JPH01177001A - Fiber type optical multiplexer/demultiplexer - Google Patents

Fiber type optical multiplexer/demultiplexer

Info

Publication number
JPH01177001A
JPH01177001A JP13442687A JP13442687A JPH01177001A JP H01177001 A JPH01177001 A JP H01177001A JP 13442687 A JP13442687 A JP 13442687A JP 13442687 A JP13442687 A JP 13442687A JP H01177001 A JPH01177001 A JP H01177001A
Authority
JP
Japan
Prior art keywords
diffraction grating
optical
demultiplexer
optical fibers
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13442687A
Other languages
Japanese (ja)
Other versions
JPH07122685B2 (en
Inventor
Katsuyuki Uko
宇高 勝之
Kazuo Sakai
堺 和夫
Yuichi Matsushima
松島 裕一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP62134426A priority Critical patent/JPH07122685B2/en
Publication of JPH01177001A publication Critical patent/JPH01177001A/en
Publication of JPH07122685B2 publication Critical patent/JPH07122685B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29331Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by evanescent wave coupling
    • G02B6/29332Wavelength selective couplers, i.e. based on evanescent coupling between light guides, e.g. fused fibre couplers with transverse coupling between fibres having different propagation constant wavelength dependency
    • G02B6/29334Grating-assisted evanescent light guide couplers, i.e. comprising grating at or functionally associated with the coupling region between the light guides, e.g. with a grating positioned where light fields overlap in the coupler

Abstract

PURPOSE:To facilitate production and to improve mass productivity by previously forming a diffraction grating on a thin glass film or thin plastic film and joining this grating by welding or an adhesive agent to the polished side faces of two pieces of optical fibers or between the same. CONSTITUTION:The propagation constants of the respective optical fibers 1, 2 are designated as beta1, beta2 and the diffraction grating 8 having the period LAMBDAof LAMBDA=2pi/(beta1+beta2) is formed, by which only the lambda1 satisfying lambda1=(n1+n2)LAMBDA is branched to the optical fiber 2. The diffraction grating 8 having an excellent shape, etc., is previously formed on a glass substrate 7, etc., without providing the diffraction grating 7 which is difficult to be produced to the optical fibers 1, 2 and the glass substrate 7 or the like having the diffraction grating 8 is adhered to the optical fiber coupling part consisting of the optical fibers 1, 2 which are separately formed by polishing to the same shape. The diffraction grating 8 having the excellent shape is thereby produced and the mass productivity is improved as well.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、波長選択性を有するファイバ形光合分波器に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a fiber type optical multiplexer/demultiplexer having wavelength selectivity.

(従来技術とその問題点) 波長多重(以下、rWDMJと称す)光フアイバ伝送方
式は、基幹伝送路における一層の大容量化を可能にする
ばかりでなく、加入者線、特にローカルエリアネットワ
ーク(LAN)などにおいて、電話、高速データ、ビデ
オ精報といった帯域の異なる各種サービスを柔軟に提供
し得ることから盛んに研究されている。WDM伝送方式
は、基本的に一本の伝送路に、複数の波長の光信号を伝
搬させ、多重化を図ったもので、伝送路の所望の箇所で
所望の信号を乗せた波長の光信号を合波させたり、分岐
したりする必要から低損失で、クロストーフの小さい光
合分波器の開発が不可欠である。従来のシステムでは、
サービスの数も極めて少ないことから、使用される波長
数も高々数波長に限られており、従って、各チャネルの
波長間隔も200人程度以上と広いため、光合分波器と
して帯域の比較的広い干渉膜形が主として用いられてい
る。
(Prior art and its problems) Wavelength division multiplexing (hereinafter referred to as rWDMJ) optical fiber transmission system not only makes it possible to further increase the capacity of the backbone transmission line, but also enables subscriber lines, especially local area networks (LAN). ), it is being actively researched because it can flexibly provide various services with different bands, such as telephone, high-speed data, and video updates. The WDM transmission system basically propagates optical signals of multiple wavelengths on a single transmission line and multiplexes them.The optical signal of the wavelength carrying the desired signal is transmitted at a desired point on the transmission line. Since it is necessary to multiplex and branch multiple signals, it is essential to develop an optical multiplexer/demultiplexer with low loss and small crosstorf. In traditional systems,
Since the number of services is extremely small, the number of wavelengths used is limited to a few wavelengths at most, and therefore the wavelength spacing between each channel is wide, about 200 people or more, so it has a relatively wide band as an optical multiplexer/demultiplexer. The interference film type is mainly used.

一方、特殊の多重度の高いWDM方式用の光合分波器と
して、回折格子板が検討されている。これは回折格子板
の持つ空間的な分散特性を利用したもので、いわば分光
器的な使い方であるが、入出力ボートの光フアイバ群と
回折格子板との距離を長くとることにより狭帯域化が可
能であるが、空間伝搬を用いるため、光学的なアライメ
ントが難しく、また、機械的な振動にも弱いという欠点
を有している。そこで、回折格子の狭帯域性を活かし同
時に特性の安定化、低損失化を図ったものとして、光フ
ァイバを用いたブラッグ反射形光合分波器が提案されて
いる。(M、S、Whalen他i 0FC’86.P
D−12)。
On the other hand, a diffraction grating plate is being considered as an optical multiplexer/demultiplexer for a special WDM system with high multiplicity. This utilizes the spatial dispersion characteristics of the diffraction grating plate, and is used like a spectrometer, but by increasing the distance between the optical fibers of the input/output boat and the diffraction grating plate, the band can be narrowed. However, since it uses spatial propagation, optical alignment is difficult and it is also susceptible to mechanical vibrations. Therefore, a Bragg reflection type optical multiplexer/demultiplexer using an optical fiber has been proposed as a device that takes advantage of the narrow band characteristics of the diffraction grating and simultaneously stabilizes the characteristics and reduces the loss. (M, S, Whalen et al. 0FC'86.P
D-12).

図1は従来のブラッグ反射形光合分波器の模式図である
。図において、1及び2は単一モード光ファイバ、3は
光ファイバのコア、4は一方の単一モード光ファイバの
クラッド部に形成された回折格子である。本構造のよう
に、光ファイバをベースに用いた光合分波器は、伝送路
である光ファイバとの整合性も良く、また材料はガラス
であるため、加入者系に導入する際には重要な要素の1
つである低価格化にも適した構造と言える。この光合分
波器の作製について次のように報告されている。すなわ
ち、光フアイバ結合器を作製する場合のように、まず、
2本の光ファイバ1及び2の一部を、それらのコア3が
露出する手前まで平坦に研磨する。次に、一方の光ファ
イバ1又は2の研磨面上にフォトレジストを塗布し、干
渉露光法及びフォトレジストの現像により所望の周期を
有するフォトレジストの凹凸を形成し、これをマスクと
して、光ファイバl又は2のクラッド部をエツチングに
より転写することにより、回折格子4を形成する。その
後、フォトレジストを除去し、他方の光ファイバの研磨
面に融着により一体化して出来上るというものである。
FIG. 1 is a schematic diagram of a conventional Bragg reflection type optical multiplexer/demultiplexer. In the figure, 1 and 2 are single mode optical fibers, 3 is the core of the optical fiber, and 4 is a diffraction grating formed in the cladding portion of one of the single mode optical fibers. An optical multiplexer/demultiplexer using an optical fiber as a base, like this structure, has good compatibility with the optical fiber that is the transmission path, and is made of glass, which is important when introducing it into a subscriber system. element 1
It can be said that this structure is suitable for lowering the price. The fabrication of this optical multiplexer/demultiplexer is reported as follows. That is, as in the case of manufacturing an optical fiber coupler, first,
Parts of the two optical fibers 1 and 2 are polished flat until their cores 3 are exposed. Next, a photoresist is applied onto the polished surface of one of the optical fibers 1 or 2, and unevenness of the photoresist having a desired period is formed by interference exposure method and development of the photoresist. Using this as a mask, the optical fiber is The diffraction grating 4 is formed by transferring the cladding portions 1 or 2 by etching. Thereafter, the photoresist is removed and the optical fiber is integrated with the polished surface of the other optical fiber by fusion bonding.

しかしながら、光フアイバ上に直接フォトレジストを塗
布し、干渉露光を行う上述の従来方法では、作製された
回折格子4が不均一になり易く、かつ量産性の面で問題
があった。
However, in the above-described conventional method in which a photoresist is applied directly onto an optical fiber and interference exposure is performed, the manufactured diffraction grating 4 tends to be non-uniform, and there are problems in terms of mass production.

(発明の目的と特徴) 本発明は、上述した従来技術の欠点に鑑みてなされたも
ので、作製が容易で量産性に優れ、かつ回折格子の形状
も優れたファイバ形光合分波器を提供することを目的と
する。
(Objective and Features of the Invention) The present invention has been made in view of the above-mentioned drawbacks of the prior art, and provides a fiber-type optical multiplexer/demultiplexer that is easy to manufacture, has excellent mass productivity, and has an excellent shape of a diffraction grating. The purpose is to

本発明の特徴は、回折格子を有する光合分波器において
、回折格子を直接光ファイバ上に形成するのではなく、
取り扱いが容易なガラス薄膜もしくはプラスチック薄膜
上に予め回折格子を形成しておき、これを研磨した2本
の光ファイバの側面もしくは間に融着もしくは接着剤で
接着して光合分波器を構成することにある。
A feature of the present invention is that in an optical multiplexer/demultiplexer having a diffraction grating, the diffraction grating is not formed directly on the optical fiber;
A diffraction grating is formed in advance on a glass thin film or plastic thin film that is easy to handle, and this is fused or glued to the sides or between two polished optical fibers to form an optical multiplexer/demultiplexer. There is a particular thing.

(本発明の構成及び作用) 以下図面を用いて本発明の詳細な説明する。(Structure and operation of the present invention) The present invention will be described in detail below using the drawings.

(実施例1) 本発明による第1の実施例の全体模式図及び光結合部を
分解した図を、各々図2(a)及び(1))に示す。
(Example 1) An overall schematic diagram and an exploded view of the optical coupling part of the first example according to the present invention are shown in FIGS. 2(a) and (1), respectively.

本光合分波器は次のようにして作製される。まず、2本
の単一モード光ファイバ1及び2の一部のクラッドを、
コア5及び5゛からの距離が数μm程度になるまで平坦
に研磨し、互いの研磨面6a、 6bを融着する。次に
、上述の研磨面6a、 6bを垂直の研磨面6c、 6
dを得るように、やはりコア5及び5゛から数μmの距
離まで平坦に研磨したものが図2(b)下図に示すもの
である。すなわち、同図から明らかなように、各光ファ
イバ1及び2はコア5(5′)から数μm#して互いに
垂直な研磨面6a、 6c及び6b、 6dを得るよう
に研磨された状態にして研磨された面6aと6bを接合
したものである。一方、別に、ガラス薄膜もしくはガラ
ス基板7上に、フォトリソグラフィと干渉露光法もしく
は、ルーリングマシン等により回折格子8を形成する。
This optical multiplexer/demultiplexer is manufactured as follows. First, part of the cladding of two single mode optical fibers 1 and 2 is
The cores 5 and 5' are polished flat until the distance from them is approximately several μm, and the polished surfaces 6a and 6b are fused together. Next, the above-mentioned polishing surfaces 6a, 6b are replaced with vertical polishing surfaces 6c, 6.
The lower part of FIG. 2(b) shows the one that was polished flat to a distance of several μm from the cores 5 and 5' so as to obtain d. That is, as is clear from the figure, each of the optical fibers 1 and 2 is polished so as to obtain polished surfaces 6a, 6c, 6b, and 6d that are perpendicular to each other and are several micrometers away from the core 5 (5'). The polished surfaces 6a and 6b are joined together. On the other hand, separately, a diffraction grating 8 is formed on a glass thin film or a glass substrate 7 by photolithography and interference exposure, a ruling machine, or the like.

さらに、最後に前記再研磨したファイバ結合部の研磨面
6c。
Furthermore, the polished surface 6c of the fiber coupling portion that was finally repolished.

6d上に、回折格子8が形成されている面が向き合うよ
うに接着もしくは融着を行う。
Adhesion or fusion is performed on 6d so that the surfaces on which the diffraction grating 8 is formed face each other.

互いに伝搬定数の異なる2本の光ファイバのコア5及び
5”は、各々の導波光のエバネッセント部分が他のコア
5゛及び5に重畳する程度に接近しているため、結合係
数は極めて小さいながら一種の光結合系を形成している
。また、やはりエバネッセント光が回折格子8にも重畳
するように接近して配置されているため、例えば、図2
(a)の如く光ファイバ1から入射した光のうち、各光
ファイバの伝搬定数と回折格子の周期へで決まる波長の
光のみが他方の光ファイバの反対方向に反射され、光フ
ァイバ2より出力される。一方、反射されなかった波長
の光はそのまま同一光ファイバを伝搬し、光ファイバ1
5に通過する。ここで、各光ファイバ1及び2の伝搬定
数を各々β2.β2とし、Δ−2π/(β、+β2)な
る周期Aの回折格子8とすることにより、λ+ = (
nt + nz) Aを満たすλ1のみが光ファイバ2
に分岐される。
The cores 5 and 5'' of the two optical fibers, which have different propagation constants, are close to each other to such an extent that the evanescent portion of each guided light overlaps the other cores 5'' and 5'', so the coupling coefficient is extremely small, but They form a kind of optical coupling system.Also, since the evanescent light is placed close to the diffraction grating 8 so that it is also superimposed on it, for example, as shown in FIG.
As shown in (a), of the light incident from optical fiber 1, only the light with a wavelength determined by the propagation constant of each optical fiber and the period of the diffraction grating is reflected in the opposite direction of the other optical fiber and output from optical fiber 2. be done. On the other hand, the unreflected wavelength light propagates through the same optical fiber as it is, and the optical fiber 1
Pass 5. Here, the propagation constants of each optical fiber 1 and 2 are β2. By setting β2 and the diffraction grating 8 having a period A of Δ-2π/(β, +β2), λ+ = (
nt + nz) Only λ1 that satisfies A is optical fiber 2
It is branched into.

である。他のλ2.λ8.・・・はそのまま通過する。It is. other λ2. λ8. ...will pass through as is.

一方、合波の場合は光の進行方向が逆になるだけで原理
は同じである。ちなみに、λ=1.5μmのとき、A=
0.5μmとなり、通常の干渉露光法やルーリングマシ
ンで十分作製可能である。
On the other hand, in the case of multiplexing, the principle is the same except that the traveling direction of the light is reversed. By the way, when λ=1.5μm, A=
It has a thickness of 0.5 μm, and can be sufficiently manufactured using a normal interference exposure method or a ruling machine.

上述のように、本発明のファイバ形光合波器は、作製が
複雑な回折格子8を光ファイバに設けずに予めガラス基
板7等に形状の優れた回折格子8を作製しておき、別に
同一形状で研磨して作製された光ファイバ1及び2から
成る光フアイバ結合部に回折格子8を有するガラス基板
7等を接着すれば良いため、形状の優れた回折格子8を
作製でき、量産性も改良することができる。
As described above, the fiber-type optical multiplexer of the present invention does not provide the diffraction grating 8, which is complicated to manufacture, on the optical fiber, but instead prepares the diffraction grating 8 with an excellent shape on the glass substrate 7, etc. Since the glass substrate 7 having the diffraction grating 8 can be bonded to the optical fiber coupling part consisting of the optical fibers 1 and 2 which have been produced by polishing to the desired shape, the diffraction grating 8 having an excellent shape can be produced and mass production is possible. It can be improved.

(実施例2) 本発明による第2の実施例を図3に示す。本実施例では
少なくとも一方の表面に回折格子が形成れれた厚さ数μ
mのガラス薄膜9が、各々コア5及び5゛付近まで平坦
に研磨された2本の光ファイバ1及び2の間に接着材1
0により接着されている。
(Example 2) A second example according to the present invention is shown in FIG. In this example, a diffraction grating is formed on at least one surface and the thickness is several μm.
An adhesive 1 is placed between two optical fibers 1 and 2, each of which has been polished flat to around core 5 and 5.
It is glued by 0.

尚、この光合分波器の動作は実施例1とまったく同様で
ある。
Note that the operation of this optical multiplexer/demultiplexer is exactly the same as in the first embodiment.

(実施例3) 図4は本発明による第3図の実施例であり、ガラス基板
もしくはシリコンなどの硬度の高い半導体基板12の表
面に回折格子8を形成し、これを光ファイバの光結合部
に応力を与えて密着させることにより、光弾性効果から
該光ファイバの光結合部の内部に回折格子8を形成した
ものである。2本の光ファイバは図2 (b)のように
加工されており、残留クラッド11にシリコン基板12
上に形成された回折格子8の凸部が応力σを与えている
。近似的に応力が一方向の場合光弾性効果による屈折率
変化Δnは次式で与えられる。
(Embodiment 3) FIG. 4 is an embodiment of the present invention shown in FIG. 3, in which a diffraction grating 8 is formed on the surface of a semiconductor substrate 12 having high hardness such as a glass substrate or silicon, and this is connected to an optical coupling part of an optical fiber. A diffraction grating 8 is formed inside the optical coupling portion of the optical fiber due to the photoelastic effect by applying stress to the fibers and bringing them into close contact. The two optical fibers are processed as shown in FIG. 2(b), with a silicon substrate 12 on the residual cladding 11
The convex portion of the diffraction grating 8 formed above gives stress σ. Approximately, when the stress is in one direction, the refractive index change Δn due to the photoelastic effect is given by the following equation.

Δn=−Cσ 但し、Cは光弾性係数で、ガラスの場合、C=3XIQ
−’ms+”7kgであり、σは応力である。いま、回
折格子8の凸部幅aをA/4とし、加重を10kgとし
、加重部分の長さ及び幅を各々5111m及び100μ
mとすると、応力付与部13の屈折率変化はΔn〜2×
10−3となり、残留クラッド11の厚さが数μmであ
れば十分に回折格子8として機能し得る。本実施例では
、図5のように、反射側に固定用の基板14を添え、前
記回折格子8が形成された基板12との間で応力を加え
たまま接着固定される。尚、本実施例では、回折格子付
き基板12は応力付加用なので、ガラスもしくはシリコ
ンなどの誘電体の代りに、金属板を用いることも可能で
ある。
Δn=-Cσ However, C is the photoelastic coefficient, and in the case of glass, C=3XIQ
-'ms+''7 kg, and σ is the stress. Now, the width a of the convex part of the diffraction grating 8 is A/4, the weight is 10 kg, and the length and width of the weighted part are 5111 m and 100 μm, respectively.
m, the refractive index change of the stress applying part 13 is Δn~2×
10-3, and if the thickness of the residual cladding 11 is several μm, it can sufficiently function as the diffraction grating 8. In this embodiment, as shown in FIG. 5, a fixing substrate 14 is attached to the reflective side, and the diffraction grating 8 is adhesively fixed to the substrate 12 on which the diffraction grating 8 is formed while applying stress. In this embodiment, since the substrate 12 with the diffraction grating is used for applying stress, a metal plate may be used instead of a dielectric material such as glass or silicon.

以上の説明では、回折格子が一様に形成された例につい
てのみ示したが、波長特性上のサイドロブ低下のために
回折格子の形成領域をテーパ状にしたりなど任意の形状
を従来のプロセスで容易に加工することができる構造と
なっている。
In the above explanation, only examples in which the diffraction grating was formed uniformly were shown, but it is easy to create any shape using conventional processes, such as tapering the formation area of the diffraction grating to reduce sidelobs in wavelength characteristics. It has a structure that can be processed into

(発明の効果) 以上説明したように、本発明による光合分波器は、合分
波に必要な回折格子の形成を取り扱いが容易なガラス、
プラスチック、半導体、金属による光導波媒体の薄膜も
しくは基板上に行い、後でファイバの光結合部に接着、
融着により固定するため、形状の優れた回折格子で、か
つ量産性に優れたファイバ形合波器構造となり、その効
果は極めて大きい。
(Effects of the Invention) As explained above, the optical multiplexer/demultiplexer according to the present invention uses glass, which is easy to handle, to form the diffraction grating necessary for multiplexer/demultiplexer.
It is performed on a thin film or substrate of an optical waveguide medium made of plastic, semiconductor, or metal, and is later bonded to the optical coupling part of the fiber.
Since it is fixed by fusion, the diffraction grating has an excellent shape and the fiber-type multiplexer structure is excellent in mass production, and its effects are extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は従来のファイバ反射形光合分波器を示す断面図、
図2(a)(ロ)は本発明の実施例1の光合分波器の構
造及び作製手順を示す斜視図、図3は本発明の実施例2
の光合分波器の構造例を示す断面図、図4は本発明の実
施例3の光合分波器の部分的断面図である。 1.2.15・・・単一モード光ファイバ、3.5゜5
”・・・コア、4.8・・・回折格子、6a、 6b、
 6c、 6d・・・ファイバ研磨面1.7・・・ガラ
ス基板、9・・・ガラス薄膜、10・・・接着材、11
・・・クラッド、12・・・シリコン基板、13・・・
応力による屈折率変化部、14・・・ファイバ固定台。 図 1 図 2(O) λ1.λ2.λ3−− 図2(b) 図3 図4 手続補正書動幻
Figure 1 is a cross-sectional view of a conventional fiber reflection type optical multiplexer/demultiplexer.
2(a) and 2(b) are perspective views showing the structure and manufacturing procedure of an optical multiplexer/demultiplexer according to Embodiment 1 of the present invention, and FIG. 3 is Embodiment 2 of the present invention.
FIG. 4 is a partial sectional view of an optical multiplexer/demultiplexer according to a third embodiment of the present invention. 1.2.15...Single mode optical fiber, 3.5°5
”...Core, 4.8...Diffraction grating, 6a, 6b,
6c, 6d...Fiber polished surface 1.7...Glass substrate, 9...Glass thin film, 10...Adhesive material, 11
...Clad, 12...Silicon substrate, 13...
Stress-induced refractive index changing section, 14... fiber fixing stand. Figure 1 Figure 2 (O) λ1. λ2. λ3-- Figure 2(b) Figure 3 Figure 4 Procedural amendment document motion illusion

Claims (4)

【特許請求の範囲】[Claims] (1)各々β_1、β_2なる伝搬定数を有する2本の
光ファイバが各々の導波路内の光分布の一部が空間的に
重畳するように接近して配置された光結合部において、
少なくとも一方の表面にA=2π/(β_1+β_2)
なる周期を有する回折格子が形成された光導波媒体の基
板もしくは薄膜が該光結合部の導波光の分布する領域の
近傍に配置されて構成されていることを特徴とするファ
イバ形光合分波器。
(1) In an optical coupling section in which two optical fibers each having a propagation constant of β_1 and β_2 are arranged close to each other so that a part of the light distribution in each waveguide spatially overlaps,
A=2π/(β_1+β_2) on at least one surface
A fiber-type optical multiplexer/demultiplexer characterized in that a substrate or thin film of an optical waveguide medium on which a diffraction grating having a period of .
(2)前記基板もしくは薄膜材料としてガラスが用いら
れ、前記光結合部に接着もしくは融着されていることを
特徴とする特許請求の範囲第1項記載のファイバ形光合
分波器。
(2) The fiber type optical multiplexer/demultiplexer according to claim 1, wherein glass is used as the substrate or thin film material and is adhered or fused to the optical coupling portion.
(3)前記基板もしくは薄膜材料としてプラスチックが
用いられ、前記光結合部に接着されていることを特徴と
する特許請求の範囲第1項記載のファイバ形光合分波器
(3) The fiber type optical multiplexer/demultiplexer according to claim 1, wherein plastic is used as the substrate or thin film material and is bonded to the optical coupling portion.
(4)前記基板材料としてガラスもしくは半導体もしく
は金属をが用いられ、前記光結合部に応力を付加するよ
うに圧着されていることを特徴とする特許請求の範囲第
1項記載のファイバ形光合分波器。
(4) The fiber type optical coupler according to claim 1, wherein glass, semiconductor, or metal is used as the substrate material, and the fiber type optical coupler is crimped to apply stress to the optical coupler. Wave equipment.
JP62134426A 1987-05-29 1987-05-29 Fiber type optical multiplexer / demultiplexer Expired - Fee Related JPH07122685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62134426A JPH07122685B2 (en) 1987-05-29 1987-05-29 Fiber type optical multiplexer / demultiplexer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62134426A JPH07122685B2 (en) 1987-05-29 1987-05-29 Fiber type optical multiplexer / demultiplexer

Publications (2)

Publication Number Publication Date
JPH01177001A true JPH01177001A (en) 1989-07-13
JPH07122685B2 JPH07122685B2 (en) 1995-12-25

Family

ID=15128102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62134426A Expired - Fee Related JPH07122685B2 (en) 1987-05-29 1987-05-29 Fiber type optical multiplexer / demultiplexer

Country Status (1)

Country Link
JP (1) JPH07122685B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5737106A (en) * 1994-10-11 1998-04-07 Alcatel N.V. Wavelength selective optical delay line
CN114421276A (en) * 2020-10-09 2022-04-29 西安立芯光电科技有限公司 Axisymmetric semiconductor laser bar beam combining technology and module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5355132A (en) * 1976-10-29 1978-05-19 Nec Corp Coupling method of optical fibers
JPS54118255A (en) * 1978-03-06 1979-09-13 Matsushita Electric Ind Co Ltd Optical branching and mixing device and production of the same
JPS60175024A (en) * 1984-02-21 1985-09-09 Nippon Telegr & Teleph Corp <Ntt> Optical demultiplexer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5355132A (en) * 1976-10-29 1978-05-19 Nec Corp Coupling method of optical fibers
JPS54118255A (en) * 1978-03-06 1979-09-13 Matsushita Electric Ind Co Ltd Optical branching and mixing device and production of the same
JPS60175024A (en) * 1984-02-21 1985-09-09 Nippon Telegr & Teleph Corp <Ntt> Optical demultiplexer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5737106A (en) * 1994-10-11 1998-04-07 Alcatel N.V. Wavelength selective optical delay line
CN114421276A (en) * 2020-10-09 2022-04-29 西安立芯光电科技有限公司 Axisymmetric semiconductor laser bar beam combining technology and module

Also Published As

Publication number Publication date
JPH07122685B2 (en) 1995-12-25

Similar Documents

Publication Publication Date Title
US4622663A (en) Optical wavelength demultiplexer
WO2000011508A1 (en) Array waveguide diffraction grating optical multiplexer/demultiplexer
JP3490745B2 (en) Composite optical waveguide type optical device
JP3246710B2 (en) Optical device manufacturing method
JPS59208509A (en) Optical multiplexer for single mode
JPH01177001A (en) Fiber type optical multiplexer/demultiplexer
JPS59198408A (en) Waveguide type optical branching device
JP3450068B2 (en) Optical waveguide coupling structure
JPH11160555A (en) Optical wavelength multiplexer/demultiplexer
JP4123519B2 (en) Optical waveguide and optical multiplexer / demultiplexer
JPH04163406A (en) Waveguide type optical coupler
JPH1039150A (en) Waveguide type optical circuit and its production
JP2812469B2 (en) Optical fiber type wavelength filter
JPH05157920A (en) Waveguide diffraction grating
JP4188031B2 (en) Lens element and optical component using the same
JPH0727931A (en) Optical waveguide
JP3984093B2 (en) Wavelength multiplexer / demultiplexer
JPH03291603A (en) Optical multiplexer/demultiplexer
JPH079496B2 (en) Method of forming optical waveguide device
JPH01231006A (en) Optical multiplexer/demultiplexer
JPS6247005A (en) Wavelength multiplexing and demultiplexing diffraction grating
JPS6152443B2 (en)
JPH0578802B2 (en)
KR100441242B1 (en) Coarse Wavelength Division Multiplexer manufactural method using the Thin Film Filter deposited Planar silica optical waveguide
JPH0363608A (en) Fiber worked type optical device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees