JPH063555A - Optical branching device - Google Patents

Optical branching device

Info

Publication number
JPH063555A
JPH063555A JP16300192A JP16300192A JPH063555A JP H063555 A JPH063555 A JP H063555A JP 16300192 A JP16300192 A JP 16300192A JP 16300192 A JP16300192 A JP 16300192A JP H063555 A JPH063555 A JP H063555A
Authority
JP
Japan
Prior art keywords
optical
optical fiber
fiber coupler
output terminals
fusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16300192A
Other languages
Japanese (ja)
Inventor
Hideki Hashizume
秀樹 橋爪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP16300192A priority Critical patent/JPH063555A/en
Publication of JPH063555A publication Critical patent/JPH063555A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the structure of the optical branching device which has a function to evenly distribute light input signals for two or more channels as light output signals of plural channels, has good accuracy of branching ratios and can be miniaturized. CONSTITUTION:A waveguide substrate 1 which is formed with at least two pieces each of optical branching circuits 2 each having one piece of light input terminal 2a and >=2 pieces of light output terminals 2b adjacently to each other and an optical fiber coupler array 10 which is constituted by fixing the part from the fusion stretched part 3b of a fusion stretching type optical fiber coupler 3 having at least two pieces each of light input terminals 3a and light output terminals 3c, respectively, to the light output terminals 3c to a plate material 11 with precision positioning grooves are connected and fixed to each other.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、2チャンネルまたはそ
れ以上の光入力信号を複数チャンネルの光出力信号とし
て均等に分配する機能を有する光分岐デバイスに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical branching device having a function of evenly distributing optical input signals of two channels or more as optical output signals of a plurality of channels.

【0002】[0002]

【従来の技術】図4に示すように、従来の2入力複数出
力の分岐デバイスは、少なくとも1個の光方向性結合素
子2cと、複数個のY分岐光素子2dを1個の基板上に
モノリシック集積することにより、それ自体で2チャン
ネルの光信号を複数チャンネルに分配する機能を有する
光分岐回路を形成した光導波路基板1と、予め光ファイ
バ4の配列間隔を、導波路基板1の光入力端子2a及び
出力端子2bの間隔に合わせて作製した光ファイバアレ
イ20とを、相互に接続固定することにより構成されて
いた。なお図中の21は光ファイバ4群を配列固定する
精密位置決め溝付き板、22は押え板である。
2. Description of the Related Art As shown in FIG. 4, a conventional 2-input multi-output branch device has at least one optical directional coupling element 2c and a plurality of Y branch optical elements 2d on one substrate. By monolithically integrating the optical waveguide substrate 1 on which an optical branch circuit having a function of distributing an optical signal of two channels to a plurality of channels by itself is formed, and the arrangement interval of the optical fibers 4 is set in advance, The optical fiber array 20 manufactured according to the distance between the input terminal 2a and the output terminal 2b is connected and fixed to each other. In the figure, 21 is a plate with precision positioning grooves for arraying and fixing the optical fibers 4 group, and 22 is a holding plate.

【0003】[0003]

【発明が解決しようとする課題】作製プロセスのばらつ
き等の要因により、光導波路の屈折率分布構造が設計値
からわずかにずれた場合に、Y分岐光素子2dはその原
理上、分岐比の変動を生じにくいが、光方向性結合素子
2cに関しては、光結合状態の変化により分岐比が大き
く変動する。
When the refractive index distribution structure of the optical waveguide deviates slightly from the design value due to factors such as variations in the manufacturing process, the Y-branching optical element 2d, in principle, changes in the branching ratio. However, in the case of the optical directional coupling element 2c, the branching ratio greatly changes due to the change of the optical coupling state.

【0004】光導波路の作製プロセス中において、光方
向性結合素子2cからの光出力を光学的に直接モニター
することは困難であるため、光導波路で構成された光方
向性結合素子を有する従来の2入力複数出力の光分岐デ
バイスにあっては、出力光の均一性を確保するための分
岐比の制御が難しいという問題点があった。
Since it is difficult to directly optically monitor the optical output from the optical directional coupling element 2c during the manufacturing process of the optical waveguide, the conventional optical directional coupling element having the optical waveguide is used. In the two-input and multiple-output optical branching device, there is a problem that it is difficult to control the branching ratio for ensuring the uniformity of output light.

【0005】[0005]

【課題を解決するための手段】上記従来の問題点を解決
する本発明の光分岐デバイスにおいては、1個の光入力
端子と2個以上の光出力端子をそれぞれ有する光分岐回
路が少なくとも2個隣接して形成された光導波路基板
と、すくなくとも2個ずつの光入力端子と光出力端子と
を有する融着延伸型光ファイバカプラの融着延伸部から
光出力端子に至る部位を精密位置決め溝付きの板材に固
定してなる光ファイバカプラアレイとを、相互に位置調
整した後、固着する。
In the optical branching device of the present invention for solving the above conventional problems, at least two optical branching circuits each having one optical input terminal and two or more optical output terminals are provided. Precise positioning groove is provided at the portion from the fusion extending portion to the light output terminal of the fusion extending optical fiber coupler having the optical waveguide substrate formed adjacent to each other and at least two optical input terminals and two optical output terminals. The optical fiber coupler array, which is fixed to the plate material, is positionally adjusted and then fixed.

【0006】本発明で光導波路基板に形成する光分岐回
路は、複数のY字状の分岐部を直線導波路または曲線導
波路で相互に接続した回路構成が好適であるが、その他
の、例えばX字状の分岐部を有するものであってもよ
い。
The optical branch circuit formed on the optical waveguide substrate according to the present invention preferably has a circuit configuration in which a plurality of Y-shaped branch portions are connected to each other by a straight waveguide or a curved waveguide. It may have an X-shaped branch portion.

【0007】また、隣接して配置される光分岐回路の相
互の間隔は、互いの光出力端子が重ならない距離を保つ
ことが必要であり、さらに全ての光出力端子が等間隔で
一列に並ぶ構成が好ましい。
Further, the distances between the optical branch circuits arranged adjacent to each other must be such that the optical output terminals do not overlap each other, and all the optical output terminals are arranged in a line at equal intervals. The configuration is preferred.

【0008】光ファイバカプラアレイの精密位置決め溝
の間隔は、光導波路基板に隣接配置された光分岐回路の
光入力端子の間隔と等しくすることが必要である。さら
に、位置決め溝の深さに関しては、光ファイバカプラの
光出力端子を溝中に埋設したときに、溝を形成した板材
の表面上に光出力端子の一部が露出する程度の深さが好
ましく、露出した光出力端子を別の板材により溝の深さ
方向に押し付けながら接着固定することにより、光ファ
イバカプラの光出力端子の配列精度を良くすることが可
能であるが、この方法に限られるものではない。
The distance between the precision positioning grooves of the optical fiber coupler array must be equal to the distance between the optical input terminals of the optical branch circuit arranged adjacent to the optical waveguide substrate. Further, regarding the depth of the positioning groove, when the optical output terminal of the optical fiber coupler is embedded in the groove, a depth such that a part of the optical output terminal is exposed on the surface of the plate material in which the groove is formed is preferable. , It is possible to improve the alignment accuracy of the optical output terminals of the optical fiber coupler by adhering and fixing the exposed optical output terminals while pressing them in the depth direction of the groove with another plate material, but it is not limited to this method. Not a thing.

【0009】また、精密位置決め溝付きの板材に対して
接着固定する光ファイバカプラの部位は、融着延伸部か
ら光出力端子に至る全ての部分とすることが効果的であ
るが、光出力端子のみでもよい。
Further, it is effective that the portion of the optical fiber coupler which is fixedly adhered to the plate member having the precision positioning groove is all the portions from the fusion extending portion to the optical output terminal. It may be alone.

【0010】さらに、光ファイバカプラを接着固定した
板材の端部を切断あるいは研磨することにより、光ファ
イバカプラの光出力端子の断面が露出した端面を有する
アレイを作製し、この光ファイバカプラアレイと光導波
路基板の端面同士を固着すると接続が容易である。
Further, by cutting or polishing the end portion of the plate member to which the optical fiber coupler is bonded and fixed, an array having an end face where the cross section of the optical output terminal of the optical fiber coupler is exposed is produced. If the end faces of the optical waveguide substrate are fixed to each other, the connection is easy.

【0011】上記の手段により、光分岐回路の光入力端
子側に光ファイバカプラアレイを固着した光分岐デバイ
スの光出力端子側に、予め光ファイバの配列間隔を光出
力端子の間隔に合わせて作製した光ファイバアレイを固
着することもできる。また同じく配列間隔を合わせて作
製したマイクロレンズアレイを固着することも可能であ
る。
By means of the above means, the optical fiber array array is prepared in advance on the optical output terminal side of the optical branching device in which the optical fiber coupler array is fixed to the optical input terminal side of the optical branching circuit. The optical fiber array can be fixed. Further, it is also possible to fix the microlens array, which is also manufactured by matching the array intervals.

【0012】[0012]

【作用】上記のように構成された光分岐デバイスにおい
ては、2チャンネルの光入力信号が融着延伸型光ファイ
バカプラにより均等にミキシングされた後、再び2チャ
ンネルに分割されて出力され、それぞれの光出力信号が
後続の光分岐回路に入力されることにより、複数の光出
力端子に均等に光出力を分配するように機能する。
In the optical branching device configured as described above, the optical input signals of the two channels are uniformly mixed by the fusion-stretching optical fiber coupler, and then divided into the two channels and output again. When the optical output signal is input to the subsequent optical branch circuit, it functions to evenly distribute the optical output to the plurality of optical output terminals.

【0013】そして、融着延伸型光ファイバカプラの光
出力端子は、精密位置決め溝付きの板材に固定されてア
レイ状になっているため、光分岐回路の光入力端子との
位置合わせが容易であり、また前記アレイの断面積は、
光ファイバカプラの光出力端子の断面積に比べて格段に
大きいので、光導波路基板との固着強度を強めることが
できる。
Since the optical output terminals of the fusion-stretched optical fiber coupler are fixed to a plate member having precision positioning grooves to form an array, alignment with the optical input terminals of the optical branch circuit is easy. And the cross-sectional area of the array is
Since it is significantly larger than the cross-sectional area of the optical output terminal of the optical fiber coupler, it is possible to increase the strength of fixation with the optical waveguide substrate.

【0014】[0014]

【実施例】以下本発明を図面に示した実施例に基づき詳
細に説明する。図1は本発明の光分岐デバイスの一実施
例を示す平面図、図2は同側面図である。図示例では光
入力端子数を2個、光出力端子数を8個としている。上
記のデバイスを作製するに当たり、第1工程として光導
波路基板1に2個の光分岐回路2を形成する。一例とし
て、2段階イオン交換法を用いてガラス基板中に波長
1.3〜1.55μmで単一モードの光分岐回路を作製
した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the embodiments shown in the drawings. FIG. 1 is a plan view showing an embodiment of the optical branching device of the present invention, and FIG. 2 is a side view of the same. In the illustrated example, the number of light input terminals is two and the number of light output terminals is eight. In manufacturing the above device, as a first step, two optical branch circuits 2 are formed on the optical waveguide substrate 1. As an example, a single-mode optical branch circuit having a wavelength of 1.3 to 1.55 μm was produced in a glass substrate by using a two-step ion exchange method.

【0015】光分岐回路のパターンは下記のフォトリソ
グラフィの工程で用いるフォトマスクに形成されている
が、1個の光入力端子2aと4個の光出力端子2bを有
する光分岐回路2を2個隣接して配しており、それぞれ
の光入力端子2aの間隔は1mm、全部で8個の光出力
端子2bの間隔は各々250μmとした。
The pattern of the optical branch circuit is formed on a photomask used in the photolithography process described below, but two optical branch circuits 2 each having one optical input terminal 2a and four optical output terminals 2b are provided. The light input terminals 2a are arranged adjacent to each other, and the distance between the light input terminals 2a is 1 mm, and the distance between the eight light output terminals 2b is 250 μm.

【0016】まず、光導波路基板1として、ナトリウム
イオン及びカリウムイオンを含有した光学級ガラスを用
い、このガラス基板の片面に厚さ0.5μmのチタン膜
を真空蒸着法により形成し、フォトリソグラフィ及び選
択エッチングの各工程により、光分岐回路2のパターン
に応じた開口部をチタン膜に設けた後、第1段のイオン
交換工程として、タリウムイオンを含有する高温溶融塩
中にこのチタン膜付きガラス基板を浸漬することによ
り、光分岐回路2のパターンを有する高屈折率領域を基
板肉厚内に形成した。
First, an optical grade glass containing sodium ions and potassium ions is used as the optical waveguide substrate 1, and a titanium film having a thickness of 0.5 μm is formed on one surface of this glass substrate by a vacuum deposition method, and photolithography and After the titanium film is provided with an opening corresponding to the pattern of the optical branching circuit 2 by each step of the selective etching, the titanium film-coated glass is placed in a high-temperature molten salt containing thallium ions as a first-stage ion exchange step. By immersing the substrate, a high refractive index region having the pattern of the optical branch circuit 2 was formed within the thickness of the substrate.

【0017】冷却後、エッチングによりチタン膜を除去
したガラス基板を、第2段のイオン交換工程として、カ
リウムイオン及びナトリウムイオンを含有する高温溶融
塩に接触させるとともに、基板の厚み方向に100V/
mmの電界を印加することにより、光分岐回路2となる
高屈折率領域を基板表面から約15μmの深さに埋め込
んだ。
After cooling, the glass substrate from which the titanium film has been removed by etching is brought into contact with a high temperature molten salt containing potassium ions and sodium ions in the second step of ion exchange, and 100 V / in the thickness direction of the substrate.
By applying an electric field of mm, the high refractive index region to become the optical branch circuit 2 was embedded at a depth of about 15 μm from the substrate surface.

【0018】そして、光分岐回路2の光入力端子2a及
び光出力端子2bが光導波路基板1の端面に露出するよ
うに、基板を切断して断面を研磨した。得られた光導波
路基板1の大きさは、幅4mm、長さ30mm、厚み2
mmであった。
Then, the substrate was cut and its cross section was polished so that the optical input terminal 2a and the optical output terminal 2b of the optical branch circuit 2 were exposed at the end face of the optical waveguide substrate 1. The size of the obtained optical waveguide substrate 1 is 4 mm in width, 30 mm in length, and 2 in thickness.
It was mm.

【0019】なお、2段イオン交換法自体の詳細な説明
は省略するが、例えば1991年電子情報通信学会秋季
大会予稿集C−187において、本発明者らが2段イオ
ン交換法による光分岐回路の作製方法を開示しており、
この方法が上記光分岐回路2の作製に使用することがで
きる。
Although a detailed explanation of the two-stage ion exchange method itself is omitted, for example, in the proceedings of the 1991 IEICE Fall Conference Proceedings C-187, the present inventors have proposed an optical branch circuit using the two-stage ion exchange method. The manufacturing method of is disclosed,
This method can be used for manufacturing the optical branch circuit 2.

【0020】次に第二工程として、光ファイバカプラア
レイ10及び光ファイバアレイ20を作製する。まず光
ファイバカプラアレイであるが、刃先の角度が45度の
円形ホイルを着けたダイシングソーを用いて、幅4m
m、長さ40mm、厚み2mmのガラス板11に2本の
V型溝14を形成した。溝頂部の深さは140μm、2
本の溝の間隔は1mmとした。
Next, as a second step, the optical fiber coupler array 10 and the optical fiber array 20 are manufactured. First of all, for the optical fiber coupler array, using a dicing saw equipped with a circular foil with a blade angle of 45 degrees, a width of 4 m
Two V-shaped grooves 14 were formed in a glass plate 11 having a length of m, a length of 40 mm and a thickness of 2 mm. The depth of the groove top is 140 μm, 2
The interval between the grooves of the book was 1 mm.

【0021】次に、波長1.3μm及び1.55μmに
おいて正確に50:50の分岐比を有する融着延伸型光
ファイバカプラ3の光出力端子3cを、融着部3bから
長さ約100mmに亘って被覆を除去し、融着延伸部に
できるだけ近い部分をV溝14に乗せて、上からW4×
L5×T1mmのガラス板12を押さえつけつつ、瞬間
にエポキシ接着剤13を充填して固着した。
Next, the optical output terminal 3c of the fusion-stretched optical fiber coupler 3 having a branching ratio of 50:50 at wavelengths of 1.3 μm and 1.55 μm is set to a length of about 100 mm from the fusion-bonded portion 3b. The coating is removed over, and the portion as close as possible to the fusion stretched portion is placed on the V groove 14, and W4 ×
While pressing the L5 × T1 mm glass plate 12, the epoxy adhesive 13 was instantly filled and fixed.

【0022】融着延伸部3bも同じくエポキシ接着剤で
ガラス板11に対して固定した。接着剤が完全に硬化し
た後、ガラス板から突き出た光出力端子3cを折って取
り去り、端面を研磨して鏡面に仕上げた。
The fusion-bonded stretched portion 3b was also fixed to the glass plate 11 with an epoxy adhesive. After the adhesive was completely cured, the light output terminal 3c protruding from the glass plate was folded and removed, and the end face was polished to a mirror finish.

【0023】光ファイバアレイ20の作製法も光ファイ
バカプラアレイ10の場合とほぼ同様であるが、異なる
点は250μmの間隔をおいて8本のV溝を形成し、そ
れぞれの溝に1本ずつの単一モード光ファイバ4を固着
した点である。
The manufacturing method of the optical fiber array 20 is almost the same as that of the optical fiber coupler array 10, except that eight V grooves are formed at intervals of 250 μm, and one groove is formed in each groove. The single-mode optical fiber 4 is fixed.

【0024】第三工程では、光ファイバカプラアレイ1
0、光導波路基板1、及び光ファイバアレイ20の各光
路の接続箇所での光損失が最小限になるように各部品の
位置調整を行い、接続面に紫外線硬化型接着剤を充填し
て紫外線を照射することにより、相互に固着した。さら
に光入出力端子を除く全体を、W7×L100×T6m
mのSUS製容器に入れ、シリコン樹脂を充填してパッ
ケージ化した。
In the third step, the optical fiber coupler array 1
0, the optical waveguide substrate 1, and the optical fiber array 20 are position-adjusted so that the optical loss at the connection points of the respective optical paths is minimized, and the connection surface is filled with an ultraviolet curable adhesive so that the ultraviolet light is emitted. They were fixed to each other by irradiating. Furthermore, the entire unit except the optical input / output terminal is W7 × L100 × T6m
m SUS container and filled with silicone resin to form a package.

【0025】以上に説明した実施例で作製した光分岐デ
バイスの光損失特性を、波長1.3μm及び1.55μ
mのレーザ光源を用いて測定した。その結果いずれの波
長においても、過剰損失は0.7dB、分岐比の変動幅
は0.2dB以下と良好であった。
The optical loss characteristics of the optical branching device manufactured in the above-described embodiment are shown by the wavelengths of 1.3 μm and 1.55 μm.
The measurement was performed using a laser light source of m. As a result, the excess loss was 0.7 dB, and the fluctuation range of the branching ratio was 0.2 dB or less at all wavelengths.

【0026】以上本発明を実施例に基づいて説明した
が、実施例以外にも種々の変更が可能であることは言う
までもない。例えば、光導波路基板1の材質は、石英、
シリコン、ニオブ酸リチウム、高分子樹脂等を用いるこ
とが可能である。これらの場合、イオン交換法以外の作
製方法により光分岐回路2を形成することが可能であ
る。
Although the present invention has been described based on the embodiments, it goes without saying that various modifications can be made other than the embodiments. For example, the material of the optical waveguide substrate 1 is quartz,
It is possible to use silicon, lithium niobate, a polymer resin, or the like. In these cases, the optical branch circuit 2 can be formed by a manufacturing method other than the ion exchange method.

【0027】また、光ファイバカプラを固定するための
精密位置決め溝付き板材は、SUS等の金属の機械加工
品や、異方性エッチングを施したシリコン基板を用いる
こともできる。
Further, as the plate member with the precision positioning groove for fixing the optical fiber coupler, a machined product of metal such as SUS or an anisotropically etched silicon substrate can be used.

【0028】[0028]

【発明の効果】本発明は、作製工程において分岐比を光
学的に直接モニターできる融着延伸型光ファイバカプラ
を用いるため、分岐比精度の良い光分岐デバイスを歩留
まり良く作製できる。
According to the present invention, since the fusion-stretched optical fiber coupler capable of directly optically monitoring the branching ratio in the manufacturing process is used, an optical branching device with high branching ratio accuracy can be manufactured with a high yield.

【0029】また、光導波回路部分で大半を構成するた
め、デバイスの小型化が可能である。実施例で作製した
光分岐デバイスは、融着延伸型光ファイバカプラを相互
に接続して同一機能をもたせたデバイスに比べて、約1
5分の1の大きさであった。
Since most of the optical waveguide circuit is formed, the device can be downsized. The optical branching device manufactured in the example is about 1 in comparison with a device in which fusion-stretched optical fiber couplers are mutually connected to have the same function.
It was one-fifth the size.

【0030】さらに、光ファイバカプラの光出力端子の
間隔を、光分岐回路の光入力端子の間隔に合わせて板材
に固定することにより、両者間の光軸調整が容易にな
る。また光ファイバカプラを板材に固定することで、光
導波路基板との接着面積を大きくとれるため、外乱に対
するデバイスの強度が高まり、壊れ難くなる利点があ
る。
Further, by fixing the distance between the optical output terminals of the optical fiber coupler to the plate material in accordance with the distance between the optical input terminals of the optical branch circuit, the optical axis adjustment between them can be facilitated. Further, by fixing the optical fiber coupler to the plate member, a large bonding area with the optical waveguide substrate can be obtained, so that there is an advantage that the strength of the device against disturbance is increased and the device is not easily broken.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す平面図FIG. 1 is a plan view showing an embodiment of the present invention.

【図2】図1の実施例の側面図2 is a side view of the embodiment of FIG.

【図3】図1中のA−A’線で切断した光ファイバカプ
ラアレイの断面図
3 is a sectional view of the optical fiber coupler array taken along the line AA ′ in FIG.

【図4】従来の光分岐デバイスの平面図FIG. 4 is a plan view of a conventional optical branching device.

【符号の説明】[Explanation of symbols]

1 光導波路基板 2 光分岐回路 2a 光分岐回路の光入力端子 2b 光分岐回路の光出力端子 2c 方向性結合素子 2d Y分岐光素子 3 融着延伸型光ファイバカプラ 3a 光ファイバカプラの光入力端子 3b 光ファイバカプラの融着延伸部 3c 光ファイバカプラの光出力端子 4 光ファイバ 10 光ファイバカプラアレイ 11 精密位置決め溝付き板 12 押え板 13 接着剤 14 V型溝 20 光ファイバアレイ 21 精密位置決め溝付き板 22 押え板 DESCRIPTION OF SYMBOLS 1 Optical waveguide substrate 2 Optical branch circuit 2a Optical input terminal of optical branch circuit 2b Optical output terminal of optical branch circuit 2c Directional coupling element 2d Y-branch optical element 3 Fusion splicing type optical fiber coupler 3a Optical input terminal of optical fiber coupler 3b Fusion extension part of optical fiber coupler 3c Optical output terminal of optical fiber coupler 4 Optical fiber 10 Optical fiber coupler array 11 Plate with precision positioning groove 12 Holding plate 13 Adhesive 14 V-shaped groove 20 Optical fiber array 21 With precision positioning groove Plate 22 Presser plate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 1個の光入力端子と2個以上の光出力端
子とを有する光分岐回路が2つ以上隣接して形成された
導波路基板と、少なくとも2個ずつの光入力端子と光出
力端子をそれぞれ有する融着延伸型光ファイバカプラの
融着延伸部から前記光出力端子に至る部位を精密位置決
め溝付きの板材に固定してなる光ファイバカプラアレイ
とを相互に接続固定したことを特徴とする光分岐デバイ
ス。
1. A waveguide substrate formed by adjoining two or more optical branch circuits each having one optical input terminal and two or more optical output terminals, and at least two optical input terminals and two optical input terminals. The optical fiber coupler array is formed by fixing a portion extending from the fusion extending portion of the fusion extending type optical fiber coupler having output terminals to the optical output terminal to a plate material with a precision positioning groove, and connecting and fixing it to each other. Characteristic optical branching device.
JP16300192A 1992-06-22 1992-06-22 Optical branching device Pending JPH063555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16300192A JPH063555A (en) 1992-06-22 1992-06-22 Optical branching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16300192A JPH063555A (en) 1992-06-22 1992-06-22 Optical branching device

Publications (1)

Publication Number Publication Date
JPH063555A true JPH063555A (en) 1994-01-14

Family

ID=15765316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16300192A Pending JPH063555A (en) 1992-06-22 1992-06-22 Optical branching device

Country Status (1)

Country Link
JP (1) JPH063555A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100513013B1 (en) * 2002-07-09 2005-09-05 삼성전자주식회사 Optical power splitter
KR100509511B1 (en) * 1997-11-06 2005-11-08 삼성전자주식회사 Integrated optical power splitter and its manufacturing method
CN109143476A (en) * 2018-09-20 2019-01-04 南京广儒源光电科技有限公司 Direct current control and protection system multilevel redundancy optical device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100509511B1 (en) * 1997-11-06 2005-11-08 삼성전자주식회사 Integrated optical power splitter and its manufacturing method
KR100513013B1 (en) * 2002-07-09 2005-09-05 삼성전자주식회사 Optical power splitter
CN109143476A (en) * 2018-09-20 2019-01-04 南京广儒源光电科技有限公司 Direct current control and protection system multilevel redundancy optical device

Similar Documents

Publication Publication Date Title
US6160936A (en) Apparatus and method for combining optical waveguide and optical fiber
KR940001044B1 (en) Glass integrated optical component
JP3302458B2 (en) Integrated optical device and manufacturing method
EP0309102B1 (en) Micro-optical building block system and method of making same
US6118917A (en) Optical fiber passive alignment apparatus using alignment platform
US4693544A (en) Optical branching device with internal waveguide
US5175781A (en) Attaching optical fibers to integrated optic chips
EP0525395A1 (en) Apparatus and method for optical switching
US20020018634A1 (en) Optical waveguide component and a method of producing the same
JPH1010362A (en) Optical integrated circuit having passively adjusted fibers
US5231683A (en) Attaching optical fibers to integrated optic chips
US5197109A (en) Method of manufacturing assembly of optical waveguide substrate and optical fiber aligning substrate
JPH07103770A (en) Compound optical waveguide type optical device
US6238102B1 (en) Multiaxial optical coupler
US6574410B2 (en) Planar light waveguide circuit with landmarks
JPH063555A (en) Optical branching device
US7522788B2 (en) Optical module and method of manufacturing the same
JP2001116944A (en) Method for adding optical coupler to plane optical circuit and plane optical circuit
JPH01300207A (en) Manufacture of optical fiber array
JP4018852B2 (en) Optical waveguide substrate
JPS58196521A (en) Optical coupling circuit
JP2004045901A (en) Optical waveguide device and communication equipment using optical waveguide device
JPH11183750A (en) Manufacture of optical waveguide module for optical device, and optical device
JPS6235308A (en) Connecting method for light guide and optical fiber
JPH05113516A (en) Method for connecting optical waveguide and optical fiber