JP3450068B2 - Optical waveguide coupling structure - Google Patents

Optical waveguide coupling structure

Info

Publication number
JP3450068B2
JP3450068B2 JP29643794A JP29643794A JP3450068B2 JP 3450068 B2 JP3450068 B2 JP 3450068B2 JP 29643794 A JP29643794 A JP 29643794A JP 29643794 A JP29643794 A JP 29643794A JP 3450068 B2 JP3450068 B2 JP 3450068B2
Authority
JP
Japan
Prior art keywords
waveguide
optical
optical waveguide
auxiliary
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29643794A
Other languages
Japanese (ja)
Other versions
JPH08152538A (en
Inventor
昭 柏崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP29643794A priority Critical patent/JP3450068B2/en
Publication of JPH08152538A publication Critical patent/JPH08152538A/en
Application granted granted Critical
Publication of JP3450068B2 publication Critical patent/JP3450068B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、光導波路と光素子との
結合構造に関わり、特に光ファイバと光導波路との高効
率かつ容易な結合を得る光導波路の構造及び作製方法に
関する。 【0002】 【従来技術】光通信用デバイスとして用途が考えられて
いる光導波路は、実用上の要請から通常単一モード光フ
ァイバと結合させて一体化した、ピグテール型の実装構
造をとることが望まれている。 【0003】従来の実装構造として、最も一般的に用い
られている方法は、例えばV溝が形成された光ファイバ
保持基板上にあらかじめ複数の光ファイバを並列して固
定した光ファイバアレイと、支持基板に固定した光導波
路の光結合部の位置調整を行った後、光ファイバアレイ
と光導波路基板の結合面を接着剤で接合する、いわゆる
butt−joint法が良く用いられている。 【0004】光ファイバと導波路との結合部に要求され
る特性の中で、重要なものとして接続損失特性があげら
れ、接続損失を小さくするために、導波路と光ファイバ
コアとの光軸の正確な位置合わせが必要とされている。
通常の単一モードファイバのコア径は10μm程度であ
り、また各種導波路の光導波部の断面の大きさも、単一
モード伝送系で用いられるデバイスは数μm以下である
ため、結合部での光軸のわずかなズレが大きな接続損失
を生じさせてしまう。そのため、光ファイバの保持基板
上に形成されたV溝を高精度に作製し、光ファイバと光
導波路との結合部の位置ズレが生じないようにしなけれ
ばならない。更に、光導波路と光ファイバコアの径が異
なる場合、伝搬するモ−ドの分布径が異なり(モード不
整合)、それに起因する結合損失が生じる。butt−
joint法では単に光ファイバの端面を導波路端面に
直接結合させるだけなので、モード形状が異なる光導波
路と光ファイバの接続では結合損失の発生を避けること
は出来ず、より低損失な接続方法が望まれている。 【0005】結合部における接続損失を低減化するため
に、様々な検討が行われているが、その手段の一つとし
て、導波路と光ファイバの伝搬モ−ド形状を一致させる
方法が考えられ、具体的な達成手段として、補助導波路
を用いた分布結合による結合構造が提案されている。導
波路基板端面の光入出力導波路部の近傍に、光ファイバ
コアと同じモ−ド分布径を有する補助導波路を光導波路
に平行に作る。光ファイバは、光導波路に直接接続させ
ずに、補助導波路端面に結合させ、光の入力あるいは出
力を行う。補助導波路内に入射した光は、補助導波路内
を伝搬しながら隣接する光導波路に徐々に移行してい
き、やがて全ての伝搬光が導波路内に移行して導波路内
を伝搬していく。この時、補助導波路の構造は、伝搬光
のモード形状が光ファイバ内を伝搬する光のモード形状
に等しくなるようになっているので光ファイバと補助導
波路との接続面でのモード不整合に起因する損失を無く
することが出来る。このようにして、導波路径が異なる
導波路と光ファイバの結合を高結合効率で行うことが出
来る。 【0006】 【発明が解決しようとする課題】しかしながら、上記補
助導波路を用いた分布結合型接続構造を有する導波路を
作製する方法はまだ十分に確立されたものではない。ま
ず、基板上に導波路を作製する方法と同じ微細加工技術
をもちいて補助導波路を作製する場合、導波路径と補助
導波路径の大きさが異なるため、実際に同一基板上に両
方を作製するのが多くの工程を必要とし難しいという問
題点があった。また、導波路基板の上に補助導波路を搭
載して分布結合構造を構成する場合、結合部の基板断面
形状はリブ構造となるため、結合部強度に十分な特性を
確保することが出来ない。 【0007】本発明は、上述した従来の作製方法におけ
る問題点を解決するためのものであり、容易でかつ現実
的な手段で、補助導波路を有する導波路結合部を作製す
る方法及び容易な結合部構造を提供する事を目的として
いる。 【0008】 【課題を解決するための手段】上記に鑑みて本発明は、
導波路基板上に石英ガラスからなる光導波路コアを形成
し、上記導波路基板の光ファイバと対向する端面側に上
記光導波路コアとは別に補助導波路が具備され、該補助
導波路は上記光ファイバからの入射光が低損失で結合
し、かつ上記光導波路コアへ高効率で光の移行が行われ
るように決定された導波路長、光導波路との距離、屈折
率、断面径を有し、上記光導波路コアと分布結合をさせ
て補助導波路を介した信号入出力を行う光導波路の結合
構造であって、前記光導波路コアが形成された導波路基
板とは別に、この導波路基板上に載置されるカバーが具
備され、このカバーが導波路基板上に載置されたとき導
波路コア近傍になる位置に研削加工で矩形状の溝を形成
し、使用波長で光学的に透明な高分子樹脂を前記溝に充
填硬化して前記補助導波路を構成したことを特徴とす
る。 【0009】 【作用】上記手段によれば、導波路デバイス作製の工程
で導波路11を作製する微細加工の手段を用いずに、分
布結合を行わせるための補助導波路12の形成を容易に
行うことが可能となる。 【0010】 【実施例】図1は光ファイバ端部構造の参考例である。
光導波路デバイス13には導波路基板16の上に、光導
波路11が形成されている。光導波路11の屈折率は導
波路基板16の屈折率より高くなっており、光が漏洩す
ること無く伝搬する構造になっている。光導波路11の
側面には、矩形の補助導波路12が光導波路に平行して
形成されている。補助導波路12の断面径及び導波路
長、光導波路11との距離や屈折率は、光ファイバから
の入射光が低損失で結合し、かつ光導波路11へ高効率
で光の移行が行われるように決定する必要がある。補助
導波路12は導波路表面から直接形成されており、光導
波路デバイスの使用波長において光学的に透明な樹脂を
硬化させて構成する。 【0011】このような補助導波路を光導波路デバイス
16に作製する工程を図2に示す。まず導波路基板16
上に光導波路11を形成する(図2(a))。次に、基
板上の光導波路端面から光導波路11に沿って、デバイ
ス表面15に開口をもつ溝14を機械研削等の手段によ
り形成する(図2(b))。この該補助導波路用溝14
に高分子樹脂を充填し硬化させる。硬化させた後は、導
波路表面15及び導波路端面に面を合わせるように研磨
を行い、補助導波路を完成させる(図2(c))。 本
実施例では補助導波路の上部にはクラッド層が無いが、
上述の工程で補助導波路を形成した後に低屈折率の樹脂
をコートしたりして補助導波路上面にクラッド層や保護
層をつけても何等差し支えない。このようにして補助導
波路を作製する方法は、フォトリソグラフィ等の微細加
工技術を用いて作製する場合に比較して、工程数も少な
くて済み、コスト的にも安価なデバイスを提供すること
が可能となる。補助導波路の材質として高分子樹脂を用
いたのは、充填や硬化が容易に実施出来る利点があるた
めである。高分子樹脂は、伝搬損失が石英ガラス等の導
波路用材料に比較して劣るが、補助導波路にのみ使用す
れば、導波路長が小さいので材料に起因する伝搬損失は
無視することが出来る。 【0012】図3は本発明の参考例で、導波路デバイス
13の導波路11の上部に補助導波路12を作製した場
合の例である。図3(a)に参考例の断面図を示し、図
3(b)にその斜視図を示す。 【0013】図4に参考例の作製工程の一例を示す。導
波路デバイス表面15から導波路11の上部にV溝24
を所望の長さだけ作製する(図4(a))。また、同様
のV溝26を形成したカバー25を、V溝同士が対向す
るように位置合わせを行い、重ね合わせて固定する(図
4(b))。導波路デバイス13とカバー25を重ね合
わせることにより生じた矩形状の空隙部分は、V溝の角
度を90度に設定すれば、正方形の断面形状を持つ。そ
こに高分子樹脂を充填して硬化させ、補助導波路を形成
する。硬化後、デバイス端面を研磨して余分な樹脂を削
除し、端面を揃える(図4(c))。本実施例では、導
波路デバイス13とカバー25を重ね合わせた後、樹脂
の充填を実施しているが、導波路デバイス13及びカバ
ー26に作製したV溝24及び26に、予めそれぞれ樹
脂を充填して硬化させ結合面を研磨した後で重ね合わせ
ても良い。 【0014】図5には本発明の実施例を示す。図5
(a)には本発明の実施例の断面図を示し、図5(b)
にはその斜視図を示す。光導波路デバイス13には補助
導波路作製用の溝を作製せず、導波路デバイス表面15
に重ね合わせるカバー25に矩形の溝36を作製し、高
分子樹脂を充填、硬化させて補助導波路12を形成した
後、光導波路デバイス13に形成されている光導波路1
1の上部に、該カバー25の補助導波路12が一致する
ように重ね合わせて、所望の構造を得る。導波路デバイ
ス表面15から導波路11までのクラッド層37の厚み
が分布結合を行うには大きい場合は、予め、補助導波路
を含んだカバー25が重なる部分のデバイス表面15を
研磨してクラッド層37の厚みを小さくすることも可能
である。 【0015】 【発明の効果】以上、実施例を挙げて詳細に説明したよ
うに本発明によれば、分布結合型の光結合部を有する光
導波路デバイスを、導波路を作製する微細加工の手段を
用いずに、容易に作製することが可能となる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coupling structure between an optical waveguide and an optical element, and more particularly to an optical waveguide for obtaining a highly efficient and easy coupling between an optical fiber and an optical waveguide. The present invention relates to a structure and a manufacturing method of a waveguide. 2. Description of the Related Art An optical waveguide which is considered to be used as an optical communication device may have a pigtail type mounting structure which is generally combined with a single-mode optical fiber to be integrated due to practical demands. Is desired. The most commonly used conventional mounting structure is, for example, an optical fiber array in which a plurality of optical fibers are previously fixed in parallel on an optical fiber holding substrate in which a V-groove is formed, and A so-called butt-joint method, in which the position of an optical coupling portion of an optical waveguide fixed to a substrate is adjusted and then the coupling surface between the optical fiber array and the optical waveguide substrate is bonded with an adhesive, is often used. [0004] Among the characteristics required for the coupling portion between an optical fiber and a waveguide, an important one is a connection loss characteristic. To reduce the connection loss, the optical axis between the waveguide and the optical fiber core is reduced. There is a need for accurate alignment of
The core diameter of a normal single mode fiber is about 10 μm, and the cross-sectional size of the optical waveguide of various waveguides is less than several μm for devices used in a single mode transmission system. A slight displacement of the optical axis causes a large connection loss. Therefore, the V-groove formed on the holding substrate of the optical fiber must be manufactured with high precision so that the positional shift of the coupling portion between the optical fiber and the optical waveguide does not occur. Further, when the diameter of the optical waveguide and the diameter of the optical fiber core are different, the distribution diameter of the propagating mode is different (mode mismatch), resulting in a coupling loss. butt-
In the joint method, the end face of the optical fiber is simply coupled directly to the end face of the waveguide. Therefore, the coupling loss cannot be avoided in the connection between the optical waveguide and the optical fiber having different modes, and a connection method with lower loss is desired. It is rare. Various studies have been made to reduce the connection loss at the coupling portion. One of the means is to match the propagation mode shapes of the waveguide and the optical fiber. As a specific means, a coupling structure by distributed coupling using an auxiliary waveguide has been proposed. An auxiliary waveguide having the same mode distribution diameter as that of the optical fiber core is formed parallel to the optical waveguide near the optical input / output waveguide on the end face of the waveguide substrate. The optical fiber is not directly connected to the optical waveguide, but is coupled to the end face of the auxiliary waveguide to input or output light. The light incident on the auxiliary waveguide gradually moves to the adjacent optical waveguide while propagating in the auxiliary waveguide, and eventually all the propagating light moves into the waveguide and propagates in the waveguide. Go. At this time, since the structure of the auxiliary waveguide is such that the mode shape of the propagating light is equal to the mode shape of the light propagating in the optical fiber, the mode mismatch at the connection surface between the optical fiber and the auxiliary waveguide is obtained. Can be eliminated. In this way, the coupling between the waveguides having different waveguide diameters and the optical fiber can be performed with high coupling efficiency. [0006] However, a method of fabricating a waveguide having a distributed coupling type connection structure using the above-mentioned auxiliary waveguide has not been sufficiently established. First, when an auxiliary waveguide is manufactured using the same microfabrication technology as the method for manufacturing a waveguide on a substrate, since the waveguide diameter and the auxiliary waveguide diameter are different, both are actually mounted on the same substrate. There is a problem in that it requires many steps and is difficult to manufacture. In addition, when an auxiliary waveguide is mounted on a waveguide substrate to form a distributed coupling structure, since the substrate has a rib-shaped cross-section at the coupling portion, sufficient characteristics cannot be secured for the coupling portion strength. . An object of the present invention is to solve the above-mentioned problems in the conventional manufacturing method, and to provide a method for manufacturing a waveguide coupling portion having an auxiliary waveguide by an easy and practical means and an easy method. It is intended to provide a joint structure. [0008] In view of the above, the present invention provides
An optical waveguide core made of quartz glass is formed on a waveguide substrate, and an auxiliary waveguide is provided separately from the optical waveguide core on an end surface of the waveguide substrate facing the optical fiber, and the auxiliary waveguide is provided with the optical waveguide. The waveguide length, the distance from the optical waveguide, the refractive index, and the cross-sectional diameter are determined so that the incident light from the fiber is coupled with low loss, and the light is transferred to the optical waveguide core with high efficiency. A coupling structure of an optical waveguide for performing signal input / output via an auxiliary waveguide by performing distributed coupling with the optical waveguide core, wherein the waveguide substrate is provided separately from the waveguide substrate on which the optical waveguide core is formed. A cover mounted on the waveguide substrate is provided, and a rectangular groove is formed by grinding at a position near the waveguide core when the cover is mounted on the waveguide substrate, and is optically transparent at a used wavelength. Filling and hardening the groove with a polymer resin Characterized in that to constitute a waveguide. According to the above means, the auxiliary waveguide 12 for performing distributed coupling can be easily formed without using the fine processing means for manufacturing the waveguide 11 in the process of manufacturing the waveguide device. It is possible to do. FIG. 1 is a reference example of an optical fiber end structure.
The optical waveguide device 13 has an optical waveguide 11 formed on a waveguide substrate 16. The refractive index of the optical waveguide 11 is higher than the refractive index of the waveguide substrate 16, so that light propagates without leaking. On the side surface of the optical waveguide 11, a rectangular auxiliary waveguide 12 is formed in parallel with the optical waveguide. Regarding the cross-sectional diameter and the waveguide length of the auxiliary waveguide 12, the distance from the optical waveguide 11, and the refractive index, the incident light from the optical fiber is coupled with low loss, and the light is transferred to the optical waveguide 11 with high efficiency. Need to be decided. The auxiliary waveguide 12 is formed directly from the surface of the waveguide, and is formed by curing an optically transparent resin at the wavelength used for the optical waveguide device. FIG. 2 shows a process for manufacturing such an auxiliary waveguide in the optical waveguide device 16. First, the waveguide substrate 16
An optical waveguide 11 is formed thereon (FIG. 2A). Next, a groove 14 having an opening in the device surface 15 is formed from the end face of the optical waveguide on the substrate along the optical waveguide 11 by means such as mechanical grinding (FIG. 2B). This auxiliary waveguide groove 14
Is filled with a polymer resin and cured. After the curing, polishing is performed so that the surfaces are aligned with the waveguide surface 15 and the end surface of the waveguide, thereby completing the auxiliary waveguide (FIG. 2C). In this embodiment, there is no clad layer on the upper part of the auxiliary waveguide,
After forming the auxiliary waveguide in the above-described process, a low refractive index resin may be coated or a cladding layer or a protective layer may be provided on the upper surface of the auxiliary waveguide. The method of manufacturing the auxiliary waveguide in this manner requires a smaller number of steps and can provide a low-cost device as compared with the case of manufacturing using a fine processing technique such as photolithography. It becomes possible. The reason why the polymer resin is used as the material of the auxiliary waveguide is that there is an advantage that filling and curing can be easily performed. The polymer resin is inferior in propagation loss to waveguide materials such as silica glass, but if used only for the auxiliary waveguide, the waveguide length is small and the propagation loss due to the material can be ignored. . FIG. 3 shows a reference example of the present invention, in which an auxiliary waveguide 12 is formed above a waveguide 11 of a waveguide device 13. FIG. 3A shows a sectional view of the reference example, and FIG. 3B shows a perspective view thereof. FIG. 4 shows an example of the manufacturing process of the reference example. V-groove 24 extends from waveguide device surface 15 to upper portion of waveguide 11
Is manufactured to a desired length (FIG. 4A). Further, the cover 25 having the similar V-shaped grooves 26 is positioned so that the V-shaped grooves are opposed to each other, and is fixed by overlapping (FIG. 4B). A rectangular gap formed by overlapping the waveguide device 13 and the cover 25 has a square cross-section when the angle of the V-groove is set to 90 degrees. A polymer resin is filled therein and cured to form an auxiliary waveguide. After curing, the end face of the device is polished to remove excess resin, and the end faces are aligned (FIG. 4C). In this embodiment, the resin is filled after the waveguide device 13 and the cover 25 are overlapped. However, the resin is previously filled in the V-grooves 24 and 26 formed in the waveguide device 13 and the cover 26, respectively. It may be superposed after hardening and polishing the bonding surface. FIG. 5 shows an embodiment of the present invention. FIG.
FIG. 5A is a sectional view of an embodiment of the present invention, and FIG.
Shows a perspective view thereof. In the optical waveguide device 13, a groove for forming an auxiliary waveguide is not formed, and the waveguide device surface 15 is not formed.
After forming a rectangular groove 36 in the cover 25 to be superimposed on the optical waveguide device and filling and curing a polymer resin to form the auxiliary waveguide 12, the optical waveguide 1 formed in the optical waveguide device 13 is formed.
The desired structure is obtained by superimposing the auxiliary waveguide 12 of the cover 25 on the upper part of 1 so as to match. If the thickness of the cladding layer 37 from the waveguide device surface 15 to the waveguide 11 is large enough to perform distributed coupling, the device surface 15 where the cover 25 including the auxiliary waveguide overlaps is polished in advance to form the cladding layer. It is also possible to reduce the thickness of 37. As described above, according to the present invention, an optical waveguide device having a distributed coupling type optical coupling portion can be provided by means of fine processing for producing a waveguide. , And can be easily manufactured.

【図面の簡単な説明】 【図1】光導波路結合部の参考例を示す図である。 【図2】光導波路結合部の参考例の製作工程を示す図で
ある。 【図3】参考例を示す図である。 【図4】参考例の作製工程を示す図である。 【図5】本発明の実施例を示す図である。 【符号の説明】 11:光導波路 12:高分子樹脂 13:光導波路デバイス 14:24,26,36,溝 15:光導波路デバイス表面 16:光導波路基板 25:カバー 37:クラッド層
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a reference example of an optical waveguide coupling unit. FIG. 2 is a diagram illustrating a manufacturing process of a reference example of an optical waveguide coupling portion. FIG. 3 is a diagram showing a reference example. FIG. 4 is a view showing a manufacturing process of a reference example. FIG. 5 is a diagram showing an embodiment of the present invention. [Description of Signs] 11: Optical waveguide 12: Polymer resin 13: Optical waveguide device 14: 24, 26, 36, groove 15: Optical waveguide device surface 16: Optical waveguide substrate 25: Cover 37: Cladding layer

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G02B 6/12 - 6/14 G02B 6/30 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) G02B 6/12-6/14 G02B 6/30

Claims (1)

(57)【特許請求の範囲】 【請求項1】導波路基板上に石英ガラスからなる光導波
路コアを形成し、上記導波路基板の光ファイバと対向す
る端面側に上記光導波路コアとは別に補助導波路が具備
され、該補助導波路は上記光ファイバからの入射光が低
損失で結合し、かつ上記光導波路コアへ高効率で光の移
行が行われるように決定された導波路長、光導波路との
距離、屈折率、断面径を有し、上記光導波路コアと分布
結合をさせて補助導波路を介した信号入出力を行う光導
波路の結合構造であって、前記光導波路コアが形成され
た導波路基板とは別に、この導波路基板上に載置される
カバーが具備され、このカバーが導波路基板上に載置さ
れたとき導波路コア近傍になる位置に研削加工で矩形状
の溝を形成し、使用波長で光学的に透明な高分子樹脂を
前記溝に充填硬化して前記補助導波路を構成したことを
特徴とする光導波路の結合構造。
(57) [Claim 1] An optical waveguide core made of quartz glass is formed on a waveguide substrate, and is opposed to an optical fiber of the waveguide substrate.
An auxiliary waveguide is provided on the end face side in addition to the optical waveguide core, and the auxiliary waveguide has low incident light from the optical fiber.
Loss coupled and highly efficient light transfer to the optical waveguide core
The length of the waveguide determined to perform the row,
A coupling structure of an optical waveguide having a distance, a refractive index, and a cross-sectional diameter, performing distributed coupling with the optical waveguide core, and performing signal input / output through an auxiliary waveguide, wherein the waveguide in which the optical waveguide core is formed is provided. Separately from the waveguide substrate, a cover mounted on the waveguide substrate is provided, and a rectangular groove is formed by grinding at a position near the waveguide core when the cover is mounted on the waveguide substrate. A coupling structure for an optical waveguide, wherein the auxiliary waveguide is formed by forming and filling the groove with a polymer resin which is optically transparent at a used wavelength.
JP29643794A 1994-11-30 1994-11-30 Optical waveguide coupling structure Expired - Lifetime JP3450068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29643794A JP3450068B2 (en) 1994-11-30 1994-11-30 Optical waveguide coupling structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29643794A JP3450068B2 (en) 1994-11-30 1994-11-30 Optical waveguide coupling structure

Publications (2)

Publication Number Publication Date
JPH08152538A JPH08152538A (en) 1996-06-11
JP3450068B2 true JP3450068B2 (en) 2003-09-22

Family

ID=17833534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29643794A Expired - Lifetime JP3450068B2 (en) 1994-11-30 1994-11-30 Optical waveguide coupling structure

Country Status (1)

Country Link
JP (1) JP3450068B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8285092B2 (en) 2007-03-20 2012-10-09 Nec Corporation Optical waveguide and spot size converter using the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008233726A (en) * 2007-03-23 2008-10-02 Konica Minolta Opto Inc Optical waveguide element, and optical module, and optical axis adjustment method thereof
JP5659866B2 (en) * 2011-03-02 2015-01-28 住友電気工業株式会社 Spot size converter
CN114460682B (en) * 2020-11-09 2023-04-14 北京邮电大学 End face coupler
WO2023218607A1 (en) * 2022-05-12 2023-11-16 日本電信電話株式会社 Optical circuit chip

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8285092B2 (en) 2007-03-20 2012-10-09 Nec Corporation Optical waveguide and spot size converter using the same

Also Published As

Publication number Publication date
JPH08152538A (en) 1996-06-11

Similar Documents

Publication Publication Date Title
JP2918156B2 (en) Passive alignment device for optical fiber using alignment platform
US6160936A (en) Apparatus and method for combining optical waveguide and optical fiber
US4431260A (en) Method of fabrication of fiber optic coupler
JP2958305B2 (en) Optical fiber manual alignment method
JPH09101431A (en) Waveguide connection method
CN215067594U (en) Optical waveguide element
JP3821971B2 (en) Fiber optic array
JP4752092B2 (en) Optical waveguide connection structure and optical element mounting structure
JP3450068B2 (en) Optical waveguide coupling structure
JP3116979B2 (en) Optical coupling structure between optical waveguides
JP2002040290A (en) Fiber array part and its manufacturing method
WO2022018816A1 (en) Optical module
US10338325B1 (en) Nanofiller in an optical interface
JP7244788B2 (en) Optical fiber connection structure
JP3672421B2 (en) Method for forming optical waveguide coupler
JPH11211928A (en) Optical fiber connector
JPH07128545A (en) Method for connecting optical waveguide and optical fiber
JPH07253522A (en) Optical fiber terminal part, its production and connecting structure of terminal part and optical device
WO2022044101A1 (en) Optical waveguide component and method for manufacturing same
JP2943629B2 (en) Optical waveguide module, array thereof, and method of manufacturing the same
JP3214544B2 (en) Planar optical waveguide
JP3298975B2 (en) Connection structure and connection method between optical coupler and optical fiber
JP3095511B2 (en) Polarization-maintaining optical fiber coupler
JP3747382B2 (en) Ferrule, optical waveguide module using the ferrule, and manufacturing method thereof
JPH08110428A (en) Connecting structure of optical waveguide to optical fiber

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100711

Year of fee payment: 7