JPS6333707A - Waveguide type optical multiplexer/demultiplexer - Google Patents

Waveguide type optical multiplexer/demultiplexer

Info

Publication number
JPS6333707A
JPS6333707A JP17704786A JP17704786A JPS6333707A JP S6333707 A JPS6333707 A JP S6333707A JP 17704786 A JP17704786 A JP 17704786A JP 17704786 A JP17704786 A JP 17704786A JP S6333707 A JPS6333707 A JP S6333707A
Authority
JP
Japan
Prior art keywords
optical waveguide
single mode
film filter
interference film
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17704786A
Other languages
Japanese (ja)
Inventor
Makoto Sumita
真 住田
Mitsuho Yasu
安 光保
Norio Takato
高戸 範夫
Masao Kawachi
河内 正夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP17704786A priority Critical patent/JPS6333707A/en
Publication of JPS6333707A publication Critical patent/JPS6333707A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12109Filter

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To improve the transmission characteristic by using a single mode optical waveguide as one of optical waveguides which are coupled by reflection with a wavelength selecting element between them and using a multimode optical waveguide wider than the single mode optical waveguide as the other. CONSTITUTION:The optical wave from a light emitting element 7 is propagated in a single mode optical waveguide 2 including an interference film filter 4 and is coupled to a single mode optical fiber 6. Meanwhile, the optical wave from the single mode optical fiber 6 is reflected on the interference film filter 4 and is propagated in a multimode optical waveguide 5 placed in the reflection optical path and is coupled to a light receiving element 8. The interference film filter 4 is stably fixed with a good perpendicularity because a groove part 3 for interference film filter insertion has a depth to reach the inside of a silicon substrate 1, and the optical waveguides 5 in the reflection optical path to which the emitted light from the optical fiber 6 is reflected on the interference film filter 4 is constituted with a multimode optical waveguide wider than the single mode optical waveguide 2. Thus, the work precision of the groove part for interference film filter insertion is considerably reduced, and economization and characteristics of a multiple wavelength transmission system are improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、単一モード波長多重光通信分野において不可
欠である低損失にして加工の安易な導波形光合分波器に
関するものぐある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a waveguide optical multiplexer/demultiplexer that is low loss and easy to process, which is essential in the field of single mode wavelength division multiplexing optical communications.

(従来技術・発明が解決しようとする問題点〕光合分波
器は、干渉膜フィルタ、回折格f等の波長選択素子によ
り波長の異なる光波を1本のファイバへ合流又は1本の
光ファイバを伝搬する波長の異なる光波束を各波長毎に
分流する機能を有している。波長の異なる光信号を1本
の光ファイバで伝送する波長多重伝送方式においては、
波長の異なる光信号を分離1合流する光合分波器は重要
な役割を果す。
(Prior art/problem to be solved by the invention) An optical multiplexer/demultiplexer combines light waves of different wavelengths into one fiber using a wavelength selection element such as an interference film filter or a diffraction grating f. It has the function of splitting the propagating light wave bundles with different wavelengths for each wavelength.In the wavelength division multiplexing transmission method, which transmits optical signals with different wavelengths through a single optical fiber,
An optical multiplexer/demultiplexer that separates and combines optical signals with different wavelengths plays an important role.

第8図に代表的な2波長用導波形単一モード光合分波器
の斜視図を示す。該脣波形単一七−ド光合分波器は、5
ail板1上に均一に形成した先導波膜の不要部をフォ
トリソグラフィ技術を用い除去し、図に示す単一モード
光導波路2を形成したものである。該導波形甲−七−ド
光合分波器では、単一モード光導波路の分岐部の溝部3
に位首する干渉膜フィルタ4により光波束の選択を行っ
ている。例えば、光波Aは光導波路端aから干渉膜フィ
ルタ4を透過し、光導波路喘b1.:達する。一方、光
波Bは、光導波路端すより干渉膜フィルタ4面で反則し
、光導波路端Cに達する。図に示す光合分波器では、干
渉膜フィ、ルタを介して結合する単一モード光導波路間
相互の位置関係は、フAトリソグラフィ技術により高精
度に保つことが可能である為、単一モード光導波路間の
繁雑な位置合せ作業は不用であるが、深さ70μm程度
の干渉膜フィルタ挿入用溝部へ干渉膜フィルタを安定良
く垂直性を保ち挿入固定することがきわめて困難である
FIG. 8 shows a perspective view of a typical two-wavelength waveguide single mode optical multiplexer/demultiplexer. The single waveform single 7-band optical multiplexer/demultiplexer has 5
Unnecessary portions of the leading wave film uniformly formed on the ail plate 1 are removed using photolithography to form the single mode optical waveguide 2 shown in the figure. In the waveguide type A-7 optical multiplexer/demultiplexer, the groove portion 3 of the branch portion of the single mode optical waveguide
Optical wave bundles are selected by an interference film filter 4 located at the top of the screen. For example, the light wave A passes through the interference film filter 4 from the optical waveguide end a, and the light wave A passes through the interference film filter 4 from the optical waveguide end b1. : reach. On the other hand, the light wave B is reflected by the interference film filter 4 at the end of the optical waveguide and reaches the end C of the optical waveguide. In the optical multiplexer/demultiplexer shown in the figure, the mutual positional relationship between the single mode optical waveguides that are coupled via the interference film filter can be maintained with high precision using F-A lithography technology. Although complicated positioning work between the mode optical waveguides is unnecessary, it is extremely difficult to stably insert and fix the interference film filter into the interference film filter insertion groove portion having a depth of about 70 μm while maintaining verticality.

第9図は上記問題点を解決する為、干渉膜フィルタ挿入
用溝部を機会加工することにより第8図に示す溝部の深
さよりさらに深<SL基板内に至る深さの溝部を形成し
た場合の2波長用尋波形単一′モード光合分波器の斜視
図である。第9図においては、光導波路の保護及び低損
失化の為、第8図に示ず単一モード光導波路2を光導波
路コア部の屈折率より低い石英ガラスで埋め込んでいる
。SL基板1内に至る深さの溝部3を形成することによ
り干渉膜フィルタ挿入時の安定性、垂直性は増す。
In order to solve the above problem, Fig. 9 shows a case in which a groove for inserting an interference film filter is machined to a depth deeper than the depth of the groove shown in Fig. 8 << reaching into the SL substrate. FIG. 2 is a perspective view of a two-wavelength wide waveform single mode optical multiplexer/demultiplexer. In FIG. 9, in order to protect the optical waveguide and reduce loss, the single mode optical waveguide 2, which is not shown in FIG. 8, is embedded with quartz glass whose refractive index is lower than that of the optical waveguide core. By forming the groove 3 deep enough to reach the inside of the SL substrate 1, stability and verticality when inserting the interference film filter are increased.

この際、溝部形成の位置精度が合分波特性を左右する重
要なポイントとなる。例えば第10図に示す光導波路反
射部において実線at−a2に干渉膜フィルタの反射面
が当接するように溝部を形成した時は、単一モード光導
波路Aと単一モード光導波路Bとの導波路中心相互の軸
ずれはなく高効率で2つの光導波路の結合が可能である
。一方、点線bl−b2に干渉膜フィルタの反射面が当
接するような溝部形成時は、軸ずれによる損失は避けら
れない。
At this time, the positional accuracy of groove formation is an important point that influences the multiplexing and demultiplexing characteristics. For example, when a groove is formed in the optical waveguide reflection section shown in FIG. 10 so that the reflection surface of the interference film filter is in contact with the solid line at-a2, the guide between single mode optical waveguide A and single mode optical waveguide B is There is no axis shift between the waveguide centers, and two optical waveguides can be coupled with high efficiency. On the other hand, when a groove is formed such that the reflective surface of the interference film filter comes into contact with the dotted line bl-b2, loss due to axis misalignment is unavoidable.

第11図に第10図に示す位置ずれ同xと単一モード光
導波路Aから単一モード光導波路Bに至る損失の関係を
示す。例えば、2μmの位置ずれがある場合の損失は約
0.7d[3である。現在の橢械加工による溝部形成技
術では数μm程度の位置精度で溝部を加工づ“ることt
よ困難である為、歩留の低下は避けられない。
FIG. 11 shows the relationship between the positional deviation x shown in FIG. 10 and the loss from the single mode optical waveguide A to the single mode optical waveguide B. For example, when there is a positional deviation of 2 μm, the loss is approximately 0.7 d[3. With the current groove forming technology using mechanical machining, it is not possible to machine the groove with a positional accuracy of several μm.
Since it is extremely difficult, a decrease in yield cannot be avoided.

本発明の目的は、導波形単一モード光合分波器における
加工上の困難さ及びそれに伴う損失増を改善し、伝送特
性の優れた光合分波器を捉供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an optical multiplexer/demultiplexer with excellent transmission characteristics by improving the processing difficulties and the resulting increase in loss in a waveguide single mode optical multiplexer/demultiplexer.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、導波形光合分波器の光導波路構成において、
波長選択素子を介して反射結合する光導波路の一方の光
導波路が単一モード光導波路であり、他の光導波路が単
一モード光導波路の幅より広い多モード光導波路である
ことを最も主要な特徴とする。従来の単一モード光ファ
イバ用合分波器においては、波長選択素子を介して反射
結合する2つの光導波路が共に単一モード光導波路であ
るが、本発明で警よ波長選択素子を介して反射結合する
光導波路が単一モード及び多モード光導波路から成る。
The present invention provides an optical waveguide configuration of a waveguide optical multiplexer/demultiplexer,
The most important point is that one of the optical waveguides that is reflectively coupled via a wavelength selection element is a single mode optical waveguide, and the other optical waveguide is a multimode optical waveguide whose width is wider than that of the single mode optical waveguide. Features. In a conventional single-mode optical fiber multiplexer/demultiplexer, two optical waveguides that are reflectively coupled via a wavelength selection element are both single-mode optical waveguides. The reflectively coupled optical waveguides consist of single mode and multimode optical waveguides.

その構成例を第1図に示す。第1図において、1はS−
基板、2tよ単一モード光導波路、3は機械加工により
形成した干渉膜フィルタ挿入用溝部、4は干渉膜フィル
タ(波長選択素子)、5は単一モード光導波路2のコア
幅より大きいコアを有する多モード光導波路である。
An example of its configuration is shown in FIG. In Figure 1, 1 is S-
The substrate 2t is a single mode optical waveguide, 3 is a groove for inserting an interference film filter formed by machining, 4 is an interference film filter (wavelength selection element), and 5 is a core larger than the core width of the single mode optical waveguide 2. This is a multi-mode optical waveguide.

第2図に第1図に示す導波形光合分波器の原理図を示す
。図中の斜線で示す部分は単一モード光導波路2であり
、従来の光合分波器構成を示したものである。従来構造
では、分岐部での反射損失を最小限に抑える為には光導
波路Aの光軸aと光導波路Bの光軸すを完全に一致させ
る必要がある。
FIG. 2 shows a principle diagram of the waveguide optical multiplexer/demultiplexer shown in FIG. 1. The shaded part in the figure is a single mode optical waveguide 2, which shows the configuration of a conventional optical multiplexer/demultiplexer. In the conventional structure, it is necessary to make the optical axis a of the optical waveguide A and the optical axis of the optical waveguide B completely coincide in order to minimize the reflection loss at the branching part.

この為には図に示すように機械加工により位置ずれなく
X+−X2面を作り出す必要があるが、現状の加工技術
ではほとんど困難で数μm程度のずれは生じる。一方、
反射光路に位置する光導波路Bの幅を図に示すZ+ 、
Z2まで広くした場合、すなわち光導波路の横方向を多
モード化した場合、図中の点線で示すY+−Y2面に反
射面が位置しても光導波路Bとは低損失で結合可能であ
る。
For this purpose, as shown in the figure, it is necessary to create the X+-X2 plane by machining without positional deviation, but it is difficult to do so with the current processing technology, and a deviation of about several μm occurs. on the other hand,
The width of the optical waveguide B located in the reflected optical path is shown as Z+,
When widened to Z2, that is, when the optical waveguide is made multimode in the lateral direction, it can be coupled to the optical waveguide B with low loss even if the reflective surface is located on the Y+-Y2 plane indicated by the dotted line in the figure.

〔実施例〕〔Example〕

第3図は本発明の一実施例を説明する図である。 FIG. 3 is a diagram illustrating an embodiment of the present invention.

この図において、6は単一モード光ファイバ、2は単一
モード光導波路、5は単一モード光導波路の導波路幅よ
り広い多モード光導波路、4は干渉膜フィルタ、3は干
渉膜フィルタ挿入用溝部、1はSL基板、7は発光素子
、8は受光素子である。
In this figure, 6 is a single mode optical fiber, 2 is a single mode optical waveguide, 5 is a multimode optical waveguide whose waveguide width is wider than the single mode optical waveguide, 4 is an interference film filter, and 3 is an interference film filter inserted. 1 is an SL substrate, 7 is a light emitting element, and 8 is a light receiving element.

発光素子7からの光波は、途中に干渉膜フィルタ4を含
む単一モード光導波路2中を伝搬し、単一モード光ファ
イバ6と結合する。一方単一モード光ファイバ6からの
光波は、干渉膜フィルタ4で反射し、反射光路に位置す
る多モード光導波路5中を伝搬接受光素子8と結合をな
す。この実施例では、干渉膜フィルタ挿入用溝部3がシ
リコン基板1中に至る深さまで達1ノでいるので、干渉
膜フィルタ4を垂直性良く安定に固定することが可能で
ある。又、同図において光ファイバ6からの出射光が干
渉膜フィルタ4で反射する反射光路に位置する光導波路
5の幅が単一モード光導波路2の幅より広い多モード光
導波路で構成している為、干渉膜フィルタ挿入用溝部3
の位置精度の要求条件は、従来の単一モード光導波路の
みで構成されている光合分波器に比して大幅に緩和出来
る。
The light wave from the light emitting element 7 propagates through the single mode optical waveguide 2 including the interference film filter 4 on the way, and is coupled to the single mode optical fiber 6. On the other hand, the light wave from the single mode optical fiber 6 is reflected by the interference film filter 4 and coupled to the propagation receiving/receiving element 8 through the multimode optical waveguide 5 located on the reflected optical path. In this embodiment, since the interference film filter insertion groove 3 reaches a depth of one inch into the silicon substrate 1, it is possible to stably fix the interference film filter 4 with good verticality. In addition, in the figure, the optical waveguide 5 located on the reflection optical path where the light emitted from the optical fiber 6 is reflected by the interference film filter 4 is constructed of a multimode optical waveguide whose width is wider than the width of the single mode optical waveguide 2. Therefore, the interference membrane filter insertion groove 3
The requirements for positional accuracy can be significantly relaxed compared to conventional optical multiplexer/demultiplexers that are composed of only single-mode optical waveguides.

第3図において、単一モード光ファイバ6と結合をなす
単一モード光導波路2と多モード光導波路5の結合面a
−bにおいては、この部分が先導波構造を有さず、ここ
での放射損失は不可避である。この点を改良したものが
第4図に示す実施例であり、単一モード光ファイバ6と
結合をなす単一モード光導波路2の側部と多モード光導
波路5の端部間に予め空隙を設けた後、光導波路を埋め
込み低屈折率層9を形成した構造を有している。
In FIG. 3, a coupling surface a between the single mode optical waveguide 2 and the multimode optical waveguide 5 that couples with the single mode optical fiber 6.
-b, this part does not have a leading wave structure, and radiation loss here is unavoidable. The embodiment shown in FIG. 4 is an improvement on this point, in which a gap is created in advance between the side of the single mode optical waveguide 2 and the end of the multimode optical waveguide 5, which are coupled to the single mode optical fiber 6. After the formation, the optical waveguide is embedded and a low refractive index layer 9 is formed.

その結果、単一モード光ファイバ6からの光波は、効率
良く干渉膜フィルタ面に達することが出来る。
As a result, the light waves from the single mode optical fiber 6 can efficiently reach the interference film filter surface.

一方、前述の低屈折率層9を干渉膜フィルタ4での反射
光が透過する損失は第5図に示すように低屈折率層厚を
10μm以下に設定した場合はとんど無視し得る値であ
ることがわかる。
On the other hand, the loss caused by the light reflected by the interference film filter 4 passing through the low refractive index layer 9 described above is almost negligible when the low refractive index layer thickness is set to 10 μm or less, as shown in FIG. It can be seen that it is.

第6図は第3図もしくは第4図における実施例の受光素
子と結合をなす多モード光導波路端部10を、該多モー
ド光導波路軸に対し直角に研磨し、受光素子と結合効率
上昇を図った実施例である。
FIG. 6 shows that the end portion 10 of the multimode optical waveguide that couples with the light receiving element of the embodiment shown in FIG. 3 or 4 is polished at right angles to the axis of the multimode optical waveguide to increase coupling efficiency with the light receiving element. This is an example.

受光素子の受光幅が多モード光導波路幅に比して十分大
きい時は第3図もしくは第4図の実施例により低損失な
受光素子と多モード光導波路の結合が可能である。
When the light receiving width of the light receiving element is sufficiently larger than the width of the multimode optical waveguide, it is possible to couple the light receiving element and the multimode optical waveguide with low loss using the embodiment shown in FIG. 3 or 4.

以上述べた実施例は、干渉膜フィルタの反射光路に位置
する光導波路が単一モード光導波路幅より広い多モード
光導波路からなる光合分波器であるが、単一モード光導
波路の断面積より大きく且つ比屈折率差の高い多モード
光導波路を干渉膜フィルタの反射板に配することにより
、干渉膜フィルタ面の基板上の位置及び、角度精度に対
する要求条件をより緩和することが可能である。
The embodiment described above is an optical multiplexer/demultiplexer in which the optical waveguide located in the reflection optical path of an interference film filter is a multimode optical waveguide whose width is wider than that of a single mode optical waveguide. By arranging a multimode optical waveguide that is large and has a high relative refractive index difference on the reflection plate of the interference film filter, it is possible to further relax the requirements for the position of the interference film filter surface on the substrate and the angular accuracy. .

第7図にその実施例を示す。該実施例では個別に製造し
た単一モード光導波路2と該単一モード光導波路の断面
積より大きく且つ比屈折率差の高い大コア面積高屈折率
差多モード光導波路11を基板12上ではり合せた構造
を有している。
An example is shown in FIG. In this embodiment, a single mode optical waveguide 2 and a large core area high refractive index difference multimode optical waveguide 11 having a cross-sectional area larger than that of the single mode optical waveguide and having a high relative refractive index difference are individually manufactured on a substrate 12. It has a combined structure.

〔発明の効果〕 本発明によれば、波長選択素子を介して反射結合する光
導波路の一方の光導波路幅が他の単一モード光導波路の
幅より広い多モード光導波路から構成されているため、
干渉膜フィルタ挿入用溝部の加工精度が大幅に減少し、
歩留の向上及び低損失化が可能であり、波長多種伝送方
式の経済化及び特性向上に資すること大である。
[Effects of the Invention] According to the present invention, the multimode optical waveguide is constituted by a multimode optical waveguide in which the width of one of the optical waveguides that is reflectively coupled via the wavelength selection element is wider than the width of the other single mode optical waveguide. ,
The machining accuracy of the groove for inserting the interference membrane filter has decreased significantly.
It is possible to improve yield and reduce loss, and it greatly contributes to economicalization and improved characteristics of multi-wavelength transmission systems.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による導波形光合分波器の概念図、第2
図は本発明による導波形光合分波器の原理図、第3図は
本発明の一実施例を示す斜視図、第4図は本発明の別の
実施例を示す図であって、分岐部接合部に低屈折率層を
付与した場合の実施例を示す斜視図、第5図は低屈折率
層厚と損失の関係を示す図、第6図は本発明の別の実施
例を示す図であって、多モード光導波路端面を直角に研
磨した場合の実施例を示す斜視図、第7図は本発明の別
の実施例を示す図であって、個別光導波路で構成した場
合の実施例を示す斜視図、第8図、第9図はいずれも従
来の導波形光合分波器を示す斜視図、第10図は従来の
導波形光合分波器の原理図、第11図は干渉膜フィルタ
反射面の位置ずれ量と損失との関係を示す図である。 1・・・基板C9ji板〉、2・・・単一モード光導波
路、4・・・波長選択素子(干渉膜フィルタ)、5・・
・多モード光導波路。 出願人 日本゛電信電話株式会社 第1図 第7図 A氏辰祈キ層厚、1(胚m] A文言ずれ−t、X吠U酌 第10図
Fig. 1 is a conceptual diagram of a waveguide type optical multiplexer/demultiplexer according to the present invention;
3 is a perspective view showing one embodiment of the invention, and FIG. 4 is a diagram showing another embodiment of the invention, showing the branching section. A perspective view showing an embodiment in which a low refractive index layer is provided at the joint, FIG. 5 is a diagram showing the relationship between the low refractive index layer thickness and loss, and FIG. 6 is a diagram showing another embodiment of the present invention. FIG. 7 is a perspective view showing an embodiment in which the end face of a multimode optical waveguide is polished at right angles, and FIG. 7 is a diagram showing another embodiment of the present invention, in which the end face is polished at a right angle. A perspective view showing an example, FIGS. 8 and 9 are perspective views showing a conventional waveguide optical multiplexer/demultiplexer, FIG. 10 is a principle diagram of a conventional waveguide optical multiplexer/demultiplexer, and FIG. 11 is an interference diagram. FIG. 3 is a diagram showing the relationship between the amount of positional shift of the reflective surface of the membrane filter and the loss. DESCRIPTION OF SYMBOLS 1... Substrate C9ji board>, 2... Single mode optical waveguide, 4... Wavelength selection element (interference film filter), 5...
・Multimode optical waveguide. Applicant Nippon Telegraph and Telephone Co., Ltd. Figure 1 Figure 7

Claims (1)

【特許請求の範囲】[Claims] 波長選択素子及び基板上に形成された光導波路を基本構
成要素とする光合分波回路において、波長選択素子を介
して反射結合する光導波路の一方の光導波路が単一モー
ド光導波路であり、他の光導波路が単一モード光導波路
の幅より広い多モード光導波路であることを特徴とする
導波形光合分波器。
In an optical multiplexing/demultiplexing circuit whose basic components are a wavelength selection element and an optical waveguide formed on a substrate, one of the optical waveguides that is reflectively coupled via the wavelength selection element is a single mode optical waveguide, and the other is a single mode optical waveguide. A waveguide type optical multiplexer/demultiplexer characterized in that the optical waveguide is a multimode optical waveguide whose width is wider than that of a single mode optical waveguide.
JP17704786A 1986-07-28 1986-07-28 Waveguide type optical multiplexer/demultiplexer Pending JPS6333707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17704786A JPS6333707A (en) 1986-07-28 1986-07-28 Waveguide type optical multiplexer/demultiplexer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17704786A JPS6333707A (en) 1986-07-28 1986-07-28 Waveguide type optical multiplexer/demultiplexer

Publications (1)

Publication Number Publication Date
JPS6333707A true JPS6333707A (en) 1988-02-13

Family

ID=16024207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17704786A Pending JPS6333707A (en) 1986-07-28 1986-07-28 Waveguide type optical multiplexer/demultiplexer

Country Status (1)

Country Link
JP (1) JPS6333707A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997006458A1 (en) * 1995-08-03 1997-02-20 Matsushita Electric Industrial Co., Ltd. Optical device and method of manufacturing it
EP0908746A2 (en) * 1997-10-06 1999-04-14 Fujitsu Limited Wavelength division multiplexing optical device and manufacturing method therefor
US6118915A (en) * 1997-06-30 2000-09-12 Kyocera Corporation Hybrid assembly of bulk optical elements and method of making the same
US6853776B2 (en) * 2000-10-23 2005-02-08 Nec Corporation Optical communication module and manufacturing method thereof
US6996302B2 (en) 2002-11-29 2006-02-07 Matsushita Electric Industrial Co., Ltd Optical demultiplexer, optical multi-/demultiplexer, and optical device
US7142740B2 (en) * 2004-09-09 2006-11-28 Electronics And Telecommunications Research Institute Planar lightwave circuit type optical transceiver module
US7356223B2 (en) 2005-01-19 2008-04-08 Nippon Sheet Glass Company, Limited Optical filter element and wavelength division multiplexing optical coupler

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5579403A (en) * 1978-11-29 1980-06-14 Siemens Ag Photo branch element for single mode photo wave guide and manufacture thereof
JPS59198408A (en) * 1983-04-26 1984-11-10 Nippon Telegr & Teleph Corp <Ntt> Waveguide type optical branching device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5579403A (en) * 1978-11-29 1980-06-14 Siemens Ag Photo branch element for single mode photo wave guide and manufacture thereof
JPS59198408A (en) * 1983-04-26 1984-11-10 Nippon Telegr & Teleph Corp <Ntt> Waveguide type optical branching device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997006458A1 (en) * 1995-08-03 1997-02-20 Matsushita Electric Industrial Co., Ltd. Optical device and method of manufacturing it
US6406196B1 (en) 1995-08-03 2002-06-18 Matsushita Electric Industrial Co., Ltd. Optical device and method for producing the same
US6118915A (en) * 1997-06-30 2000-09-12 Kyocera Corporation Hybrid assembly of bulk optical elements and method of making the same
EP0908746A2 (en) * 1997-10-06 1999-04-14 Fujitsu Limited Wavelength division multiplexing optical device and manufacturing method therefor
EP0908746A3 (en) * 1997-10-06 2000-02-23 Fujitsu Limited Wavelength division multiplexing optical device and manufacturing method therefor
US6085000A (en) * 1997-10-06 2000-07-04 Fujitsu Limited Wavelength division multiplexing optical device and manufacturing method therefor
US6853776B2 (en) * 2000-10-23 2005-02-08 Nec Corporation Optical communication module and manufacturing method thereof
US7140131B2 (en) 2000-10-23 2006-11-28 Nec Corporation Optical communication module and manufacturing method thereof
US6996302B2 (en) 2002-11-29 2006-02-07 Matsushita Electric Industrial Co., Ltd Optical demultiplexer, optical multi-/demultiplexer, and optical device
US7142740B2 (en) * 2004-09-09 2006-11-28 Electronics And Telecommunications Research Institute Planar lightwave circuit type optical transceiver module
US7356223B2 (en) 2005-01-19 2008-04-08 Nippon Sheet Glass Company, Limited Optical filter element and wavelength division multiplexing optical coupler

Similar Documents

Publication Publication Date Title
FI82778B (en) LJUSVAOGLEDARFOERGRENING.
JP3749652B2 (en) Optical multiplexer / demultiplexer, optical waveguide module, and optical communication device
JPH116928A (en) Arrayed waveguide grating type wavelength multiplexer /demultiplexer
JP5290534B2 (en) Optical integrated circuit and optical integrated circuit module
JPH09159851A (en) Waveguide type optical multiplexing/demultiplexing module
EP0940698A2 (en) Compact mach-zehnder interferometer and wavelength reference employing same
JP4010012B2 (en) Optical system including an optical waveguide
JPH1130759A (en) Optical fiber switch with improved positioning
US5764825A (en) Optical wavelength division multiplexer device
JPS6145801B2 (en)
JPS6333707A (en) Waveguide type optical multiplexer/demultiplexer
JP2002040284A (en) Optical fiber array device, and waveguide type multilayered light wave circuit module using the device
JPS61282803A (en) Optical multiplexing and demultiplexing device
JPS59208509A (en) Optical multiplexer for single mode
JP2002277675A (en) Optical wave circuit module
JP2000131545A (en) Optical device and optical module having optical device
JP2005049821A (en) Optical multiplexer/demultiplexer, optical integrated circuit and optical transmitter-receiver using them
US6813415B2 (en) Wavelength multiplexing/demultiplexing apparatus
JPH0234806A (en) Demultiplexer/multiplexer and its manufacture
JP2001305357A (en) Wavelength demultiplexer
JP2752848B2 (en) Manufacturing method of optical waveguide with interference filter
KR100819309B1 (en) Apparatus for Wavelength Division Multiplexing filter
JP2002182009A (en) Collimator, collimator array, and method for manufacturing the same
JP2004177882A (en) Optical waveguide device
JPS63106606A (en) Optical multiplexer and demultiplexer