JPS6321610A - Formation of optical waveguide device - Google Patents

Formation of optical waveguide device

Info

Publication number
JPS6321610A
JPS6321610A JP16572386A JP16572386A JPS6321610A JP S6321610 A JPS6321610 A JP S6321610A JP 16572386 A JP16572386 A JP 16572386A JP 16572386 A JP16572386 A JP 16572386A JP S6321610 A JPS6321610 A JP S6321610A
Authority
JP
Japan
Prior art keywords
optical
waveguide
substrate
lens
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16572386A
Other languages
Japanese (ja)
Other versions
JPH079496B2 (en
Inventor
Minoru Kiyono
實 清野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61165723A priority Critical patent/JPH079496B2/en
Publication of JPS6321610A publication Critical patent/JPS6321610A/en
Publication of JPH079496B2 publication Critical patent/JPH079496B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12004Combinations of two or more optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings
    • G02B6/1245Geodesic lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Abstract

PURPOSE:To facilitate positioning and optical axis alignment and to simplify the connection of an optical waveguide with another optical element by projecting the tip part of the optical waveguide from an optical substrate and forming a lens on its end surface by using an optical film which covers the tip part. CONSTITUTION:The optical waveguide 7 consisting of a clad layer 71 and a core layer 72 and the optical substrate 6 which supports it are formed of different optical materials and can be etched up to part of the substrate 6 behind the waveguide 7. Consequently, the tip part of the waveguide 7 projects from the substrate 6. An optical film 8 is allowed to adhere thereupon and then extends round the tip part of the waveguide 7 to cover the end surface of the waveguide 7. Further, the film 8 fill a flaw part in the end surface firstly, so the end surface need not be polished specularly before the adhesion of the film 8. When the film 8 becomes thicker, the lens 81 is formed on the end surface. The optical fiber 1 is mounted on the substrate 6 and a layer 72 and core layer 12 of the fiber 1 are connected through the lens 81. THus the lens is interposed and then the positioning and optical axis alignment are facilitated to simplify the connection operation.

Description

【発明の詳細な説明】 〔概 要〕 光学素子と光導波路との接続は間にレンズを介在せしめ
たり、数10μm以下に加工した光学素子を光導波路の
隙間に挿入することにより行われる。
[Detailed Description of the Invention] [Summary] The connection between an optical element and an optical waveguide is performed by interposing a lens between them or by inserting an optical element processed to a thickness of several tens of micrometers or less into a gap between the optical waveguides.

この場合前者では光学基板上にそれ等の光学素子とレン
ズを組込む作業は極めて困難であり、後者では光学素子
を薄く加工することが困難で損失が大きい。そこで光導
波路を形成する際にレンズも同時に形成せしめ、それ等
の光学素子と光導波路の接続を簡略化したものである。
In this case, in the former case, it is extremely difficult to assemble the optical elements and lenses on the optical substrate, and in the latter case, it is difficult to process the optical elements thinly, resulting in large losses. Therefore, when forming the optical waveguide, the lens is also formed at the same time, thereby simplifying the connection between these optical elements and the optical waveguide.

〔産業上の利用分野〕[Industrial application field]

本発明は光通信システムを構成するデバイスに係り、特
に光学素子との接続を簡略化できる光導波路デバイスの
形成方法に関する。
The present invention relates to devices constituting an optical communication system, and particularly to a method for forming an optical waveguide device that can simplify connection with optical elements.

光を用いた通信システムは情報化社会における最適の通
信システムとして広い分野に普及しつつある。しかしこ
れまでに提供されていた光デバイスは高い精度や信頼性
が要求され量産化できないものが多く、光を用いた通信
システムの低価格化を阻害する原因になっている。
Communication systems using light are becoming widespread in a wide range of fields as the optimal communication systems in the information society. However, many of the optical devices that have been provided so far require high precision and reliability and cannot be mass-produced, which hinders the cost reduction of optical communication systems.

そこで通信システムの低価格化を実現するための手段と
して、高い精度や信頼性を維持しながら量産化できるよ
うに部品や装置の形態を改良すると共に、それを量産化
するための製造技術の開発が望まれている。
Therefore, as a means to reduce the cost of communication systems, we will improve the form of parts and equipment so that they can be mass-produced while maintaining high accuracy and reliability, and develop manufacturing technology to mass-produce them. is desired.

〔従来の技術〕[Conventional technology]

第5図は従来の光導波路と光ファイバの接続を示す側断
面図、第6図は従来の個別光素子による光分波器の構成
を示す平面図である。
FIG. 5 is a side sectional view showing the connection between a conventional optical waveguide and an optical fiber, and FIG. 6 is a plan view showing the configuration of a conventional optical demultiplexer using individual optical elements.

第5図において光ファイバ1はクランド層11およびコ
ア層12からなり、−力先導波路デバイス2は光学基板
21とクラッド層22およびコア層23からなる光導波
路24とで形成されている。この両者は従来同図(a)
または(′b)に示す方法で接続されていた。
In FIG. 5, the optical fiber 1 is made up of a landing layer 11 and a core layer 12, and the force guiding waveguide device 2 is made up of an optical substrate 21 and an optical waveguide 24 made of a cladding layer 22 and a core layer 23. Both of these are conventionally shown in the same figure (a).
Or they were connected in the method shown in ('b).

第5図ta+は光ファイバ1と光導波路デバイス2とを
直接接続する方法で、光導波路24の端面に光ファイバ
1の端面を当接せしめた後例えば樹脂31等によって接
着している。また第5図(blは光ファイバ1と光導波
路デバイス2とをレンズ32を介して接続する方法で、
光導波路24の端面にレンズ32を当接せしめた後例え
ば樹脂31等によって接着し、これを光ファイバ1の端
面と対向せしめて基板3に固定することによって接続し
ている。
FIG. 5 ta+ shows a method of directly connecting the optical fiber 1 and the optical waveguide device 2, in which the end surface of the optical fiber 1 is brought into contact with the end surface of the optical waveguide 24 and then bonded with, for example, resin 31. In addition, FIG. 5 (bl is a method of connecting the optical fiber 1 and the optical waveguide device 2 via the lens 32,
After the lens 32 is brought into contact with the end face of the optical waveguide 24, it is bonded with, for example, a resin 31, and the lens 32 is fixed to the substrate 3 so as to face the end face of the optical fiber 1, thereby making the connection.

また従来の個別光素子によろ光分波器は第6図に示す如
く、基板4上に配置された複数個の光ファイバ1と、光
ファイバ1に対応して設けられたレンズ42と、それぞ
れ対になる光ファイバ1の間に設置された干渉フィルタ
43からなり、図示のごとく1個の光ファイバ1を伝播
してきたλ!とλ2の二つの波長を有する光は、干渉フ
ィルタ43によって波長λ1の光と波長λ2の光とに分
波され、分波された光はそれぞれ別の光ファイバ1を経
由して伝播される。
Further, as shown in FIG. 6, the conventional filtered optical demultiplexer using individual optical elements includes a plurality of optical fibers 1 arranged on a substrate 4, lenses 42 provided corresponding to the optical fibers 1, It consists of an interference filter 43 installed between a pair of optical fibers 1, and as shown in the figure, λ! has been propagated through one optical fiber 1! The light having two wavelengths, λ1 and λ2, is split by an interference filter 43 into light with a wavelength λ1 and light with a wavelength λ2, and each split light is propagated through separate optical fibers 1.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の先導波路はその端面に光ファイバを直接当接させ
る場合であっても、またレンズを介して光ファイバやそ
の他の光学素子と接続する場合であっても、光の損失を
少なくするためにその端面ば必ず鏡面状に研摩しなけれ
ばならない。しかし光学基板上に形成された先導波路を
途中で切断しその端面を鏡面研摩することは極めて難し
い。したがって先導波路デバイスを光ファイバやその他
の光学素子と共に、別の基板上に配置しその間に別に形
成したレンズを装着する必要が生じる。
Conventional leading waveguides are designed to reduce light loss, whether the optical fiber is brought into direct contact with the end face or connected to an optical fiber or other optical element through a lens. The end face must be polished to a mirror finish. However, it is extremely difficult to cut a guide waveguide formed on an optical substrate in the middle and mirror-polish the end face. Therefore, it is necessary to arrange the guiding waveguide device together with the optical fiber and other optical elements on a separate substrate, and to mount a separately formed lens therebetween.

その結果従来の光導波路デバイスと光ファイバやその他
の光学素子からなる光デバイスの形成は、高精度な位置
合わせや光軸合わせが多くなり組立が困難であると共に
高価になるという問題があった。
As a result, the formation of conventional optical devices consisting of optical waveguide devices, optical fibers, and other optical elements has had the problem of requiring high-precision positioning and optical axis alignment, making assembly difficult and expensive.

〔問題点を解決するための手段〕[Means for solving problems]

第1図は本発明になる光導波路デバイスの形成方法を示
す側断面図である。
FIG. 1 is a side sectional view showing a method for forming an optical waveguide device according to the present invention.

上記問題点は光学基板6と、光学基板6の上に形成され
た光導波路7と、その上を覆う光学膜8からなる先導波
路デバイスの形成において、光学基板6を光導波路7と
異なる光学材料で形成することによって、エツチング手
法により光導波路7の先端部を光学基板6から突出せし
め、光学基板6から突出した光導波路7の先端部を覆う
光学膜8によって、光導波路7の端面にレンズ81を形
成する本発明になる光導波路デバイスの形成方法によっ
て解決される。
The above problem arises when forming a guided waveguide device consisting of an optical substrate 6, an optical waveguide 7 formed on the optical substrate 6, and an optical film 8 covering the optical substrate 6. The tip of the optical waveguide 7 is made to protrude from the optical substrate 6 using an etching method, and the optical film 8 covering the tip of the optical waveguide 7 protruding from the optical substrate 6 forms a lens 81 on the end surface of the optical waveguide 7. This problem is solved by the method of forming an optical waveguide device according to the present invention.

〔作用〕[Effect]

第1図において光導波路の先端部を光学基板から突出せ
しめ、光導波路の先端部を覆う光学膜により先導波路の
端面にレンズを形成することによって、従来の光導波路
デバイスでは不可欠な作業であった、先導波路の端面を
鏡面状に研摩する作業が不要になる。また同一光学基板
上に先導波路とレンズを同時に形成することが可能にな
り、従来の光導波路デバイスでは別に形成し先導波路に
対応させて装着していたレンズが不要になる。そして光
導波路とレンズを同時に形成した光学基板上に、光ファ
イバやその他の光学素子を装着することが可能になり、
光導波路と光ファイバやその他の光学素子との接続が簡
略化されて、高精度な位置合わせや光軸合わせを低減す
ることができる。
In Figure 1, the tip of the optical waveguide is made to protrude from the optical substrate, and an optical film covering the tip of the optical waveguide is used to form a lens on the end face of the leading waveguide, a process that is essential for conventional optical waveguide devices. , there is no need to polish the end face of the leading waveguide to a mirror finish. Furthermore, it becomes possible to simultaneously form a leading waveguide and a lens on the same optical substrate, eliminating the need for a lens that is separately formed and attached to the leading waveguide in conventional optical waveguide devices. It has become possible to mount optical fibers and other optical elements on an optical substrate on which optical waveguides and lenses are formed at the same time.
The connection between the optical waveguide and the optical fiber or other optical element is simplified, and the need for highly accurate positioning and optical axis alignment can be reduced.

〔実施例〕〔Example〕

以下添付図により本発明の実施例について説明する。第
2図乃至第4図は本発明になる先導波路デバイスの応用
例を示す図で、第2図は先導波路デバイスと光ファイバ
の接続を示す側断面図、第3図は先導波路デバイスによ
る光分波器の構成を示す平面図、第4図は光導波路デバ
イスと光学素子との接続を示す側断面図である。なお合
図を通し同じ対象物は同一記号で表している。
Embodiments of the present invention will be described below with reference to the accompanying drawings. 2 to 4 are diagrams showing application examples of the guided waveguide device according to the present invention. FIG. 2 is a side cross-sectional view showing the connection between the guided waveguide device and an optical fiber, and FIG. FIG. 4 is a plan view showing the configuration of the duplexer, and a side sectional view showing the connection between the optical waveguide device and the optical element. The same objects are represented by the same symbols throughout the signals.

第1図(alにおいてクラフト層71およびコア層72
からなる光導波路7と、その先導波路7を支持する光学
基板6とは異なる光学材料で形成されており、ドライエ
ツチングやケミカルエツチング等のエツチング手法によ
り、光導波路7の蔭になる光学基板6の一部分までエツ
チングすることができる。その結果光導波路7の先端部
が光学基板6から突出する。
FIG. 1 (in al, kraft layer 71 and core layer 72
The optical waveguide 7 consisting of the optical waveguide 7 and the optical substrate 6 supporting the leading waveguide 7 are made of different optical materials, and the optical substrate 6 that is in the shadow of the optical waveguide 7 is etched by etching methods such as dry etching or chemical etching. Parts can be etched. As a result, the tip of the optical waveguide 7 protrudes from the optical substrate 6.

第1図(blに示す如(その上にCV()法等によって
Siや5i02等の光学膜8を被着させると、光学膜8
は光導波路7の先端部に回り込み光導波路7の端面を覆
う。この光導波路7の端面を覆う光学膜8は端面におけ
る疵の部分にまず充填されるため、光学膜8の被着に先
立って端面を境面状に研摩する必要はない。なお先導波
路7の上に光学膜8を被着させるため、光学膜8とコア
層72との間に形成したクラッド層71は省略或いは薄
くすることが可能である。
As shown in FIG.
wraps around the tip of the optical waveguide 7 and covers the end face of the optical waveguide 7. Since the optical film 8 covering the end face of the optical waveguide 7 is first filled into the flawed portion of the end face, there is no need to polish the end face into a border shape prior to applying the optical film 8. Note that since the optical film 8 is deposited on the leading waveguide 7, the cladding layer 71 formed between the optical film 8 and the core layer 72 can be omitted or made thin.

先導波路7の端面を覆う光学膜8が更に厚くなると光導
波路7の端面にレンズ81を形成する。因にこのレンズ
81の曲率半径ひいてはレンズ81の焦点距離は、先導
波路7の端面の面積と光導波路7の端面に被着させる光
学膜8の厚さを変えることにより制御できる。
When the optical film 8 covering the end face of the optical waveguide 7 becomes thicker, a lens 81 is formed on the end face of the optical waveguide 7. Incidentally, the radius of curvature of this lens 81 and thus the focal length of the lens 81 can be controlled by changing the area of the end surface of the leading waveguide 7 and the thickness of the optical film 8 deposited on the end surface of the optical waveguide 7.

かかる光導波路デバイスと光ファイバとの接続は第2図
に示す如く、光導波路7を形成した光学基板6に光ファ
イバ1を装着することによって、光導波路7のコア75
72と光ファイバ1のコア層12がレンズ81を介して
接続される。このようにレンズ81を介して接続するこ
とによって位置合わせや光軸合わせが容易になり、光導
波路7と光ファイバ1との接続が簡略される。
The connection between such an optical waveguide device and an optical fiber is achieved by attaching the optical fiber 1 to the optical substrate 6 on which the optical waveguide 7 is formed, as shown in FIG.
72 and the core layer 12 of the optical fiber 1 are connected via a lens 81. By connecting through the lens 81 in this manner, alignment and optical axis alignment are facilitated, and the connection between the optical waveguide 7 and the optical fiber 1 is simplified.

また本発明になる光導波路デバイスによる光分波器は第
3図に示す如く、複数個の光導波路7は同一光学基板6
に同時に形成され、それぞれの光導波路7が端面にレン
ズ81を具えているため、光導波路7を形成した光学基
板6に干渉フィルタ43を設置し、光導波路7と干渉フ
ィルタ43の位置合わせを行うだけで容易に形成するこ
とができる。
Further, in the optical demultiplexer using the optical waveguide device according to the present invention, as shown in FIG.
Since each optical waveguide 7 is provided with a lens 81 on the end face, an interference filter 43 is installed on the optical substrate 6 on which the optical waveguide 7 is formed, and the optical waveguide 7 and the interference filter 43 are aligned. It can be easily formed by just

更に本発明になる光導波路デバイスと光学素子との接続
は第7図に示す如く、端面にレンズ81を具えた先導波
路7とリレーレンズ82.83が同一光学基板6に同時
に形成されているため、先導波路7を形成した光学基板
6に光学素子51を装着することによって、先導波路7
と光学素子51とを容易に接続することができる。
Furthermore, the connection between the optical waveguide device and the optical element according to the present invention is achieved because, as shown in FIG. , by mounting the optical element 51 on the optical substrate 6 on which the leading waveguide 7 is formed, the leading waveguide 7 is formed.
and the optical element 51 can be easily connected.

このように本発明になる光導波路デバイスの形成方法に
よらて、先導波路とレンズを同時に形成した光学基板上
に、光ファイバやその他の光学素子を装着することが可
能になり、光導波路と光ファイバやその他の光学素子と
の接続が簡略化されて、高精度な位置合わせや光軸合わ
せを低減することができる。
As described above, the method for forming an optical waveguide device according to the present invention makes it possible to mount optical fibers and other optical elements on an optical substrate on which a guiding waveguide and a lens are simultaneously formed, thereby making it possible to attach optical fibers and other optical elements to the optical substrate. Connections with fibers and other optical elements are simplified, and high-precision positioning and optical axis alignment can be reduced.

〔発明の効果〕〔Effect of the invention〕

上述の如く本発明によれば光学素子との接続を簡略化で
きる、先導波路デバイスの形成方法を提供することがで
きる。
As described above, according to the present invention, it is possible to provide a method for forming a leading waveguide device that can simplify the connection with an optical element.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明になる光導波路デバイスの形成方法を示
す側断面図、 第2図は先導波路デバイスと光ファイバの接続を示す側
断面図、 第3図は先導波路デバイスによる光分波器の構成を示す
平面図、 第4図は光導波路デバイスと光学素子との接続を示す側
断面図、 第5図は従来の先導波路と光ファイバの接続を示す側断
面図、 第6図は従来の個別光素子による光分波器の構成を示す
平面図、 である。図において 1は光ファイバ、   6は光学基板、7は先導波路、
    8は光学膜、 11はクラッド層、  12はコア層、43は干渉フィ
ルタ、 51は光学素子、71はクラッド層、  72
はコア層、81はレンズ、    82.83はリレー
レンズ、をそれぞれ表す。 (α)            (し)亭2 阿 えJ1疋石シアバイス1で13を倍皮え;η構へと示1
図”岑3 回 U;庚1斐Vテフぐl【とオー1(オドtと刃4要」帽
tε示Tス貝・IしJY荏qβ迂事4酊 (α) (し) 千5 閲
Fig. 1 is a side sectional view showing the method for forming an optical waveguide device according to the present invention, Fig. 2 is a side sectional view showing the connection between the leading waveguide device and an optical fiber, and Fig. 3 is an optical demultiplexer using the leading waveguide device. FIG. 4 is a side sectional view showing the connection between the optical waveguide device and the optical element, FIG. 5 is a side sectional view showing the connection between the conventional leading waveguide and the optical fiber, and FIG. 6 is the conventional FIG. 2 is a plan view showing the configuration of an optical demultiplexer using individual optical elements. In the figure, 1 is an optical fiber, 6 is an optical substrate, 7 is a leading waveguide,
8 is an optical film, 11 is a cladding layer, 12 is a core layer, 43 is an interference filter, 51 is an optical element, 71 is a cladding layer, 72
81 represents a core layer, 81 represents a lens, and 82 and 83 represent a relay lens. (α) (Shi) Tei 2 Ae J1 Hikiishi Shiabisu 1 doubles 13; shows η structure 1
Figure "岑 3 times U; 庚 1 斐 V TEFU GU L [to O 1 (Odo t and blade 4 required" hat tε show T sugai・I し JY 荏qβ Circumstances 4 drunkenness (α) (shi) 1,000 5 View

Claims (1)

【特許請求の範囲】 光学基板(6)と、該光学基板(6)の上に形成された
光導波路(7)と、その上を覆う光学膜(8)からなる
光導波路デバイスの形成において、 該光学基板(6)を該光導波路(7)と異なる光学材料
で形成することによって、エッチング手法により該光導
波路(7)の先端部を該光学基板(6)から突出せしめ
、 該光学基板(6)から突出した該光導波路(7)の先端
部を覆う該光学膜(8)によって、該光導波路(7)の
端面にレンズ(81)を形成することを特徴とした光導
波路デバイスの形成方法。
[Claims] In the formation of an optical waveguide device consisting of an optical substrate (6), an optical waveguide (7) formed on the optical substrate (6), and an optical film (8) covering the optical waveguide, By forming the optical substrate (6) with an optical material different from that of the optical waveguide (7), the tip of the optical waveguide (7) is made to protrude from the optical substrate (6) by an etching method, and the optical substrate ( Formation of an optical waveguide device characterized in that a lens (81) is formed on the end face of the optical waveguide (7) by the optical film (8) covering the tip of the optical waveguide (7) protruding from 6). Method.
JP61165723A 1986-07-15 1986-07-15 Method of forming optical waveguide device Expired - Lifetime JPH079496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61165723A JPH079496B2 (en) 1986-07-15 1986-07-15 Method of forming optical waveguide device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61165723A JPH079496B2 (en) 1986-07-15 1986-07-15 Method of forming optical waveguide device

Publications (2)

Publication Number Publication Date
JPS6321610A true JPS6321610A (en) 1988-01-29
JPH079496B2 JPH079496B2 (en) 1995-02-01

Family

ID=15817847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61165723A Expired - Lifetime JPH079496B2 (en) 1986-07-15 1986-07-15 Method of forming optical waveguide device

Country Status (1)

Country Link
JP (1) JPH079496B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2141523A1 (en) * 2008-07-03 2010-01-06 Nitto Denko Corporation Optical waveguide having an over cladding layer being formed as a lens for a touch panel and a touch panel using the same
EP2077419A3 (en) * 2007-11-15 2010-10-06 Nitto Denko Corporation Optical waveguide device for touch panel and touch panel using the same
US7941017B2 (en) 2008-07-01 2011-05-10 Nitto Denko Corporation Optical touch panel and method for manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7211235B2 (en) * 2019-04-15 2023-01-24 日本電信電話株式会社 optical connection structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4874242A (en) * 1971-12-29 1973-10-06
JPS6111708A (en) * 1984-06-28 1986-01-20 Nippon Telegr & Teleph Corp <Ntt> Channel optical waveguide with end face lens and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4874242A (en) * 1971-12-29 1973-10-06
JPS6111708A (en) * 1984-06-28 1986-01-20 Nippon Telegr & Teleph Corp <Ntt> Channel optical waveguide with end face lens and its production

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2077419A3 (en) * 2007-11-15 2010-10-06 Nitto Denko Corporation Optical waveguide device for touch panel and touch panel using the same
US7941017B2 (en) 2008-07-01 2011-05-10 Nitto Denko Corporation Optical touch panel and method for manufacturing the same
EP2141523A1 (en) * 2008-07-03 2010-01-06 Nitto Denko Corporation Optical waveguide having an over cladding layer being formed as a lens for a touch panel and a touch panel using the same
US7907805B2 (en) 2008-07-03 2011-03-15 Nitto Denko Corporation Optical waveguide for touch panel and touch panel using the same

Also Published As

Publication number Publication date
JPH079496B2 (en) 1995-02-01

Similar Documents

Publication Publication Date Title
US4564260A (en) Optical waveguide branching unit and method of making same
EP0457761B1 (en) Methods for rugged attachment of fibers to integrated optics chips and product thereof
JPS61279808A (en) Manufacture of lightwave guiding coupler
US4541159A (en) Method for manufacturing light waveguide branches and multi/demultiplexers according to the beam divider principle
JPS6321610A (en) Formation of optical waveguide device
US4682843A (en) Optical waveguide junction and method of making said junction
JPS63163308A (en) Optical element and its manufacture
JP2003156662A (en) Optical fiber array and method for manufacturing the same
US5146522A (en) Methods for rugged attachment of fibers to integrated optics chips and product thereof
JP2505416B2 (en) Optical circuit and manufacturing method thereof
JPH08297214A (en) Optical filter and its production
JP4137737B2 (en) Fabrication method of core expansion fiber array
JPH05119235A (en) Optical connector
JPH09258044A (en) Optical filter-containing waveguide type optical device
WO1986001305A1 (en) Optical fibre terminations
JP3672421B2 (en) Method for forming optical waveguide coupler
JPS63106606A (en) Optical multiplexer and demultiplexer
JPH063555A (en) Optical branching device
JPH11125752A (en) Optical fiber array module
JPS63217308A (en) Manufacture of optical waveguide applied component
JPH0578802B2 (en)
JPH01177001A (en) Fiber type optical multiplexer/demultiplexer
JP2800601B2 (en) Manufacturing method of optical fiber coupler
JPS638709A (en) Production of optical element
JPS62245206A (en) Optical element