JPS63205966A - Manufacture of semiconductor integrated circuit - Google Patents

Manufacture of semiconductor integrated circuit

Info

Publication number
JPS63205966A
JPS63205966A JP62039460A JP3946087A JPS63205966A JP S63205966 A JPS63205966 A JP S63205966A JP 62039460 A JP62039460 A JP 62039460A JP 3946087 A JP3946087 A JP 3946087A JP S63205966 A JPS63205966 A JP S63205966A
Authority
JP
Japan
Prior art keywords
region
type
semiconductor integrated
integrated circuit
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62039460A
Other languages
Japanese (ja)
Inventor
Kazuo Sato
和夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP62039460A priority Critical patent/JPS63205966A/en
Publication of JPS63205966A publication Critical patent/JPS63205966A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To prevent an isolation region from being spread in the transverse direction by a method wherein a p-type well region to form a MOSFET and the isolation region are formed after impurities of almost equal concentration have been diffused. CONSTITUTION:After ions of boron have been implanted into a region to form a p-type well on the surface of an n-type silicon substrate 1 and ions of phosphorus have been implanted into a region other than the region to form the p-type well, p-type well regions 6, 7 and isolation regions 3 are formed. In order to make the surface concentration of the impurities and the diffusion depth equal at the regions 6, 7, 3, the implantation volume of ions and the diffusion condition are controlled. Then, an n-channel MNOS nonvolatile storage device is formed on the surface of the region 6; an n-channel MOSFET is formed on the surface of the region 7.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はMIOS(金属−絶縁物−酸化シリコン膜−半
導体)形石揮発性記憶素子とMIS (金属−絶縁物一
半導体)形電界効果トランジスタとを備え、高集積化を
はかった半導体集積回路の製造方法に閤するものである
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an MIOS (metal-insulator-silicon oxide film-semiconductor) type volatile memory element and an MIS (metal-insulator-semiconductor) type field effect transistor. The present invention will be applied to the manufacturing method of semiconductor integrated circuits that aim at high integration.

従来の技術 LSI技術の急速な進歩に伴ない、半導体集積回路の高
性能化、高機能化が進む中で、同一チップ上にMIO3
IO3全不揮発性記憶素子た電気的書き換え可能なRO
M (EEFROM)とマイクロコンピュータなどのM
IS形電界効果トランジスタを用いた制御回路機能とを
共存させた半導体集積回路に対する要求が高まりつつあ
る。なお、MIOS形不揮発性記憶素子として、シリコ
ン基板上にトンネリング媒体となりうる薄い酸化シリコ
ン膜を形成し、その上に窒化シリコン膜を形成させ、さ
らにその上にゲート電極を形成したMNOS (金属−
窒化シリコン膜−酸化シリコン膜−半導体)構造の不揮
発性メモリトランジスタがよく用いられている。
Conventional technology With the rapid progress of LSI technology, the performance and functionality of semiconductor integrated circuits are increasing, and MIO3 on the same chip is becoming more sophisticated.
IO3 All non-volatile storage elements with electrically rewritable RO
M (EEFROM) and M such as microcomputers
There is an increasing demand for semiconductor integrated circuits that have a control circuit function using IS type field effect transistors. Note that as a MIOS type nonvolatile memory element, a thin silicon oxide film that can be used as a tunneling medium is formed on a silicon substrate, a silicon nitride film is formed on it, and a gate electrode is further formed on it.
Nonvolatile memory transistors having a silicon nitride film-silicon oxide film-semiconductor structure are often used.

また、MIS形電界効果トランジスタとしてシリコン基
板上に酸化シリコン膜を形成し、この上にゲート電極を
形成したMO3形電界効果トランジスタがよく用いられ
ている。このようなMNO8NO8全不揮発性記憶素子
るメモリ回路部と、MO3形電界効果トランシフタから
なる周辺回路部とを同一基板上に共存させた半導体集積
回路を実現するには、MNO8NO8全不揮発性記憶素
子OS形電界効果トランジスタとを電気的に分離する必
要がある。従来は第3図に示すように、n形のシリコン
基板1の上にP形のエピタキシャル層2を成長させ、前
記エピタキシャル層2内にエピタキシャル層2を貫通す
るようにn形の不純物を選択的に拡散して分離領域3を
形成し、この分離領域3で囲まれたエピタキシャル層の
第1の島領域内にMNO8形不揮発性記憶素子4を形成
し、分離領域3で囲まれたエピタキシャル層の第2の島
領域内にMO8形電界効果トランジスタ5を形成してそ
れぞれの素子を分離する製造方法がよ(知られている。
Further, as a MIS type field effect transistor, an MO3 type field effect transistor in which a silicon oxide film is formed on a silicon substrate and a gate electrode is formed thereon is often used. In order to realize a semiconductor integrated circuit in which a memory circuit section consisting of all MNO8NO8 non-volatile memory elements and a peripheral circuit section consisting of MO3 type field effect transferers coexist on the same substrate, it is necessary to It is necessary to electrically separate them from the type field effect transistor. Conventionally, as shown in FIG. 3, a P-type epitaxial layer 2 is grown on an n-type silicon substrate 1, and n-type impurities are selectively added into the epitaxial layer 2 so as to penetrate the epitaxial layer 2. An MNO8 type nonvolatile memory element 4 is formed in the first island region of the epitaxial layer surrounded by the isolation region 3, and an isolation region 3 is formed by diffusion into the epitaxial layer surrounded by the isolation region 3. A manufacturing method is well known in which the MO8 field effect transistor 5 is formed in the second island region to separate each element.

発明が解決しようとする問題点 従来の製造方法では、エピタキシャル層2の厚みとして
10〜15μmが必要なため、素子を分離する分離領域
3が非常に深い拡散層となり、それに伴い分離領域3を
形成のための横方向の拡散も非常に大きくなって、分離
領域3を形成するのに要する面積が増加し、その結果集
積度があまり上がらないといった欠点を有していた。
Problems to be Solved by the Invention In the conventional manufacturing method, the thickness of the epitaxial layer 2 is required to be 10 to 15 μm, so the isolation region 3 that separates the elements becomes a very deep diffusion layer, and accordingly, the isolation region 3 is formed. The lateral diffusion caused by the separation region 3 also becomes very large, which increases the area required to form the isolation region 3, resulting in a drawback that the degree of integration is not very high.

本発明はMTO8形不揮全不揮発性記憶素子に必要な分
離領域の面積を減少させ、高集積化をはかることを目的
とした半導体集積回路の製造方法を提供することにある
An object of the present invention is to provide a method for manufacturing a semiconductor integrated circuit, which aims to reduce the area of the isolation region necessary for an MTO8 type nonvolatile nonvolatile memory element and achieve higher integration.

問題点を解決するための手段 本発明の半導体集積回路の製造方法は、一導電形半導体
基板の表面から内部にかけて前記半導体基板と反対導電
形の第1と第2のウェル領域を形成するとともに、前記
第1と第2のウェル領域以外の領域に一導電形の不純物
を前記逆導電形の不純物とほぼ等しい不純物濃度で拡散
して分離領域を形成し、前記第1のウェル領域内にMI
OS形不揮発性記憶素子を形成し、前記第2のウェル領
域内に一導電型ののMIS形電界効果トランジスタを形
成するものである。
Means for Solving the Problems The method for manufacturing a semiconductor integrated circuit of the present invention includes forming first and second well regions of a conductivity type opposite to that of the semiconductor substrate from the surface to the inside of a semiconductor substrate of one conductivity type; An isolation region is formed by diffusing an impurity of one conductivity type in a region other than the first and second well regions at an impurity concentration substantially equal to that of the impurity of the opposite conductivity type, and an MI in the first well region is formed.
An OS type nonvolatile memory element is formed, and a MIS type field effect transistor of one conductivity type is formed in the second well region.

作用 本発明の半導体集積回路の製造方法によれば、MIO3
形不揮発性記憶素子及びMIS形電界効果トランジスタ
形成領域のウェル領域の横方向の拡散と、分離領域の横
方向の拡散が不純物濃度が互いにほぼ等しいためお互い
に打ち消し合って、横方向の拡散をほとんど無視するこ
とが可能となり、分離に必要な分離領域の面積を小さく
することができる。
According to the method for manufacturing a semiconductor integrated circuit of the present invention, MIO3
The lateral diffusion in the well region of the non-volatile memory element and MIS field effect transistor formation region and the lateral diffusion in the isolation region cancel each other out because their impurity concentrations are almost equal, and the lateral diffusion is almost completely suppressed. This allows the area of the isolation region required for isolation to be reduced.

実施例 本発明の半導体集積回路の製造方法の実施例を第1図の
断面図を参照して説明する。まず、n型シリコン基板1
の表面のP形つェル形成領域にボロンイオンを、P形つ
ェル形成領域以外にリンイオンを注入し、その後同時に
ドライブインを行い、第1と第2のP形つェル領域6と
7およびn形つェル領域の分離領域3を形成する。なお
第1と第2のP形つェル領域6と7及び分離領域3を共
に等しく不純物の表面濃度が約I X 10”c+a−
3に、拡散深さが約10μlとなるように、イオン注入
量と拡散条件をコントロールして形成する。
Embodiment An embodiment of the method for manufacturing a semiconductor integrated circuit according to the present invention will be described with reference to the sectional view of FIG. First, n-type silicon substrate 1
Boron ions are implanted into the P-type well formation region on the surface of the P-type well, and phosphorus ions are implanted into the regions other than the P-type well formation region, and then drive-in is simultaneously performed to form the first and second P-type well regions 6. 7 and an isolation region 3 of the n-type well region are formed. Note that the surface concentration of impurities in both the first and second P-type well regions 6 and 7 and the isolation region 3 is approximately I x 10"c+a-
3, the ion implantation amount and diffusion conditions are controlled so that the diffusion depth is approximately 10 μl.

このように不純物濃度を等しくすることによりP形つェ
ル領域と分離領域の横方向の拡散を相殺。
By making the impurity concentrations equal in this way, the lateral diffusion of the P-type well region and isolation region is offset.

させ、拡散による横方向への拡がりを押えることができ
る。
This makes it possible to suppress lateral spread due to diffusion.

次に、第1のP形つェル領域6の表面領域に、nチャネ
ルのMNO5形不揮発性記憶素子を、第2のP形つェル
領域7の表面領域にnチャネルのMO8形電界効果トラ
ンジスタを形成する。このMNO3形不揮発性記憶素子
を下記の方法で形成する。まずP形つェル領域6の表面
にゲート絶縁膜となる酸化シリコン膜8をMNO8形不
揮発性記憶素子のトンネリング媒体となりうるように約
20Aの厚さに形成する。さらに、酸化シリコン膜8の
上の窒化シリコン膜9を、シラン(SiH4)とアンモ
ニア(N H3)の化学反応に基づく気相成長法により
膜厚が約500Aとなるように形成する。この窒化シリ
コン膜9の上にポリシリコン膜を形成した後、リンイオ
ンを選択的にイオン注入しソース領域11とドレイン領
域12およびゲート電極10を形成する。以上によりM
NO3形不揮発性記憶素子が形成される。
Next, an n-channel MNO5 type nonvolatile memory element is placed in the surface area of the first P-type well region 6, and an n-channel MO8 type field effect element is placed in the surface area of the second P-type well region 7. Form a transistor. This MNO3 type nonvolatile memory element is formed by the following method. First, a silicon oxide film 8, which will become a gate insulating film, is formed on the surface of the P-type well region 6 to a thickness of about 20 Å so that it can serve as a tunneling medium for the MNO8 type nonvolatile memory element. Further, a silicon nitride film 9 on the silicon oxide film 8 is formed to a thickness of about 500 Å by a vapor phase growth method based on a chemical reaction between silane (SiH4) and ammonia (NH3). After forming a polysilicon film on silicon nitride film 9, phosphorus ions are selectively implanted to form source region 11, drain region 12, and gate electrode 10. Due to the above, M
A NO3 type nonvolatile memory element is formed.

第2のP形つェル領域7の表面領域に形成されるnチャ
ネルのMO3形電界効果トランジスタはP形つェル領域
7の表面にゲート絶縁膜となる酸化シリコン膜81を形
成し、この上にポリシリコン膜を形成した後、リンイオ
ンをイオン注入してソース領域11とドレイン領域12
およびゲート電極10を形成することにより形成される
。なお、M N OS形不揮発性記憶素子とMO3形電
界効果トランジスタの製造において、ゲート電極10、
ソース領域11およびドレイン領域12の形成を同時に
形成する。また酸化シリコン膜8と81の膜厚が異なる
ため形成を二度にわけて行う。
The n-channel MO3 type field effect transistor formed on the surface region of the second P-type well region 7 has a silicon oxide film 81, which becomes a gate insulating film, formed on the surface of the P-type well region 7. After forming a polysilicon film thereon, phosphorus ions are implanted to form the source region 11 and drain region 12.
and gate electrode 10. Note that in manufacturing the MNOs type nonvolatile memory element and the MO3 type field effect transistor, the gate electrode 10,
Source region 11 and drain region 12 are formed simultaneously. Furthermore, since the silicon oxide films 8 and 81 have different thicknesses, they are formed in two parts.

上述のごとき実施りIはMO3形電界効果トランジスタ
がnチャネルタイプの場合であるが、他の実施例として
第2図に示すようなCMO3(相補MO8)タイプでも
実現できる。すなわち、分離領域3であるn形のウェル
領域の表面領域に、PチャネルのMO8形電界効果トラ
ンジスタを追加することによりCMOSタイプの半導体
集積回路を形成することができる。このPチャネルのM
O3形電界効果トランジスタは、n形つェル領域の分離
領域3の表面にゲート絶縁膜となる酸化シリコン膜82
を形成し、この膜の上にリンをドープしたポリシリコン
膜を形成してゲート電極10を形成し、続いてボロンイ
オンを分離領域3に選択的にイオン注入してソース領域
13とドレイン領域14を形成することにより形成され
る。次いで、nチャネルMO8形電界効果トランジスタ
とPチャネルMO8形電界効果トランジスタを相補的に
金属配線により接続することによりCMO3回路を構成
することができる。
Although the above-mentioned embodiment I is a case where the MO3 field effect transistor is an n-channel type, it can also be realized by a CMO3 (complementary MO8) type as shown in FIG. 2 as another embodiment. That is, by adding a P-channel MO8 field effect transistor to the surface region of the n-type well region that is the isolation region 3, a CMOS type semiconductor integrated circuit can be formed. M of this P channel
The O3 type field effect transistor has a silicon oxide film 82 serving as a gate insulating film on the surface of the isolation region 3 of the n-type well region.
A polysilicon film doped with phosphorus is formed on this film to form the gate electrode 10, and then boron ions are selectively implanted into the isolation region 3 to form the source region 13 and drain region 14. is formed by forming. Next, a CMO3 circuit can be constructed by complementarily connecting the n-channel MO8 type field effect transistor and the P-channel MO8 type field effect transistor with metal wiring.

また、実施例ではMIO3形不揮発性記憶素子として、
MNO8形不揮発性記憶素子を用いた場合について述べ
たが、ゲート絶縁膜として窒化シリコン膜の代りに、例
えば酸化アルミニウム(Ae203) 、酸化タンタル
(Ta20s)等の高誘電体膜を用いてもよいことは言
うまでもない。
In addition, in the example, as an MIO3 type nonvolatile memory element,
Although we have described the case where an MNO8 type nonvolatile memory element is used, a high dielectric constant film such as aluminum oxide (Ae203) or tantalum oxide (Ta20s) may be used instead of the silicon nitride film as the gate insulating film. Needless to say.

発明の効果 本発明の半導体集積回路の製造方法によれば、MIO3
形不揮発性記憶素子及び周辺回路を構成するMO8形電
界効果トランジスタを形成するP形つェル領域とこれら
を分離させる分離領域とをほぼ等しい濃度の不純物を拡
散して形成するため、分離領域の構法がりがおさえられ
てMIOS形不揮発性記憶素子の分離に必要な面積を大
幅に減少させることができ、高集積化が可能となる。
Effects of the Invention According to the method for manufacturing a semiconductor integrated circuit of the present invention, MIO3
In order to form the P-type well region forming the MO8-type field effect transistor constituting the non-volatile memory element and the peripheral circuit, and the isolation region separating them, by diffusing impurities at approximately the same concentration, the isolation region is Since the construction method is suppressed, the area required for separating the MIOS type nonvolatile memory elements can be significantly reduced, and high integration becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の半導体集積回路の製造方法
の実施例を示す断面図、第3図は従来の半導体集積回路
の製造方法を示す断面図である。 1・・・・・・n形シリコン基板、3・・・・・・分離
領域、6・・・・・・第1のP形つェル領域、7・・・
・・・第2のP形つェル領域、8,81.82・・・・
・・酸化シリコン膜、9・・・・・・窒化シリコン膜、
10・・・・・・ゲート電極、11.13・・・・・・
ソース領域、12.14・・・・・・ドレイン領域。 代理人の氏名 弁理士 中尾敏男 はが1名/ −n*
シリコン墓ス反 ど−−P形工ごタキシイ2νI J−々ト蔦l々負1ヘ トランジズク
1 and 2 are cross-sectional views showing an embodiment of the method for manufacturing a semiconductor integrated circuit according to the present invention, and FIG. 3 is a cross-sectional view showing a conventional method for manufacturing a semiconductor integrated circuit. DESCRIPTION OF SYMBOLS 1... N-type silicon substrate, 3... Separation region, 6... First P-type well region, 7...
...Second P-shaped well region, 8,81.82...
...Silicon oxide film, 9...Silicon nitride film,
10...Gate electrode, 11.13...
Source region, 12.14...Drain region. Name of agent: Patent attorney Toshio Nakao 1 person/-n*
Silicon Grave Scrap--P Shape Taxi 2νI J--to Ivy-1 Negative 1 Hetranzizuku

Claims (3)

【特許請求の範囲】[Claims] (1)一導電形の半導体基板の表面から同半導体基板と
は逆導電形の不純物を拡散して第1と第2のウェル領域
を形成するとともに前記第1と第2のウェル形成領域以
外の領域に一導電形の不純物を前記逆導電形の不純物と
ほぼ等しい不純物濃度で拡散して分離領域を形成し、前
記第1のウェル領域内にMIOS形不揮発性記憶素子を
形成し、前記第2のウェル領域内に一導電形のMIS形
電界効果トランジスタを形成したことを特徴とする半導
体集積回路の製造方法。
(1) Diffusing impurities of a conductivity type opposite to that of the semiconductor substrate from the surface of a semiconductor substrate of one conductivity type to form first and second well regions, and to form regions other than the first and second well formation regions. an isolation region is formed by diffusing an impurity of one conductivity type into the region at an impurity concentration substantially equal to that of the impurity of the opposite conductivity type; a MIOS type nonvolatile memory element is formed in the first well region; 1. A method of manufacturing a semiconductor integrated circuit, characterized in that a MIS field effect transistor of one conductivity type is formed in a well region of a semiconductor integrated circuit.
(2)分離領域内に半導体基板とは逆導電形のMIS形
電界効果トランジスタを形成したことを特徴とする特許
請求の範囲第1項に記載の半導体集積回路の製造方法。
(2) A method for manufacturing a semiconductor integrated circuit according to claim 1, characterized in that a MIS field effect transistor of a conductivity type opposite to that of the semiconductor substrate is formed in the isolation region.
(3)MIOS形不揮発性記憶素子がMNOS(金属−
窒化シリコン膜−酸化シリコン膜−半導体)形不揮発性
記憶素子であることを特徴とする特許請求の範囲第1項
に記載の半導体集積回路の製造方法。
(3) MIOS type nonvolatile memory element is MNOS (metal-
2. The method of manufacturing a semiconductor integrated circuit according to claim 1, wherein the nonvolatile memory element is a silicon nitride film-silicon oxide film-semiconductor type.
JP62039460A 1987-02-23 1987-02-23 Manufacture of semiconductor integrated circuit Pending JPS63205966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62039460A JPS63205966A (en) 1987-02-23 1987-02-23 Manufacture of semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62039460A JPS63205966A (en) 1987-02-23 1987-02-23 Manufacture of semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPS63205966A true JPS63205966A (en) 1988-08-25

Family

ID=12553657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62039460A Pending JPS63205966A (en) 1987-02-23 1987-02-23 Manufacture of semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS63205966A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0279464A (en) * 1988-09-14 1990-03-20 Mitsubishi Electric Corp Semiconductor memory and manufacture thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54161893A (en) * 1978-06-13 1979-12-21 Toshiba Corp Semiconductor device
JPS6038856A (en) * 1983-08-12 1985-02-28 Hitachi Ltd Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54161893A (en) * 1978-06-13 1979-12-21 Toshiba Corp Semiconductor device
JPS6038856A (en) * 1983-08-12 1985-02-28 Hitachi Ltd Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0279464A (en) * 1988-09-14 1990-03-20 Mitsubishi Electric Corp Semiconductor memory and manufacture thereof

Similar Documents

Publication Publication Date Title
US5970338A (en) Method of producing an EEPROM semiconductor structure
JP2002026139A (en) Semiconductor device and manufacturing method therefor
JPS60134466A (en) Semiconductor device and manufacture thereof
JP2795259B2 (en) Semiconductor device and manufacturing method thereof
JPH0712058B2 (en) Semiconductor device and manufacturing method thereof
JPS63205966A (en) Manufacture of semiconductor integrated circuit
JP3744438B2 (en) Semiconductor device
JPH0831539B2 (en) Non-volatile memory manufacturing method
JPS63102370A (en) Semiconductor device
JPS6159672B2 (en)
JPS62131581A (en) Manufacture of semiconductor device
US7312493B2 (en) Semiconductor device and method of manufacturing the same
JPH0715938B2 (en) Semiconductor device and manufacturing method thereof
JPS61124165A (en) Manufacture of semiconductor device
JPS63128626A (en) Method of forming contact of semiconductor integrated circuit device
JPH0221648A (en) Semiconductor device and manufacture thereof
JPH07221300A (en) Manufacture of semiconductor device
JPS62109364A (en) Manufacture of semiconductor device
JPS62281463A (en) Manufacture of integrated circuit device
JPS63102371A (en) Manufacture of semiconductor device
JPS62234365A (en) Manufacture of semiconductor device
JPH06151453A (en) High-withstand voltage transistor and its manufacture
JPS63157464A (en) Semiconductor device
JPH0330307B2 (en)
JPH03167875A (en) Semiconductor memory device