JPS59198408A - Waveguide type optical branching device - Google Patents

Waveguide type optical branching device

Info

Publication number
JPS59198408A
JPS59198408A JP7215383A JP7215383A JPS59198408A JP S59198408 A JPS59198408 A JP S59198408A JP 7215383 A JP7215383 A JP 7215383A JP 7215383 A JP7215383 A JP 7215383A JP S59198408 A JPS59198408 A JP S59198408A
Authority
JP
Japan
Prior art keywords
waveguide
optical
filter
fiber
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7215383A
Other languages
Japanese (ja)
Inventor
Masao Kawachi
河内 正夫
Mitsuho Yasu
安 光保
Yasubumi Yamada
泰文 山田
Hiroshi Terui
博 照井
Morio Kobayashi
盛男 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP7215383A priority Critical patent/JPS59198408A/en
Publication of JPS59198408A publication Critical patent/JPS59198408A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To reduce the number of constituting parts, to make them small-sized and to reduce the number of processes of polishing and sticking by inserting a multilayered interference film filter into a cut part of an optical waveguide of a substrate. CONSTITUTION:Waveguides 22a-22c are formed on a substrate 21, and multilayered interference film filters 25b and 25c are inserted into cut parts 23b and 23c. An input optical fiber 24a is connected to the waveguide 22a, and output optical fibers 24b and 24c are connected directly to waveguides 22b and 22c. A two-wavelength multiple signal light (wavelengths lambda1 and lambda2) introduced from the fiber 24a to the waveguide 22a is led to the waveguide 22c, and only the light having the wavelength lambda2 is transmitted selectively through the filter 25c and is emitted to the fiber 24c. Most of the light reflected by the filter 25c is emitted to the waveguide 22b, and only the light having the wavelength lambda1 is transmitted through the filter 25b and is led out to the fiber 24b, thus fulfilling the function of an optical branching device. A multicomponent glass produced by a macromolecule or ion diffusing method or a quartz glass consisting essentially of an SiCl4 can be used as materials of waveguides 22a-22c.

Description

【発明の詳細な説明】 本発明は波長多重光通信の分野に用いる光分波器に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical demultiplexer used in the field of wavelength multiplexed optical communications.

波長が異なる光信号波を1本の光ファイバで伝送する波
長分割多重伝送方式においては、波長が異なる光波を分
離する光分波器が必要となる。光分波器は回折格子形と
多層干渉膜フィルタ形とに大別することができるが、波
長分離特性の点から多層干渉膜フィルタ形が主に使われ
る傾向にある。
In a wavelength division multiplexing transmission system in which optical signal waves with different wavelengths are transmitted through a single optical fiber, an optical demultiplexer is required to separate the optical signals with different wavelengths. Optical demultiplexers can be broadly classified into diffraction grating type and multilayer interference film filter type, but the multilayer interference film filter type tends to be mainly used from the viewpoint of wavelength separation characteristics.

従来、多層干渉膜フィルタ形光分波器は、第1図のよう
に構成されていた。第1図において、1は共通基板ガラ
ス、2a、2b、2c、ZcLZeは結合プリズム、8
a、8b、8c、8d、8eはロッドレンズ、4b、4
c、4d、4eは多層干渉膜フィルタ、5aは入力ファ
イバ、5b、5c、5d、5eは出力ファイバである。
Conventionally, a multilayer interference film filter type optical demultiplexer has been constructed as shown in FIG. In FIG. 1, 1 is a common substrate glass, 2a, 2b, 2c, and ZcLZe are coupling prisms, and 8
a, 8b, 8c, 8d, 8e are rod lenses, 4b, 4
Numerals c, 4d, and 4e are multilayer interference film filters, 5a is an input fiber, and 5b, 5c, 5d, and 5e are output fibers.

入力ファイバ5aから入射した波長多重光(ここでは4
波λl l ’Z lλ8.λ、)はロッドレンズ8a
の作用で平行光束となり、結合プリズム2a、共通基板
ガラスlを経て多層干渉膜フィルタ4bへと照射される
。フィルタ4bは波長λ□の信号光のみ選択的に透過さ
せ、他波長の信号光を反射する。フィルタ4bを通過し
た波長λ□の信号光はロッドレンズ8bで集束され、出
力ファイバ5bへと導入される。同様にフィルタ4e 
Wavelength multiplexed light (here, 4 wavelengths) incident from the input fiber 5a
Wave λl l 'Z lλ8. λ,) is the rod lens 8a
The light becomes a parallel beam of light, which passes through the coupling prism 2a and the common substrate glass l, and is irradiated onto the multilayer interference film filter 4b. The filter 4b selectively transmits only the signal light of wavelength λ□ and reflects the signal light of other wavelengths. The signal light having the wavelength λ□ that has passed through the filter 4b is focused by the rod lens 8b and introduced into the output fiber 5b. Similarly, filter 4e
.

4d、4eはそれぞれ波長λ2.λ8.λ、の信号光の
みを透過するよう設定されており、波長に応じてそれぞ
れ出力ファイバ5c、5d、5eへと分波される。
4d and 4e each have a wavelength λ2. λ8. It is set to transmit only the signal light of λ, and is branched to output fibers 5c, 5d, and 5e, respectively, depending on the wavelength.

このように第1図の光分波器は所望の機能を果たすこと
ができるが、その構成は複雑であり、多数の光学ブロッ
クの研磨や接着が必要なこと、光ファイバやロンドレン
ズの位置合わせの工程に熟練と長時間を要するという大
きな欠点があった。
In this way, the optical demultiplexer shown in Figure 1 can perform the desired function, but its configuration is complex, requiring polishing and bonding of numerous optical blocks, and alignment of optical fibers and Rondo lenses. The major drawback was that the process required skill and a long time.

このため完成品の価格はきわめて高価となり、波長多重
方式の普及を妨げる要因の一つとなっていた。
This made the finished product extremely expensive, which was one of the factors preventing the spread of wavelength multiplexing.

本発明はこれらの欠点を除去するため、光分波器に導波
路構造を取り入れ、必要な光学部品数の低減と調整工程
の簡便化を図ったものである。以下図面により本発明の
詳細な説明する。
In order to eliminate these drawbacks, the present invention incorporates a waveguide structure into an optical demultiplexer, thereby reducing the number of required optical components and simplifying the adjustment process. The present invention will be explained in detail below with reference to the drawings.

第2図は本発明の一実施例の構成図である。第2図(a
)は斜視図であり、基板21上に導波路22a、22b
、22cが形成されており、導波路22b。
FIG. 2 is a block diagram of an embodiment of the present invention. Figure 2 (a
) is a perspective view showing waveguides 22a and 22b on a substrate 21.
, 22c are formed, and a waveguide 22b.

22cの切断部28b、28cには多層干渉膜フィルタ
25b、25cが挿入されている。導波路22aには入
力光ファイバ24aが連結され、導波路22b22cに
は出力光ファイバ24b、24Cが直接連結されている
Multilayer interference film filters 25b and 25c are inserted into the cut portions 28b and 28c of 22c. An input optical fiber 24a is connected to the waveguide 22a, and output optical fibers 24b and 24C are directly connected to the waveguide 22b22c.

入力光ファイバ24aから導波路22aへ導入された2
波長多重信号光(波長λ□、λ2)は、光路中に多層干
渉膜フィルタ25cを設けた導波路22cへと導かれる
。フィルタ25cは波長λ2の信号光のみを選択的に透
過し、信号光λ2は出力ファイバ24cへと導かれる。
2 introduced into the waveguide 22a from the input optical fiber 24a
The wavelength multiplexed signal light (wavelengths λ□, λ2) is guided to a waveguide 22c provided with a multilayer interference film filter 25c in the optical path. The filter 25c selectively transmits only the signal light having the wavelength λ2, and the signal light λ2 is guided to the output fiber 24c.

一方、フィルタ25cで反射された光の大勢は、光路中
に多層干渉膜フィルタ25bを設けた導波路22k)へ
と導かれる。フィルタ251)は波長λ、の信号光のみ
を選択的に透過し、信号光λ、は出力ファイバ24bへ
と導出され、光分波の機能を果たすことができる。
On the other hand, most of the light reflected by the filter 25c is guided to a waveguide 22k) in which a multilayer interference film filter 25b is provided in the optical path. The filter 251) selectively transmits only the signal light having the wavelength λ, and the signal light λ is guided to the output fiber 24b and can function as an optical demultiplexer.

導波路22a、22b、22cとしては、高分子導光路
や、イオン拡散法で作製した多成分ガラス導光路または
s ic e 4を主成分とするガラス形成原料ガスか
ら熱酸化や火炎加水分解等の気相化学反応で作製した石
英ガラス系光導波路などを用いることができる。
The waveguides 22a, 22b, and 22c may be a polymer light guide, a multicomponent glass light guide made by ion diffusion, or a glass forming raw material gas mainly composed of sic e 4, such as thermal oxidation, flame hydrolysis, etc. A silica glass optical waveguide produced by a gas phase chemical reaction can be used.

第2図(b)は切断部2 ’8 bの拡大平面図であり
、第2図(C)は中心線29での断面図である。次によ
り具体例について構成を詳細に述べる。
FIG. 2(b) is an enlarged plan view of the cut portion 2'8b, and FIG. 2(C) is a sectional view taken along the center line 29. Next, the configuration of a specific example will be described in detail.

すなわち石英ガラス基板21上に火炎加水分解反応を中
心とした方法(例えば河内他、特願昭56−20884
9 「ガラス光導波膜の製造方法および製造装置」参照
)で堆積した石英ガラス系膜に、フォトエツチングおよ
び反応性スパッタエツチングの手法で8次元パターン化
した導波路22k)の途中に多層干渉膜フィルタ25b
が挿入されている。導波路22bの幅は100μm、高
さは50μmであり、導波路22bはバッファ層27b
1保護層28bにサンドウィッチされている。導波路2
21)のガラス組成は5in2− TiO2−P2O5
−B2O3、バッファ層27b、保護層28bのガラス
組成は5in2− P2O5−B2O3であり、導波路
はバッファ層、保護層に比べて比屈折率差が1%高くな
っている。
That is, a method centered on a flame hydrolysis reaction on a quartz glass substrate 21 (for example, Kawachi et al., Japanese Patent Application No. 56-20884)
9) A multilayer interference film filter is placed in the middle of the waveguide 22k), which is formed into an 8-dimensional pattern by photoetching and reactive sputter etching on the quartz glass film deposited using the method and apparatus for manufacturing glass optical waveguide film. 25b
is inserted. The waveguide 22b has a width of 100 μm and a height of 50 μm, and the waveguide 22b has a buffer layer 27b.
1 protective layer 28b. Waveguide 2
The glass composition of 21) is 5in2-TiO2-P2O5
-B2O3, the buffer layer 27b, and the protective layer 28b have a glass composition of 5in2-P2O5-B2O3, and the relative refractive index difference of the waveguide is 1% higher than that of the buffer layer and the protective layer.

導波路22bの切断部28bの間隔は40μmである。The interval between the cut portions 28b of the waveguide 22b is 40 μm.

多層干渉膜フィルタ251)は、両面研磨された8iウ
エハーの片面に5102とTlO2とを交互に多層にス
パッタ法で形成したものを切り出し、Si基板の一部を
選択エッチして除いたものを用いた。
The multilayer interference film filter 251) is made by cutting out a double-sided polished 8i wafer with multiple layers of 5102 and TlO2 alternately formed by sputtering on one side, and removing a part of the Si substrate by selective etching. there was.

第2図(b)のフィルタ保持部26bを多層干渉膜25
bの支持のために残しておいた。これはSi基板の一部
であり、石英ガラス基板21に接着固定されている。
The filter holding part 26b in FIG. 2(b) is connected to the multilayer interference film 25.
I left it for support of b. This is a part of the Si substrate and is adhesively fixed to the quartz glass substrate 21.

第2図において、導波路2Zaの幅は導波路22b、2
2cの半分の50μmとした。入力光ファイバ24aの
コア径は50μm、外径は125μmであり、出力光フ
ァイバ24b、Z4cのコア径は150μm、外径は2
00μmとした。光ファイノく24a、24b、24c
はそれぞれ対応する光導波路に融着接続した。融着接続
は火炎加水分解反応により合成したSiO□−P2O5
−B20B系ガラス微粒子を塗布し、CO2レーザ光で
加熱することにより実施した。この際ガラス微粒子はバ
インダの役割を果たす。
In FIG. 2, the width of the waveguide 2Za is the same as that of the waveguides 22b and 2.
It was set to 50 μm, which is half of 2c. The input optical fiber 24a has a core diameter of 50 μm and an outer diameter of 125 μm, and the output optical fibers 24b and Z4c have a core diameter of 150 μm and an outer diameter of 2
00 μm. Optical fibers 24a, 24b, 24c
were fusion-spliced to their corresponding optical waveguides. The fusion splice is SiO□-P2O5 synthesized by flame hydrolysis reaction.
-B20B glass fine particles were applied and heated with CO2 laser light. At this time, the glass particles play the role of a binder.

多層干渉膜フィルタ25bの中心波長は800nm。The center wavelength of the multilayer interference film filter 25b is 800 nm.

帯域幅は20 nmであり、また多層干渉膜フィルタ2
5cの中心波長は900nm、帯域幅は22 nmであ
る。
The bandwidth is 20 nm, and the multilayer interference film filter 2
The center wavelength of 5c is 900 nm and the bandwidth is 22 nm.

入出力光ファイバおよびフィルタを装着した石英ガラス
基板21の上面は、導波路を覆うようにシリコーン樹脂
で被覆した。シリコーン樹脂の屈折率値は石英ガラスと
同じに選んだ。したがって・この実施例では、光導波路
Z2a、22b、22cの側面は、直接シリコーン樹脂
傾接しているが、フィルタ装荷前にスパッタリング等の
手法により、クラッド層となるべき5102系ガラス層
を、数μm以上形成しておく方がより望ましい。
The upper surface of the quartz glass substrate 21 equipped with the input/output optical fibers and the filter was coated with silicone resin so as to cover the waveguide. The refractive index value of the silicone resin was chosen to be the same as that of quartz glass. Therefore, in this example, the side surfaces of the optical waveguides Z2a, 22b, and 22c are directly inclined with silicone resin, but before loading the filter, a 5102 glass layer to be a cladding layer is coated several μm thick by a method such as sputtering. It is more desirable to form the above.

第8図は第2図に示す実施例の導波形分波器の波長特性
測定結果であり、24aからの入力光波長に対する24
bの挿入損失(I)と24cの挿入損失(ITJを示す
。中心波長800 nm、900 nmでの挿入損失は
それぞれ2 dB、1.5 dBである。また帯域幅が
25〜80 nm程度とフィルタ自体の帯域幅より若干
大きいのは、フィルタへの入射光角度が導波モードに対
応して±10’程度の範囲に分布していることに起因し
ている。中心波長800 nmにおける挿入損失が中心
波長900 nmにおける挿入損失より大きいのは、8
00 nm光はフィルタ25cで反射された後フィルタ
25bへと向かうが、その幾分かが導波路22aへと逆
行してしまうからである。逆行した光は光ファイバ24
aを逆進することになるが、このような反射の影響が望
まし、くない場合には、第4図の構成を用いることがで
きる。なお、第8図において点線は透過半値幅を示す。
FIG. 8 shows the measurement results of the wavelength characteristics of the waveguide demultiplexer of the embodiment shown in FIG.
The insertion loss (I) of b and the insertion loss (ITJ) of 24c are shown.The insertion loss at center wavelengths of 800 nm and 900 nm is 2 dB and 1.5 dB, respectively.Also, the bandwidth is about 25 to 80 nm. The reason why it is slightly larger than the bandwidth of the filter itself is that the incident light angle to the filter is distributed in a range of about ±10' corresponding to the waveguide mode.Insertion loss at a center wavelength of 800 nm is larger than the insertion loss at the center wavelength of 900 nm because 8
This is because although the 00 nm light is reflected by the filter 25c and then goes to the filter 25b, some of it goes back to the waveguide 22a. The retrograde light is connected to the optical fiber 24
If the influence of such reflection is desired and is not present, the configuration shown in FIG. 4 can be used. Note that in FIG. 8, the dotted line indicates the transmission half width.

第4図は本発明の他の実施例の構成を示しくa)は斜視
図、(b)は平面図であって、41は基板、42a 。
FIG. 4 shows the structure of another embodiment of the present invention, in which a) is a perspective view, and (b) is a plan view, in which 41 is a substrate, and 42a is a top view.

42b、42cは光導波路、44aは入力光ファイバ4
4b、44cは出力ファイバである。45bは多層干渉
膜フィルタ(透過中心波長:λ□)、45cも多層干渉
膜フィルタ(透過中心波長:λ2)である。導波路42
a、、42bはフィルタ45c面とθ−75°の角度を
なしている。入力ファイバ44aがら入射した波長λ□
の信号光は、光導波路42aを伝播し、フィルタ45c
の部分で全反射され、光導波路42bの途中に設けられ
たフィルタ45bを通過し、出力ファイバ44bへと導
出される。これに対し波長λ2の信号光はフィルタ45
cを通過し、光導波路42cを経由して出力ファイバ4
4cへと導出される。この実施例では、入力ファイバ4
4aへの反射光はほとんど皆無である。
42b and 42c are optical waveguides, and 44a is an input optical fiber 4.
4b and 44c are output fibers. 45b is a multilayer interference film filter (transmission center wavelength: λ□), and 45c is also a multilayer interference film filter (transmission center wavelength: λ2). Waveguide 42
a, 42b form an angle of θ-75° with the filter 45c surface. Wavelength λ□ incident on input fiber 44a
The signal light propagates through the optical waveguide 42a and passes through the filter 45c.
It is totally reflected at a portion of the optical waveguide 42b, passes through a filter 45b provided in the middle of the optical waveguide 42b, and is guided to an output fiber 44b. On the other hand, the signal light of wavelength λ2 is filtered by the filter 45.
c, and the output fiber 4 via the optical waveguide 42c.
4c. In this example, the input fiber 4
Almost no light is reflected to 4a.

第5図は本発明の別の実施例の構成図であり、・平面図
のみを示している。第5図において、51は基板、52
a、52b、52cは光導波路であり、それぞれ光ファ
イバ54a、54b、54cに接続されている。55は
多層干渉膜フィルタ(透過中心波長λ2)、56はフィ
ルタ55の保持部である。
FIG. 5 is a block diagram of another embodiment of the present invention, and shows only a plan view. In FIG. 5, 51 is a substrate, 52
Optical waveguides a, 52b, and 52c are connected to optical fibers 54a, 54b, and 54c, respectively. 55 is a multilayer interference film filter (transmission center wavelength λ2), and 56 is a holding portion for the filter 55.

光ファイバ54aから入射した波長λ2の信号光は光導
波路52a、フィルタ55、光導波路5Zcを通過し、
光ファイバ54cへと導出される。また光ファイバ54
bから入射した波長λ、の信号光は光導波路52bを経
てフィルタ55で全反射され、光導波路52aを経て、
光ファイバ54aへと導出される。第5図の分波器は双
方向光通信方式の分野に有効である。
The signal light with the wavelength λ2 incident from the optical fiber 54a passes through the optical waveguide 52a, the filter 55, and the optical waveguide 5Zc,
The light is led out to an optical fiber 54c. Also, the optical fiber 54
The signal light with the wavelength λ incident from the optical waveguide 52b is totally reflected by the filter 55, and passes through the optical waveguide 52a.
The light is guided to the optical fiber 54a. The duplexer shown in FIG. 5 is effective in the field of bidirectional optical communication systems.

以上、数例について本発明の導波形光分波器の構成と作
用について説明した。本発明の光分波器では、信号光の
通路は基板上にフォトリソグラフィー等の手段で精密に
形成された光導波路に規制されており、ロンドレンズ等
の位置合わせの必要はなく、入出力光ファイバを位置の
定まっている光導波路端に接続するのみでよ(、組立調
整の手間は激減する。特に光導波路が石英ガラス系導波
路である場合には、光ファイバとの融着接続も可能であ
り、とかく問題の多い接続部の長期信頼性を高めること
ができる。
The configuration and operation of the waveguide optical demultiplexer of the present invention have been described above with respect to several examples. In the optical demultiplexer of the present invention, the path of the signal light is regulated by an optical waveguide precisely formed on the substrate by means such as photolithography, and there is no need for alignment of Rondo lenses, etc., and the input and output light Simply connect the fiber to the end of the optical waveguide at a fixed position (this greatly reduces assembly and adjustment effort. Especially when the optical waveguide is a silica glass waveguide, fusion splicing with optical fibers is also possible. This makes it possible to improve the long-term reliability of connections that often have problems.

以上の実施例は2波長用について述べてきたがS本発明
はさらに多波長用の光分波器についても有効である。
Although the above embodiments have been described for two wavelengths, the present invention is also effective for optical demultiplexers for multiple wavelengths.

第6図は本発明における5波長多重用導波形光分波器の
一構成例を示す斜視図であって、61は基板、6zは光
導波路群、65は多層干渉膜フィルタ群(透過中心波長
は入力ファイバ64a側から数えてλ□、λ2.λ8.
λ6.λ5)である。64bは出力ファイバ(本図では
他の出力ファイバを省略)である。第6図の分波器の動
作は第3図の説明の項から明らかであり説明を省略する
FIG. 6 is a perspective view showing a configuration example of a waveguide optical demultiplexer for 5-wavelength multiplexing according to the present invention, in which 61 is a substrate, 6z is an optical waveguide group, and 65 is a multilayer interference film filter group (transmission center wavelength are λ□, λ2.λ8 . counting from the input fiber 64a side.
λ6. λ5). 64b is an output fiber (other output fibers are omitted in this figure). The operation of the duplexer shown in FIG. 6 is clear from the explanation section of FIG. 3, and the description thereof will be omitted.

以上の実施例では出力光は出力光ファイバへと導出され
たが、出力光ファイバの替わりに、光検出器を直接、光
導波路に装着することもできる。
In the above embodiments, the output light is guided to the output optical fiber, but instead of the output optical fiber, a photodetector can be directly attached to the optical waveguide.

また例えば第2図において光ファイバ24bをフィルタ
25bに直接的に接近させるなど、光導波・路の一部を
省略または光ファイバで置きかえることも可能である。
Furthermore, it is also possible to omit a part of the optical waveguide or path or replace it with an optical fiber, such as by bringing the optical fiber 24b directly close to the filter 25b in FIG. 2, for example.

以上説明したように、本発明の導波形光分波器は導波構
造を用いることにより構成部品数を従来形に比べて大幅
に減らすことができ、研磨や貼り合わせの工程数も少な
く、組立調整時間の短い光分波器を提供することができ
る。構造が簡単であり、小形化にも適することから光分
波器の価格の大幅な低下に貢献するところが犬であり、
光通信方式の加入者系を含めた諸分野への普及の促進要
因の一つとなると期待される。
As explained above, by using the waveguide structure of the waveguide optical demultiplexer of the present invention, the number of component parts can be significantly reduced compared to conventional types, the number of polishing and bonding steps is reduced, and assembly is possible. An optical demultiplexer with short adjustment time can be provided. Dogs have a simple structure and are suitable for miniaturization, contributing to a significant reduction in the price of optical demultiplexers.
It is expected that this will be one of the factors promoting the spread of optical communication systems in various fields including subscriber systems.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の光分波器の構成図、第2図(a) kま
本発明の一実施例の構成を示す斜視図、第2図(b)は
第2図(a)に示す切断部28bの拡大平面図、第2図
(C)は第2図(b)に示す中心線29での断面図、第
8図は第2図の導波形光分波器の波長特性図、第4図(
a)は本発明の他の実施例の構成を示す斜視図、第4図
(b)は第4図(a)の実施例の平面図、第5図は本発
明の別の実施例の構成を示す平面図、第゛6図は本発明
の5波長多重用導波形光分波器の構成を示す斜視図であ
る。 1・・・基板ガラス体、Za、2b、2c、2d、2e
−プリズム、8a、8b、8c、8d、8e・・oラド
レンズ、4b、’4c、4d、4e・・・多層干渉膜フ
ィルタ、  ・5 a =入力光ファイバ、5b、5c
、5d、5.e=−出力光ファイバ、21・・・基板、
22aH22b、22cm光導波路、28b、28c・
・・切断部、24a・・・入力光ファイバ、24b、2
4c・・・出力光ファイバ、25b、25c・・・多層
干渉膜フィルタ、26b・・・フィルタ保持部、27b
・・・バッファ層、28b・・・保護層、29・・・中
心線、41・・・基板、 42a、42b、42cm光導波路、44 a−人力光
ファイバ、44b、44c・・・出力光ファイバ、45
b、45c・・・多層干渉膜フィルタ、51・・・基板
、52a、52b、52cm光導波路、 54a、54’b、54c・・・光ファイバ、55・・
・多層干渉膜フィルタ、56・・・フィルタ保持部、6
1・・・基板、62・・・光導波路群、64a・・・入
力光ファイバ、64b・・・出力光ファイバ、65・・
・多層干渉膜フイ、シタ群。 特許出願人 日本電信電話公社 第3図 液長(nm) 第4図 (b)
Figure 1 is a configuration diagram of a conventional optical demultiplexer, Figure 2 (a) is a perspective view showing the configuration of an embodiment of the present invention, and Figure 2 (b) is shown in Figure 2 (a). 2(C) is a sectional view taken along the center line 29 shown in FIG. 2(b); FIG. 8 is a wavelength characteristic diagram of the waveguide optical demultiplexer shown in FIG. 2; Figure 4 (
a) is a perspective view showing the configuration of another embodiment of the present invention, FIG. 4(b) is a plan view of the embodiment of FIG. 4(a), and FIG. 5 is a configuration of another embodiment of the present invention. FIG. 6 is a perspective view showing the configuration of a waveguide type optical demultiplexer for five-wavelength multiplexing according to the present invention. 1... Substrate glass body, Za, 2b, 2c, 2d, 2e
- Prism, 8a, 8b, 8c, 8d, 8e... o Rad lens, 4b, '4c, 4d, 4e... Multilayer interference film filter, 5 a = Input optical fiber, 5b, 5c
, 5d, 5. e=-output optical fiber, 21... substrate,
22aH22b, 22cm optical waveguide, 28b, 28c・
... Cutting section, 24a ... Input optical fiber, 24b, 2
4c... Output optical fiber, 25b, 25c... Multilayer interference film filter, 26b... Filter holding part, 27b
...Buffer layer, 28b...Protective layer, 29...Center line, 41...Substrate, 42a, 42b, 42cm optical waveguide, 44a-human powered optical fiber, 44b, 44c...Output optical fiber , 45
b, 45c...Multilayer interference film filter, 51...Substrate, 52a, 52b, 52cm optical waveguide, 54a, 54'b, 54c...Optical fiber, 55...
・Multilayer interference film filter, 56...filter holding part, 6
DESCRIPTION OF SYMBOLS 1... Substrate, 62... Optical waveguide group, 64a... Input optical fiber, 64b... Output optical fiber, 65...
・Multilayer interference film, bottom group. Patent applicant Nippon Telegraph and Telephone Public Corporation Figure 3 Liquid length (nm) Figure 4 (b)

Claims (1)

【特許請求の範囲】 1 基板上に形成された光導波路の一部が切断され、切
断部に多層干渉膜フィルタが挿入されていることを特徴
とする導波形光分波器。 a 光導波路が石英系ガラスからなることを特徴とする
特許請求の範囲第1項記載の導波形光分波器。
[Scope of Claims] 1. A waveguide optical demultiplexer characterized in that a part of an optical waveguide formed on a substrate is cut and a multilayer interference film filter is inserted in the cut part. (a) The waveguide type optical demultiplexer according to claim 1, wherein the optical waveguide is made of silica glass.
JP7215383A 1983-04-26 1983-04-26 Waveguide type optical branching device Pending JPS59198408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7215383A JPS59198408A (en) 1983-04-26 1983-04-26 Waveguide type optical branching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7215383A JPS59198408A (en) 1983-04-26 1983-04-26 Waveguide type optical branching device

Publications (1)

Publication Number Publication Date
JPS59198408A true JPS59198408A (en) 1984-11-10

Family

ID=13481023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7215383A Pending JPS59198408A (en) 1983-04-26 1983-04-26 Waveguide type optical branching device

Country Status (1)

Country Link
JP (1) JPS59198408A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62141506A (en) * 1985-12-16 1987-06-25 Nippon Sheet Glass Co Ltd Optical demultiplexer and multiplexer
JPS62206502A (en) * 1986-03-06 1987-09-11 Nippon Sheet Glass Co Ltd Waveguide type optical multiplexing/demultiplexing circuit
JPS62218909A (en) * 1986-03-20 1987-09-26 Fujitsu Ltd Application parts for optical waveguide
JPS6333708A (en) * 1986-07-28 1988-02-13 Nippon Sheet Glass Co Ltd Optical multiplexer/demultiplexer
JPS6333707A (en) * 1986-07-28 1988-02-13 Nippon Telegr & Teleph Corp <Ntt> Waveguide type optical multiplexer/demultiplexer
JPS6360410A (en) * 1986-09-01 1988-03-16 Fujitsu Ltd Optical device
US4790615A (en) * 1986-03-06 1988-12-13 Nippon Sheet Glass Co., Ltd. Demultiplexing and/or multiplexing optical circuit
GB2391952A (en) * 2002-08-13 2004-02-18 Bookham Technology Plc Optical device with optical filter film
EP1496377A2 (en) * 2003-07-11 2005-01-12 Omron Co., Ltd. Optical multiplexer/demultiplexer, optical integrated circuit and light transceiver using the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62141506A (en) * 1985-12-16 1987-06-25 Nippon Sheet Glass Co Ltd Optical demultiplexer and multiplexer
JPS62206502A (en) * 1986-03-06 1987-09-11 Nippon Sheet Glass Co Ltd Waveguide type optical multiplexing/demultiplexing circuit
US4790615A (en) * 1986-03-06 1988-12-13 Nippon Sheet Glass Co., Ltd. Demultiplexing and/or multiplexing optical circuit
JPS62218909A (en) * 1986-03-20 1987-09-26 Fujitsu Ltd Application parts for optical waveguide
JPS6333708A (en) * 1986-07-28 1988-02-13 Nippon Sheet Glass Co Ltd Optical multiplexer/demultiplexer
JPS6333707A (en) * 1986-07-28 1988-02-13 Nippon Telegr & Teleph Corp <Ntt> Waveguide type optical multiplexer/demultiplexer
JPS6360410A (en) * 1986-09-01 1988-03-16 Fujitsu Ltd Optical device
GB2391952A (en) * 2002-08-13 2004-02-18 Bookham Technology Plc Optical device with optical filter film
EP1496377A2 (en) * 2003-07-11 2005-01-12 Omron Co., Ltd. Optical multiplexer/demultiplexer, optical integrated circuit and light transceiver using the same
EP1496377A3 (en) * 2003-07-11 2005-03-23 Omron Co., Ltd. Optical multiplexer/demultiplexer, optical integrated circuit and light transceiver using the same
US7065269B2 (en) 2003-07-11 2006-06-20 Omron Corporation Optical multiplexer/demultiplexer, optical integrated circuit and light transceiver using the same

Similar Documents

Publication Publication Date Title
US4343532A (en) Dual directional wavelength demultiplexer
US4335933A (en) Fiber optic wavelength demultiplexer
JP3784701B2 (en) Optical circuit member and optical transceiver
JP2003504661A (en) Optical wavelength division multiplexer / demultiplexer in which preformed optical components are passively aligned
GB2189621A (en) Optical demultiplexer and/or multiplexer
JPS6145801B2 (en)
JP3490745B2 (en) Composite optical waveguide type optical device
JPH08304664A (en) Wavelength demultiplexing element
JP3949977B2 (en) Wavelength division multiplexing optical demultiplexer
JPH11352341A (en) Waveguide type wavelength multiplex light transmission and reception module
JPS59198408A (en) Waveguide type optical branching device
JPH05203830A (en) Optical multiplexer demultiplexer
JP3985576B2 (en) Optical connector, optical wiring system, and optical connector manufacturing method
JP4123519B2 (en) Optical waveguide and optical multiplexer / demultiplexer
US20040086221A1 (en) Low cost, hybrid integrated dense wavelength division multiplexer/demultiplexer for fiber optical networks
US6952506B2 (en) Device for adding and dropping optical signals
JPH0567927B2 (en)
JPH11142666A (en) Optical multiplexer demultiplexer
JPH0749430A (en) Optical circuit part
JPH03291603A (en) Optical multiplexer/demultiplexer
EP0947861A1 (en) Hybrid waveguiding optical device
JPS629305A (en) Photocoupling parts
JPS63106606A (en) Optical multiplexer and demultiplexer
JP2003172806A (en) Lens element and optical parts using the same
JPS61232405A (en) Optical demultiplexer and multiplexer