げ方式におい
ては、前記のような構成では、除霜運転時に冷却された
冷水が蓄熱槽り上部へ流入し、蓄熱槽り上部にためられ
た高温水の温度を低下させるため、除霜運転時には循環
ポンプgを停止し、冷水の蓄熱槽り上部への流入を防ぐ
必要がある。
Problems to be Solved by the Invention However, in the laminated corridor system shown in Fig. 4, with the above configuration, cold water cooled during defrosting operation flows into the upper part of the heat storage tank, and the heat storage tank is In order to lower the temperature of the high temperature water stored in the upper part, it is necessary to stop the circulation pump g during defrosting operation to prevent cold water from flowing into the upper part of the heat storage tank.

ところが、前記の循環ポンプgを停止させる方法では、
熱交換器3内の水は冷媒に吸熱され凍結し、熱交換器3
の変形・破損が生じるという問題点を有していた。
However, in the method of stopping the circulation pump g,
The water in the heat exchanger 3 absorbs heat from the refrigerant and freezes, and the water in the heat exchanger 3
There was a problem in that deformation and damage occurred.

本発明はかかる従来の問題を解消するもので、積層廊下
げ方式の太陽熱利用給湯装置において、除霜運転時の熱
交換器内の水の凍結を防ぎ、熱交換器の変形・破損を防
止するものである。
The present invention solves such conventional problems and prevents the water in the heat exchanger from freezing during defrosting operation in a laminated corridor type solar water heating system, thereby preventing deformation and damage of the heat exchanger. It is something.

問題点を解決するための手段 本発明は、圧縮機、四方弁、熱交換器、集熱配管、膨張
弁、及び前記膨張弁と並列に配置してある逆止弁、冷媒
湿度検知センサー、集熱器、アキュームレータからなる
集熱回路と、循環ポンプ、前記熱交換器、蓄熱槽からな
る給湯水加熱回路とからなり、前記集熱回路側に前記熱
交換器と並列にバイパス回路を配置し、バイパス回路に
は、集熱運転時に「閉」となり除霜運転時に「開」とな
る電磁弁を、また熱交換器の入口あるいは出口には、集
熱運転時に「開」となり、除霜運転時に「閉」となる電
磁弁とを配置し、各々の電磁弁の「開・閉」は冷媒温度
検知センサーの信号により行われるよう構成したもので
ある。
Means for Solving the Problems The present invention provides a compressor, a four-way valve, a heat exchanger, a heat collecting pipe, an expansion valve, a check valve disposed in parallel with the expansion valve, a refrigerant humidity detection sensor, and a collector. It consists of a heat collection circuit consisting of a heater and an accumulator, and a hot water heating circuit consisting of a circulation pump, the heat exchanger, and a heat storage tank, and a bypass circuit is arranged in parallel with the heat exchanger on the side of the heat collection circuit, The bypass circuit is equipped with a solenoid valve that is "closed" during heat collection operation and "open" during defrost operation, and the inlet or outlet of the heat exchanger is equipped with a solenoid valve that is "open" during heat collection operation and "open" during defrost operation. A solenoid valve that is closed is arranged, and each solenoid valve is opened and closed by a signal from a refrigerant temperature detection sensor.

作用 本発明は上記した構成によって、除霜運転時に冷媒はバ
イパス回路を流れ、熱交換器内を流れないため、循環ポ
ンプを停止しておいても、熱交換器内の水の凍結は起こ
らず、したがって熱交換器の凍結による変形・破損が防
止でき、また蓄熱槽上部への冷水の流入もなくなるため
蓄熱槽上部高温水の温度低下も生じなくなる。
Effect: Due to the above-described configuration of the present invention, the refrigerant flows through the bypass circuit during defrosting operation and does not flow through the heat exchanger, so even if the circulation pump is stopped, the water in the heat exchanger does not freeze. Therefore, deformation and damage of the heat exchanger due to freezing can be prevented, and since cold water does not flow into the upper part of the heat storage tank, the temperature of the high temperature water in the upper part of the heat storage tank does not decrease.

実施例 以下、本発明の実施例を添付図面にもとづいて説明する
Embodiments Hereinafter, embodiments of the present invention will be described based on the accompanying drawings.

第1図は本発明の太陽熱利用給湯装置を示す。FIG. 1 shows a solar water heating system according to the present invention.

第1図において、第3図、第4図と同一符号は同一部品
を示す。
In FIG. 1, the same symbols as in FIGS. 3 and 4 indicate the same parts.

圧縮機/、四方弁2、熱交換器3、膨張弁≠、膨張弁t
と並列に配置してある逆止弁j1集熱器乙、アキューム
レータ7、熱交換器3と並列に配置してあるバイパス回
路10.バイパス回路10に配置してある第1の電磁弁
//、熱交換器3の入口に配置された第2の電磁弁/、
2、集熱配管13および冷媒温度検知センサー/≠で本
発明の集熱回路が構成される。
Compressor/, four-way valve 2, heat exchanger 3, expansion valve≠, expansion valve t
Check valve j1 arranged in parallel with heat collector B, accumulator 7, and bypass circuit 10 arranged in parallel with heat exchanger 3. A first solenoid valve located in the bypass circuit 10 //, a second solenoid valve located at the inlet of the heat exchanger 3 /,
2. The heat collecting circuit of the present invention is constituted by the heat collecting pipe 13 and the refrigerant temperature detection sensor/≠.

また、循環ポンプ♂、熱交換器3および蓄熱槽りで、本
発明の給湯水加熱回路が構成きれる。
Further, the circulation pump ♂, the heat exchanger 3, and the heat storage tank can constitute the hot water heating circuit of the present invention.

また、/jは制御回路である。Further, /j is a control circuit.

次に本発明の前記構成における作用を説明する。Next, the operation of the above configuration of the present invention will be explained.

膨張弁≠で減圧された低圧二相状態となった冷媒は集熱
器tで大気熱を吸熱し気化して、集熱配管13、四方弁
2、アキュームレータ7を介して圧縮機lに戻る。圧縮
機lで高温高圧となったガス冷媒は、四方弁2、第2の
電磁弁12を介して熱交換器3へ入り、熱交換器3にお
いて水に放熱し、高圧液状態となり集熱配管/3を介し
て膨張弁≠へ送られ減圧され集熱器6で気化するという
サイクルを繰り返す。
The refrigerant, which has been reduced in pressure by the expansion valve ≠ and has become a low-pressure two-phase state, absorbs atmospheric heat in the heat collector t, vaporizes it, and returns to the compressor 1 via the heat collection pipe 13, the four-way valve 2, and the accumulator 7. The gas refrigerant that has become high temperature and high pressure in the compressor 1 enters the heat exchanger 3 via the four-way valve 2 and the second solenoid valve 12, and radiates heat to water in the heat exchanger 3, becoming a high pressure liquid state and passing through the heat collection pipe. /3 to the expansion valve≠, the pressure is reduced, and the cycle is repeated where it is vaporized in the heat collector 6.

一方、給湯水加熱回路側では、蓄熱槽りの下部から循環
ポンプとにより送られてきた低温水は熱交換器3で高温
高圧冷媒よシ吸熱し、高温水となり蓄熱槽りの上部へ戻
る。この時、熱交換器3の出口に設けられたサーミスタ
7Aにより、集熱量が変化した場合にも循環ポンプどの
循環水量が変化し熱交換器3の出口水温は常に一定とな
シ、蓄熱槽りの上部より徐々に高温水が貯えられてゆく
On the other hand, on the hot water heating circuit side, the low-temperature water sent from the lower part of the heat storage tank by the circulation pump absorbs heat from the high-temperature, high-pressure refrigerant in the heat exchanger 3, becomes high-temperature water, and returns to the upper part of the heat storage tank. At this time, the thermistor 7A installed at the outlet of the heat exchanger 3 controls the amount of circulating water in the circulation pump to change even when the amount of heat collected changes, so that the water temperature at the outlet of the heat exchanger 3 remains constant. High temperature water is gradually stored from the top of the tank.

低外気温時に集熱運転を行うと、集熱器tに着霜が生じ
、集熱能力が低下するため除霜運転を行う必要がある。
If heat collection operation is performed at a low outside temperature, frost will form on the heat collector t and the heat collection capacity will decrease, so it is necessary to perform defrosting operation.

除霜運転時には、冷媒温度検知センサー/≠の信号によ
り制御装置ljを介して四方弁2を切換えて、圧縮機l
より吐出された高温ガス冷媒は、四方弁2、集熱配管1
3を介して、集熱器乙に流入し、霜を溶かして凝縮液化
し、逆止弁j1集熱配管/3、バイパス回路io、第1
の電磁弁l11四方弁2、アキュームレータ7を介して
圧縮機/に戻る。
During defrosting operation, the four-way valve 2 is switched via the control device lj according to the signal from the refrigerant temperature detection sensor/≠, and the compressor l
The high temperature gas refrigerant discharged from the four-way valve 2 and the heat collection pipe 1
3, it flows into the heat collector B, melts the frost, condenses and liquefies it, and connects the check valve j1 heat collection pipe/3, bypass circuit io, and the first
It returns to the compressor/through the solenoid valve l11 four-way valve 2 and the accumulator 7.

前記構成において、除霜運転時には、集熱器tで液化し
た低温液冷媒は、冷媒温度検知センサー/lの信号によ
り制御回路ljで集熱運転時に開となり除霜運転時に閉
となるよう制御される第2の電磁弁/2によって熱交換
器3を通過せず、バイパス回路10と冷媒温度検知セン
サー/≠の信号により制御回路/jで集熱運転時に閉と
なり除霜運転時に開となるよう制御される第1の電磁弁
//を通過して圧縮機/に戻る。このため、熱交換器3
内において低温液冷媒が水側から吸熱し熱交換器3内の
水が凍結することによる熱交換器3の変形・破損を防ぐ
ことができるという効果がある。また、前記のように熱
交換器3内の水の凍結による熱交換器3の変形・破損の
恐れがないため、除霜運転中は循環ポンプ♂を停止する
ことが可能となり、蓄熱槽り上部への低温水の流入がな
く、蓄熱槽り上部にためられた高温水の温度低下を防止
できるという効果がある。
In the above configuration, during the defrosting operation, the low temperature liquid refrigerant liquefied in the heat collector t is controlled by the control circuit lj to be open during the heat collecting operation and closed during the defrosting operation, based on the signal from the refrigerant temperature detection sensor /l. The second solenoid valve /2 prevents the refrigerant from passing through the heat exchanger 3, and the control circuit /j closes during heat collection operation and opens during defrosting operation due to the bypass circuit 10 and the signal from the refrigerant temperature detection sensor /≠. It passes through the first controlled solenoid valve// and returns to the compressor//. For this reason, heat exchanger 3
The low-temperature liquid refrigerant absorbs heat from the water side inside the heat exchanger 3, thereby preventing the heat exchanger 3 from being deformed or damaged due to freezing of the water inside the heat exchanger 3. In addition, as mentioned above, since there is no risk of deformation or damage to the heat exchanger 3 due to freezing of the water in the heat exchanger 3, it is possible to stop the circulation pump ♂ during defrosting operation, and the upper part of the heat storage tank This has the effect of preventing low-temperature water from flowing into the tank and preventing the temperature of high-temperature water stored in the upper part of the heat storage tank from decreasing.

また、第2図は前記電磁弁/2を前記熱交換器3の出口
側に配置した構成の実施例であシ、前記実施例と同様の
効果が得られる。
Further, FIG. 2 shows an embodiment in which the solenoid valve 2 is disposed on the outlet side of the heat exchanger 3, and the same effects as in the embodiment described above can be obtained.

発明の効果 本発明の太陽熱利用給湯装置によれば次の効果が得られ
る。
Effects of the Invention According to the solar water heating system of the present invention, the following effects can be obtained.

(1)  集熱回路に熱交換器と並列にバイパス回路を
配置してあるので、除霜運転時に低温液冷媒が熱交換器
内に流入しないように構成できるので、熱交換器内の水
の凍結による熱交換器の変形・損傷が防止できるという
効果がある。
(1) Since a bypass circuit is placed in the heat collection circuit in parallel with the heat exchanger, it can be configured to prevent low-temperature liquid refrigerant from flowing into the heat exchanger during defrosting operation. This has the effect of preventing deformation and damage to the heat exchanger due to freezing.

(2)除霜運転中に循環ポンプを停止することができる
ため、蓄熱槽上部への低温水の流入がなく、蓄熱槽上部
にためられた高温水の温度低下を防止でき、常に高温水
の採湯ができる使用勝手の良いものとすることができる
(2) Since the circulation pump can be stopped during defrosting operation, low-temperature water does not flow into the upper part of the heat storage tank, and it is possible to prevent the temperature of high-temperature water stored in the upper part of the heat storage tank from dropping. It can be made easy to use and allows hot water to be taken.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の太陽熱利用給湯装置のシステム図、第
2図は本発明の他の実施例のシステム図、第3図は多循
環廊下げ方式の従来のシステム図、第4図は積層廊下げ
方式の従来のシステム図、を示す。 l:圧縮機、 、2二四方弁、 3:熱交換器、≠:膨
張弁、 j:逆止弁、乙:集熱器、7:アキュームレー
タ、 ♂:循環ポンプ、り:蓄熱槽、 10:バイパス
回路、 //:第1の電磁弁、 1.2:第2の電磁弁
、/4’:冷媒温度検知センサー、 l!二制御回路。 特許出願人   松下電器産業株式会社代理人弁理士 
 阿  部    功 m−−−−一−−−−コ  I;斤鳥繊L−j L        J 「−一一一−−−−一一−−1
Figure 1 is a system diagram of the solar hot water supply system of the present invention, Figure 2 is a system diagram of another embodiment of the present invention, Figure 3 is a conventional system diagram of a multi-circulation corridor system, and Figure 4 is a stacked system diagram. A conventional system diagram of the corridor method is shown. l: Compressor, , 2 two-way valve, 3: Heat exchanger, ≠: Expansion valve, j: Check valve, B: Heat collector, 7: Accumulator, ♂: Circulation pump, R: Heat storage tank, 10 : bypass circuit, //: first solenoid valve, 1.2: second solenoid valve, /4': refrigerant temperature detection sensor, l! Two control circuits. Patent applicant: Patent attorney representing Matsushita Electric Industrial Co., Ltd.
Abe Isao m----1-----ko I; Hitotori Sen L-j L J

Claims (2)

【特許請求の範囲】[Claims] (1)圧縮機、四方弁、熱交換器、集熱配管、膨張弁、
及び前記膨張弁と並列に配置してある逆止弁、冷媒温度
検知センサー、集熱器、アキユームレータからなる集熱
回路と、循環ポンプ、前記熱交換器、蓄熱槽からなる給
湯水加熱回路とからなり、前記集熱回路側に前記熱交換
器と並列にバイパス回路を配置した太陽熱利用給湯装置
(1) Compressor, four-way valve, heat exchanger, heat collection piping, expansion valve,
and a heat collection circuit including a check valve, a refrigerant temperature detection sensor, a heat collector, and an accumulator arranged in parallel with the expansion valve, and a hot water heating circuit including a circulation pump, the heat exchanger, and a heat storage tank. A solar water heating system comprising: a bypass circuit arranged in parallel with the heat exchanger on the heat collecting circuit side.
(2)バイパス回路には、集熱運転時に「閉」となり除
霜運転時に「開」となる電磁弁を、また熱交換器の入口
あるいは出口には、集熱運転時に「開」となり、除霜運
転時に「閉」となる電磁弁とを配置し、各々の電磁弁の
「開・閉」は冷媒温度検知センサーの信号により行われ
るよう構成してなる特許請求の範囲第1項記載の太陽熱
利用給湯装置。
(2) The bypass circuit is equipped with a solenoid valve that is "closed" during heat collection operation and "open" during defrosting operation, and the inlet or outlet of the heat exchanger is equipped with a solenoid valve that is "open" during heat collection operation and is "open" during defrost operation. The solar heating system according to claim 1, wherein a solenoid valve that is closed during frost operation is arranged, and each solenoid valve is opened and closed by a signal from a refrigerant temperature detection sensor. Use hot water equipment.
JP62057296A 1987-03-12 1987-03-12 Solar heat utilizing hot water heater Pending JPS63223458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62057296A JPS63223458A (en) 1987-03-12 1987-03-12 Solar heat utilizing hot water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62057296A JPS63223458A (en) 1987-03-12 1987-03-12 Solar heat utilizing hot water heater

Publications (1)

Publication Number Publication Date
JPS63223458A true JPS63223458A (en) 1988-09-16

Family

ID=13051589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62057296A Pending JPS63223458A (en) 1987-03-12 1987-03-12 Solar heat utilizing hot water heater

Country Status (1)

Country Link
JP (1) JPS63223458A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5806511A (en) * 1995-01-13 1998-09-15 Hart; Douglas Robinson Sanford Method and apparatus to provide freeze protection for solar water heating systems
WO2003064935A1 (en) * 2002-01-29 2003-08-07 Daikin Industries, Ltd. Heat pump type water heater
WO2006103815A1 (en) * 2005-03-28 2006-10-05 Toshiba Carrier Corporation Hot water supply device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58214759A (en) * 1982-06-09 1983-12-14 松下電器産業株式会社 Heat pump type hot-water supply device
JPS60155859A (en) * 1984-01-24 1985-08-15 Matsushita Electric Ind Co Ltd Solar heat and air heat collecting type heat pump water heater

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58214759A (en) * 1982-06-09 1983-12-14 松下電器産業株式会社 Heat pump type hot-water supply device
JPS60155859A (en) * 1984-01-24 1985-08-15 Matsushita Electric Ind Co Ltd Solar heat and air heat collecting type heat pump water heater

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5806511A (en) * 1995-01-13 1998-09-15 Hart; Douglas Robinson Sanford Method and apparatus to provide freeze protection for solar water heating systems
WO2003064935A1 (en) * 2002-01-29 2003-08-07 Daikin Industries, Ltd. Heat pump type water heater
EP1484559A1 (en) * 2002-01-29 2004-12-08 Daikin Industries, Ltd. Heat pump type water heater
EP1484559A4 (en) * 2002-01-29 2006-06-21 Daikin Ind Ltd Heat pump type water heater
US7883024B2 (en) 2002-01-29 2011-02-08 Daikin Industries, Ltd. Heat pump type water heater
WO2006103815A1 (en) * 2005-03-28 2006-10-05 Toshiba Carrier Corporation Hot water supply device
JPWO2006103815A1 (en) * 2005-03-28 2008-09-04 東芝キヤリア株式会社 Water heater
US7454919B2 (en) 2005-03-28 2008-11-25 Toshiba Carrier Corporation Hot-water supply apparatus
JP4756035B2 (en) * 2005-03-28 2011-08-24 東芝キヤリア株式会社 Water heater

Similar Documents

Publication Publication Date Title
EP0134015B1 (en) Space cooling and heating and hot water supplying apparatus
JPS58133575A (en) Refrigerator
US4158950A (en) Heat pump defrost system
US4441335A (en) Heat pump
JPS63223458A (en) Solar heat utilizing hot water heater
JPS63169457A (en) Heat pump type air conditioner
JPH01118080A (en) Heat pump type air conditioner
CN104676962B (en) Cold and hot cogeneration heat pump equipment
JPH01123966A (en) Refrigerator
JPS63101661A (en) Hot water feed device utilizing solar heat
JPH0260950B2 (en)
JP2906508B2 (en) Heat pump water heater
JPS63105367A (en) Hot-water supply system utilizing solar heat
KR920009306B1 (en) Refrigerating cycle
CN212511905U (en) Refrigeration system
JPH035680A (en) Air conditioner
JPS6018895B2 (en) Solar heat pump air conditioner
JP2842471B2 (en) Thermal storage type air conditioner
JPS63213752A (en) Hot water supplier utilizing solar energy
JPH0510191Y2 (en)
JPS5856528Y2 (en) Refrigeration equipment
JPH0233108Y2 (en)
JP2737543B2 (en) Heat pump water heater
JPS62237260A (en) Defrostation control method of heat pump type air conditioner
CN114251857A (en) Refrigeration system and defrosting control method thereof