JPS61124165A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS61124165A
JPS61124165A JP59245234A JP24523484A JPS61124165A JP S61124165 A JPS61124165 A JP S61124165A JP 59245234 A JP59245234 A JP 59245234A JP 24523484 A JP24523484 A JP 24523484A JP S61124165 A JPS61124165 A JP S61124165A
Authority
JP
Japan
Prior art keywords
type
layer
epitaxial layer
forming
buried
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59245234A
Other languages
Japanese (ja)
Inventor
Takeshi Fukutomi
福富 毅
Kazuo Sato
和夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP59245234A priority Critical patent/JPS61124165A/en
Publication of JPS61124165A publication Critical patent/JPS61124165A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS

Abstract

PURPOSE:To integrate and to reduce a latchup by forming a conductive type well region to oppose from the surface of the second separate epitaxial layer to the third buried diffused region, and forming a MIS field effect transistor in the second layer. CONSTITUTION:An N type buried layer 2 and a P type buried layer 3 are formed in an N type silicon substrate 1, a P type epitaxial layer 4 is grown, an N type deep diffused layer 5 is diffused, and separated into the first separate epitaxial layer 6 and the second epitaxial layer 7. Further, an N type well layer 8 is formed from the surface of the layer 7 onto the layer 3. P type boron ions are implanted to the regions of source 17 and drain 18. N type phosphorous ions are implanted to the regions of the source 20 and the drain 21 of an N- channel MNOS memory transistor, an interlayer insulating film is then formed, a contacting hole, metal wiring layer and a protective film are formed to form a CMOS circuit. Thus, the separating diffusing depth from the epitaxial layer can be formed to be shallow, the lateral diffusion is suppressed, and the integration of the memory is improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は金属−絶縁物一半導体(以下MISという)型
不揮発性記憶素子を備えた半導体装置の高集積化と高性
能化をはかることのできる製造方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to the manufacture of semiconductor devices with a metal-insulator-semiconductor (hereinafter referred to as MIS) type nonvolatile memory element that can achieve higher integration and higher performance. It is about the method.

従来の技術 LSI技術の進歩に伴い、半導体集積回路の高性能化、
高機能化が進む中で、同一チップ上にMIS型不揮発性
素子を用いた電気的書き換え可能なROM(1!:EF
ROM)とマイクロコンピュータ彦どの制御回路機能を
共存させるデバイスに対する要求が高まりつつある。例
えばMIS形不揮発性記憶素子の一つとして薄い酸化シ
リコン膜上に窒化シリコン膜を形成させ、その上に金属
電極を形成したMNOS(金属−窒化シリコン膜−酸化
シリコン膜−半導体)構造の不揮発性メモリトランジス
タがよく知られているが、とのMNOSメモリトランジ
スタを用いたメモリ回路部と、こ3ページ のメモリ回路をコントローL )vする制御回路を同一
チップに共存させたMNOSメモリ内蔵1チツプマイク
ロコンピユータの必要性が高t、bつつある。
Conventional technologyWith the advancement of LSI technology, the performance of semiconductor integrated circuits has improved,
As functionality continues to advance, electrically rewritable ROM (1!: EF
There is an increasing demand for a device that can coexist with control circuit functions such as a ROM (ROM) and a microcomputer. For example, as an MIS type nonvolatile memory element, a nonvolatile MNOS (metal-silicon nitride film-silicon oxide film-semiconductor) structure in which a silicon nitride film is formed on a thin silicon oxide film and a metal electrode is formed on top of the silicon nitride film is used. Memory transistors are well known, and a 1-chip microcontroller with built-in MNOS memory coexists on the same chip with a memory circuit section using MNOS memory transistors and a control circuit that controls the memory circuit shown on page 3. The need for computers is increasing.

このようなMIS型不型金揮発性記憶素子なるメモリ回
路部と、MIS型電界効果トランジスタからなる周辺回
路部を同一基板上に共存させた半導体装置においてはメ
モリ以外の周辺回路を同一チップ上に集積するので、チ
ップの消費電力が増加し、このためチップの温度上昇が
起り、同一チップ上に共存させた不揮発性メモリトラン
ジスタの記憶保持特性に悪影響を与え、これを防ぐため
周辺回路部はできるだけ低消費電力化が可能なcMos
(相補MO8)化される。
In a semiconductor device in which a memory circuit section consisting of an MIS-type non-type gold volatile memory element and a peripheral circuit section consisting of an MIS-type field effect transistor coexist on the same substrate, the peripheral circuits other than the memory are placed on the same chip. Due to integration, the power consumption of the chip increases, which causes the temperature of the chip to rise, which adversely affects the memory retention characteristics of the nonvolatile memory transistors coexisting on the same chip.To prevent this, the peripheral circuitry should be designed as much as possible. cMos enables low power consumption
(complementary MO8).

発明が解決しようとする問題点 上記のように、不揮発性記憶素子と0M03回路を同一
チップ上に共存させた半導体装置において、近年、シス
テムの規模が大きくなるに伴い、高集積化、高性能化の
要求が高まりつつあシ、このような要求を実現するため
には、メモリ回路部及びCMO8回路部の寸法微細化が
必要となってきた。しかし、従来の不揮発性記憶素子及
び0M08回路を同一チップに共存させた半導体装置で
は、0MO8のウェル領域の空乏層と基板の空乏層が接
近して、ウェル領域と基板とが同電位とならないように
するために、エピタキシャル層の厚み全十分厚くする必
要(通常16μm程度)があるが、エヒリキシャル層を
厚くすることは、メモリ回路部の分離に要する面積を増
加させ、その結果メモリ回路部の高集積化が困難となる
。一方cMosu路は寸法微細化と共に、ラッチアップ
現象が起りやすくなり、従来の(3MO8集積回路にお
いては、ラッチアップの防止策としてガートバンドを設
ける構造が用いられている。これは横方向の寄生サイリ
スタが動作するのを防ごうとするものでおるが、微細化
が進みメモリ回路部の集積度を高くするためエピタキシ
ャル層を薄くすると、CMO8回路部の縦方向の寄生サ
イリスタが動作しやすくなり、これを防止する必要があ
る。
Problems to be Solved by the Invention As mentioned above, in semiconductor devices in which a nonvolatile memory element and an 0M03 circuit coexist on the same chip, in recent years, as the scale of the system has increased, higher integration and higher performance have been required. In order to meet these demands, it has become necessary to miniaturize the dimensions of the memory circuit section and the CMO8 circuit section. However, in a semiconductor device in which a conventional nonvolatile memory element and a 0M08 circuit coexist on the same chip, the depletion layer of the 0M08 well region and the depletion layer of the substrate become close to each other, so that the well region and the substrate do not have the same potential. In order to achieve this, it is necessary to make the total thickness of the epitaxial layer sufficiently thick (usually about 16 μm), but increasing the thickness of the epitaxial layer increases the area required for separating the memory circuit section, resulting in an increase in the height of the memory circuit section. Integration becomes difficult. On the other hand, with the miniaturization of dimensions, cMosu paths become more susceptible to latch-up phenomena, and in conventional (3MO8 integrated circuits) a structure in which a guard band is provided is used as a measure to prevent latch-up. However, as miniaturization progresses and the epitaxial layer is made thinner to increase the degree of integration of the memory circuit, the parasitic thyristors in the vertical direction of the CMO8 circuit become more likely to operate. It is necessary to prevent this.

従って、不揮発性記憶素子及び0M08回路を同一チッ
プに共存させた半導体装置の高集積化、高性能化には、
エピタキシャル層を薄くすると同時に、ラッチアップに
対する対策が必要となってきた。
Therefore, in order to increase the integration and performance of semiconductor devices in which non-volatile memory elements and 0M08 circuits coexist on the same chip,
At the same time as making the epitaxial layer thinner, it has become necessary to take measures against latch-up.

本発明は上記問題点に鑑みてなされたものでMIS型不
型金揮発性記憶素子0M03回路を同一チップ上に共存
させた半導体装置において、高集積化を図り、またラッ
チアップの低減を図ることを目的とした半導体装置の製
造方法を提供するものである。
The present invention has been made in view of the above problems, and an object thereof is to achieve high integration and reduce latch-up in a semiconductor device in which MIS type non-type gold volatile memory element 0M03 circuit coexists on the same chip. The present invention provides a method for manufacturing a semiconductor device for the purpose of.

問題点を解決するだめの手段 本発明は、上記目的を達成するために、−導電型半導体
基板に同一導電型の第1.第2の埋め込み拡散領域およ
び反対導電型の第3の埋め込み拡散領域を形成する工程
、前記基板上に反対導電型のエピタキシャル層を形成し
、前記エピタキシャル層表面から前記第1.第2の埋め
込み拡散領域に達する同一導電型の第1.第2の拡散領
域により分離された第1.第2の分離エピタキシャル層
を形成する工程、前記第1の分離エピタキシャル層にM
IS型不型金揮発性記憶素子成する工程、6ページ 前記第2の分離エピタキシャル層の表面から前記第3の
埋め込み拡散領域に対向するように前記基板と同−同導
電型のウェル領域を形成し、同ウェル領域および同ウェ
ル領域以外の前記第2の分離エピタキシャル層に、それ
ぞれ相補対の各MIS型電界効果Fフンジスタを形成す
る工程とをそなえたものである。
Means for Solving the Problems In order to achieve the above object, the present invention provides a first semiconductor substrate of the same conductivity type on a -conductivity type semiconductor substrate. forming a second buried diffusion region and a third buried diffusion region of opposite conductivity type, forming an epitaxial layer of opposite conductivity type on the substrate, starting from the surface of the epitaxial layer to the first buried diffusion region; The first . of the same conductivity type reaching the second buried diffusion region. A first . separated by a second diffusion region. forming a second isolated epitaxial layer;
Step of forming IS type non-type gold volatile memory element, page 6 Forming a well region of the same conductivity type as the substrate so as to face the third buried diffusion region from the surface of the second isolation epitaxial layer. The method further includes a step of forming complementary pairs of MIS type field effect F fungistors in the same well region and in the second isolated epitaxial layer in areas other than the well region.

作用 上記構成によシ、エピタキシャル層を基板と同導電型の
拡散層により分離する際、あらかじめ分離すべき領域に
埋め込み層を形成するためエヒリキシャル層の土からの
分離拡散深さを浅くすることができ、横方向の拡散が抑
えられメモIJ )ランジスタの分離に要する面積を小
さくすることができるためメモリ部の集積度を向上でき
、又、基板と同導電型ウェル層の下部に反対導電型の埋
め込み層を形成しているため、エピタキシャル層を薄く
しても、ウニ1層の空乏層と基板の空乏層とが接近して
同電位となることを防ぐ半導体装置の製造方法となる。
Effects According to the above structure, when the epitaxial layer is separated by the diffusion layer of the same conductivity type as the substrate, the depth of separation and diffusion of the epitaxial layer from the soil can be made shallow in order to form a buried layer in the region to be separated in advance. The area required to separate the transistors can be reduced, which improves the degree of integration of the memory section. Since a buried layer is formed, even if the epitaxial layer is thinned, the method of manufacturing a semiconductor device prevents the depletion layer of the single layer and the depletion layer of the substrate from coming close to each other and having the same potential.

76−7・ 実施例 以下、具体的な実施例を図面を用いて説明する。76-7・ Example Hereinafter, specific examples will be described using the drawings.

第1図(a)〜(flは、本発明の製造方法の一実施例
を工程順に半導体装置の断面構造で示す図である。
FIGS. 1A to 1F are diagrams showing a cross-sectional structure of a semiconductor device in the order of steps in an embodiment of the manufacturing method of the present invention.

第1図(&)において、n型シリコン基板1にn型埋め
込み層2とp型埋め込み層3を酸化膜をマスクとした不
純物拡散技術により形成する。なお、n型埋め込み層2
は後述のエピタキシャル層4を島状分離する領域に形成
し、p型埋め込み層3は後述n型ウェル層8の領域に形
成する。次いで前記基板1にジクロルシラン(8iH2
C71z)の熱分解を利用してp型エピタキシャル層4
を成長させる。
In FIG. 1(&), an n-type buried layer 2 and a p-type buried layer 3 are formed on an n-type silicon substrate 1 by an impurity diffusion technique using an oxide film as a mask. Note that the n-type buried layer 2
is formed in a region where an epitaxial layer 4, which will be described later, is separated into islands, and a p-type buried layer 3 is formed in a region where an n-type well layer 8, which will be described later, is formed. Next, dichlorosilane (8iH2
P-type epitaxial layer 4 is formed using thermal decomposition of C71z).
grow.

この実施例においては、n型シリコン基板1の不純物濃
度として1×1015CF3程度とし、p型エピタキシ
ャル層4は、ポロンを不純物として1×1015(1m
’−’程度の濃度として、厚さを7μmとした。次に第
1図(b)に示す様に、エピタキシャル層4にn型の深
い拡散層5を、n型埋め込み層2と同じ領域に酸化膜を
マスクとした不純物拡散技術により拡散し、第1の分離
エピタキシャル層6、及び第2の分離エピタキシャル層
7に分離する。
In this embodiment, the impurity concentration of the n-type silicon substrate 1 is approximately 1×10 15 CF3, and the p-type epitaxial layer 4 is formed with poron as an impurity of 1×10 15 (1 m
The thickness was set to 7 μm for a concentration of '-'. Next, as shown in FIG. 1(b), an n-type deep diffusion layer 5 is diffused into the epitaxial layer 4 in the same region as the n-type buried layer 2 by an impurity diffusion technique using an oxide film as a mask. is separated into an isolated epitaxial layer 6 and a second isolated epitaxial layer 7.

さらに第2の分離エピタキシャル層7の表面からp型埋
め込み層3の上に位置するようにイオン注入技術及び熱
拡散技術を利用してn型のウェル層8を形成する。本実
施例では、n型ウェル層8の不純物表面濃度を1×10
cm 程度とし、拡散深さは約6μmとした。さらに、
n型拡散層5を形成するに当り、n型埋め込み層2が上
部にも拡散するのでn型拡散層6とn型埋め込み層2が
オーバーラツプするようにn型ウェル層8の形成におけ
る熱処理条件をも合せて制御し形成する。次に、第1図
(Q)に示す様に、窒化シリコン膜をマスクに用いた選
択酸化(Locos)技術を利用したフィールド酸化膜
9により素子分離を施す。その後、窒化シリコン膜及び
保護酸化膜を除去し、後述MO8)ランジスタを形成す
る部分でのゲート絶縁膜13.15を形成した後、分離
エピタキシャル層6のnチャンネル型のMNO8型不揮
発性メモリトランジスタを形成する部分のゲート絶縁膜
をリソグラフィ技術及びエツチング技術を用96−ゾ いて除去する。本実施例では、保護酸化膜500人、窒
化シリコン膜12oO人として、フィールド酸化膜厚を
1μm程度とし、さらにゲート絶縁膜として酸化シリコ
ン膜を用い、膜厚を1000人程程度した。次いで第1
図(d)に示す様に、nチャンネ)V型のMNO5型不
揮発性メモリトランジスタを形成する部分のゲート絶縁
膜である酸化シリコン膜、窒化シリコン膜、そしてゲー
ト電極層を成長した後、リソグラフィ技術およびエツチ
ング技術を用いてMNO8型メモリトランジスタおよび
MO8型トランジスタのゲートとなる部分、さらに配線
となる部分を除いてゲート電極層を除去し、さらに窒化
シリコン膜を除去する。分離エピタキシャル層6のMN
O8型不揮発性メモリトランジスタを形成する部分は、
ゲート絶縁膜である酸化シリコン膜10.窒化シリコン
膜11上にゲート電極12を設け、n型ウェル層8にp
チャンネル型のMO8型トランジスタを形成する部分は
、ゲート絶縁膜である酸化シリコン膜13上にゲート電
極14を設け、また分離エヒリキシャル10、、。
Furthermore, an n-type well layer 8 is formed from the surface of the second isolation epitaxial layer 7 to be located above the p-type buried layer 3 using ion implantation technology and thermal diffusion technology. In this example, the impurity surface concentration of the n-type well layer 8 is set to 1×10
cm, and the diffusion depth was approximately 6 μm. moreover,
When forming the n-type diffusion layer 5, the heat treatment conditions for forming the n-type well layer 8 are adjusted so that the n-type diffusion layer 6 and the n-type buried layer 2 overlap because the n-type buried layer 2 is also diffused in the upper part. It is also controlled and formed. Next, as shown in FIG. 1(Q), device isolation is performed using a field oxide film 9 using a selective oxidation (Locos) technique using a silicon nitride film as a mask. Thereafter, the silicon nitride film and the protective oxide film are removed, and a gate insulating film 13.15 is formed in a portion where a MO8 transistor (to be described later) will be formed. The portion of the gate insulating film to be formed is removed using lithography and etching techniques. In this example, a protective oxide film of 500 layers and a silicon nitride film of 12 layers were used, the field oxide film thickness was about 1 μm, and a silicon oxide film was used as a gate insulating film, and the film thickness was about 1000 layers. Then the first
As shown in Figure (d), after growing a silicon oxide film, a silicon nitride film, and a gate electrode layer, which are the gate insulating films of the part that forms an n-channel) V-type MNO5 type nonvolatile memory transistor, the lithography process is performed. Then, using an etching technique, the gate electrode layer is removed except for the portions that will become the gates of the MNO8 type memory transistor and the MO8 type transistor, and the portions that will be used as wiring, and the silicon nitride film is also removed. MN of isolation epitaxial layer 6
The part forming the O8 type nonvolatile memory transistor is
Silicon oxide film 10 which is a gate insulating film. A gate electrode 12 is provided on the silicon nitride film 11, and a p-type electrode is provided on the n-type well layer 8.
In a portion where a channel type MO8 type transistor is formed, a gate electrode 14 is provided on a silicon oxide film 13 which is a gate insulating film, and an isolation layer 10 is formed.

層7のn型ウェル層8以外で、nチャンネル型のMO8
型トランジスタを形成する部分は、ゲート絶縁膜である
酸化シリコン膜16上にゲート電極16を設けている。
Except for the n-type well layer 8 of layer 7, n-channel type MO8
In a portion where a type transistor is to be formed, a gate electrode 16 is provided on a silicon oxide film 16 which is a gate insulating film.

本実施例では酸化シリコン膜10ii101i型メモリ
トランジスタのトンネリング媒体となりうるように膜厚
を20人程度とした。さらに酸化シリコン膜1o上の窒
化シリコン膜11としてシラン(5iH4)とアンモニ
ア(NHs)の化学反応に基く気相成長法により約50
0人形成させ、ゲート電極12,14.16として多結
晶シリコン膜の金属電極を用い、膜厚を4000人程度
程度た。また、MO8型トランジスタを形成する部分で
の酸化シリコン膜13.15の膜厚を1000人とした
In this embodiment, the thickness of the silicon oxide film was set to about 20 so that it could serve as a tunneling medium for a 10ii101i type memory transistor. Furthermore, a silicon nitride film 11 on the silicon oxide film 1o is formed using a vapor phase growth method based on a chemical reaction between silane (5iH4) and ammonia (NHs).
The gate electrodes 12, 14, and 16 were made of metal electrodes made of polycrystalline silicon, and the film thickness was about 4,000. Further, the thickness of the silicon oxide film 13.15 in the portion where the MO8 type transistor is formed was set to 1000.

次に第1図(6)に示す様に、リソグラフィ技術および
セルファライン技術を用いてP型不純物のイオン注入を
n型ウェル層8のpチャンネ/L/MO8型トランジス
タのソース17.ドレイン18領域に施し、さらに、分
離エピタキシャル層7のn型ウェル層8以外のnチャン
ネルMO8)ランジス114−ツ タを形成する周辺にガードパント19としてp型不純物
のイオン注入を施す。
Next, as shown in FIG. 1(6), P-type impurity ions are implanted into the source 17 of the p-channel/L/MO8 type transistor in the n-type well layer 8 using lithography technology and self-line technology. This is applied to the drain 18 region, and further, p-type impurity ion implantation is performed as a guard punt 19 around the area where the n-channel MO8) rungis 114-ivy other than the n-type well layer 8 of the isolation epitaxial layer 7 is formed.

次に、第1図(flに示すように、リソグラフィ技術お
よびセルファライン技術を用いてn型不純物のイオン注
入を分離エピタキシャル層6のnチャンネルMNO8型
メモリトランジスタのソース20、ドレイン21領域お
よび分離エピタキシャル層7のnウェル層8以外のnチ
ャンネルMOSトランジスタのソース22.ドレイン2
3領域に施す。さらに、分離エピタキシャル層7のn型
ウェル層8の周辺にガートバンド24としてn型不純物
のイオン注入を施す。本実施例では、pチャンネルMO
Sトランジスタのソース17.ドレイン18およびガー
トバンド19の領域にp型不純物としてホウ素イオン(
B)を施した。又、nチヤツキ)vMNO8型メモリト
メモリトランジスタ20、ドレイン21、MOS)ラン
ジスタのソース22.ドレイン23およびガートバンド
24の領域にn型不純物としてリンイオン(P+)を施
した。次に層間絶縁膜を施し、nチヤツキ/l/MOS
トランジスタとpチャンネ/l/MO5)ランジスタを
相補的に接続するごとく、気相成長技術、リソグラフィ
技術およびエツチング技術を用いてコンタクト孔、金属
配線層および保護膜の形成を行うことで不揮発性記憶素
子を備えた0M08回路を構成することができる。
Next, as shown in FIG. Source 22 and drain 2 of n-channel MOS transistors other than n-well layer 8 in layer 7
Apply to 3 areas. Furthermore, n-type impurity ions are implanted around the n-type well layer 8 of the isolation epitaxial layer 7 to form a guard band 24 . In this embodiment, p-channel MO
Source of S transistor 17. Boron ions (
B) was applied. Also, the n-channel) vMNO8 type memorite memory transistor 20, drain 21, the source 22 of the MOS) transistor. Phosphorus ions (P+) were applied as an n-type impurity to the drain 23 and guard band 24 regions. Next, an interlayer insulating film is applied, and n-chip/l/MOS
A nonvolatile memory element is created by forming contact holes, metal wiring layers, and protective films using vapor phase growth technology, lithography technology, and etching technology to complementarily connect transistors and p-channel/l/MO5) transistors. It is possible to configure an 0M08 circuit with

なお本実施例ではMIS型不揮発性記憶素子としてMH
O8型不揮型性揮発性メモリトランジスタた場合につい
て述べたが、ゲート絶縁膜として窒化シリコン膜の代り
に、例えば酸化アルミニウム(”120s ) +酸化
タンタ/L/ (Ta20B )等の高誘電体膜を用い
てもよいことはいうまでもない。
In this example, MH is used as the MIS type nonvolatile memory element.
We have described the case of an O8 type non-volatile volatile memory transistor, but instead of a silicon nitride film as the gate insulating film, a high dielectric constant film such as aluminum oxide (120s) + tanta oxide/L/(Ta20B) is used as the gate insulating film. It goes without saying that you may also use

第2図は本発明の半導体装置の0M08部の寄生トラン
ジスタの等価回路を示したものであり、この図において
25は、寄生NPN )ランジスタ、26ti寄生N 
P N )ランジスタのベース、エミッタ間抵抗、27
は寄生PNP )ランジスタを示す。
FIG. 2 shows an equivalent circuit of the parasitic transistor in the 0M08 section of the semiconductor device of the present invention. In this figure, 25 is a parasitic NPN transistor; 26ti is a parasitic NPN transistor;
P N ) Resistance between base and emitter of transistor, 27
indicates a parasitic PNP transistor.

本実施例の構造においては、MOS)ランジスタの下に
p型埋め込み層が存在しており、寄生111PNトラン
ジスタのベース領域は不純物濃度の高い構13、−ッ 造となっておシ、寄生トランジスタの1lfeは低く抑
えられている。さらにp型埋め込み層は寄生)JP)i
 )ランジスタのベース、エミッタ間抵抗26を下げ寄
生NPN)ランジスタを動作しにくくしている。
In the structure of this example, a p-type buried layer exists under the MOS transistor, and the base region of the parasitic 111PN transistor has a structure with a high impurity concentration. 1lfe is kept low. Furthermore, the p-type buried layer is parasitic)JP)i
) The resistance 26 between the base and emitter of the transistor is lowered to make the parasitic NPN transistor difficult to operate.

以上のように本実施例のごとき構造によれば、MIS型
不揮発性記憶素子および0M08回路の双方を備えた半
導体装置の微細化とラッチアップの低減が可能となり、
高集積化、高性能化に大きく寄与するものである。
As described above, according to the structure of this embodiment, it is possible to miniaturize a semiconductor device equipped with both an MIS type nonvolatile memory element and an 0M08 circuit, and to reduce latch-up.
This greatly contributes to higher integration and higher performance.

発明の効果 以上のような方法で得られた半導体装置の構造では、エ
ピタキシャル層を基板と同導電型の拡散層により分離す
る際、あらかじめ分離すべき領域に埋め込み層を形成し
ているため、エピタキシャル層の上からの分離拡散深さ
を浅くすることができ、横方向の拡散が抑えられ、メモ
リトランジスタの分離に要する面積を小さくすることが
でき、メモリ部の集積度を向上させることが可能となっ
た。また、本発明の構造では、nウェル層の下にp型埋
め込み層を形成しているため、エピタキシャル層を薄く
しても、n型ウェル層の空乏層とp型基板との空乏層が
接近して同電位となることを防ぐことが可能となった。
Effects of the Invention In the structure of a semiconductor device obtained by the method described above, when the epitaxial layer is separated by a diffusion layer of the same conductivity type as the substrate, a buried layer is formed in advance in the region to be separated, so that the epitaxial The depth of isolation diffusion from the top of the layer can be made shallow, lateral diffusion can be suppressed, the area required for separating memory transistors can be reduced, and the degree of integration of the memory section can be improved. became. In addition, in the structure of the present invention, since the p-type buried layer is formed under the n-well layer, even if the epitaxial layer is thinned, the depletion layer of the n-type well layer and the depletion layer of the p-type substrate are close to each other. This makes it possible to prevent the potential from becoming the same.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(&)〜(0は本発明の一実施例である半導体装
置の製造方法を示す工程順構造断面図、第2図は本発明
の詳細な説明するための図である。 1・・・・・・n型シリコン基板、2・・・・・・n型
埋め込み層、3・・・・・・p型埋め込み層、4・・・
・・・p型エピタキシャル層、6・・・・・・n型拡散
層、6.7・・・・・・分離エピタキシャル層、8・山
・・n型ウェル層、9・・・・・・フィールド酸化膜、
1o・・川・酸化シリコン膜、11・・・・・・窒化シ
リコン膜、12,14.16・・・・・・ゲート電極、
13.15・・・・・・酸化シリコン膜、17゜18・
・・・・・ソースおよびドレイン、19・・・・・・p
型拡散層、20.21・・・・・・ソースおよびドレイ
ン、22.23・・川・ソースおよびドレイン、24・
・川・n型拡散層。
FIGS. 1(&) to (0) are cross-sectional views showing a process order structure of a method for manufacturing a semiconductor device according to an embodiment of the present invention, and FIG. 2 is a diagram for explaining the present invention in detail. 1. ...N-type silicon substrate, 2...N-type buried layer, 3...P-type buried layer, 4...
...p-type epitaxial layer, 6...n-type diffusion layer, 6.7...separation epitaxial layer, 8. mountain...n-type well layer, 9... field oxide,
1o...River/Silicon oxide film, 11...Silicon nitride film, 12,14.16...Gate electrode,
13.15...Silicon oxide film, 17°18.
...source and drain, 19...p
type diffusion layer, 20.21...source and drain, 22.23...river source and drain, 24.
・River/n-type diffusion layer.

Claims (1)

【特許請求の範囲】[Claims]  一導電型半導体基板に、同一導電型の第1、第2の埋
め込み拡散領域および反対導電型の第3の埋め込み拡散
領域を形成する工程、前記基板上に反対導電型のエピタ
キシャル層を形成し、前記エピタキシャル層表面から前
記第1、第2の埋め込み拡散領域に達する前記基板と同
一導電型の第1、第2の拡散領域により前記エピタキシ
ャル層を第1と第2の分離エピタキシャル層に分離する
工程、前記第1の分離エピタキシャル層に金属−絶縁物
−半導体型不揮発性記憶素子を形成する工程、前記第2
の分離エピタキシャル層の表面から前記第3の埋め込み
拡散領域に対向するように前記基板と同一導電型のウェ
ル領域を形成し、同ウェル領域および同ウェル領域以外
の前記第2の分離エピタキシャル層にそれぞれ相補対の
各MIS型電界効果トランジスタを形成する工程とを備
えた半導体装置の製造方法。
forming first and second buried diffusion regions of the same conductivity type and a third buried diffusion region of the opposite conductivity type in a semiconductor substrate of one conductivity type; forming an epitaxial layer of the opposite conductivity type on the substrate; separating the epitaxial layer into first and second separated epitaxial layers by first and second diffusion regions of the same conductivity type as the substrate, which reach the first and second buried diffusion regions from the surface of the epitaxial layer; , forming a metal-insulator-semiconductor type nonvolatile memory element in the first separated epitaxial layer;
A well region of the same conductivity type as the substrate is formed so as to face the third buried diffusion region from the surface of the isolation epitaxial layer, and a well region of the same conductivity type as the substrate is formed, and a well region is formed in the well region and the second isolation epitaxial layer other than the well region, respectively. A method of manufacturing a semiconductor device, comprising: forming a complementary pair of MIS field effect transistors.
JP59245234A 1984-11-20 1984-11-20 Manufacture of semiconductor device Pending JPS61124165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59245234A JPS61124165A (en) 1984-11-20 1984-11-20 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59245234A JPS61124165A (en) 1984-11-20 1984-11-20 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS61124165A true JPS61124165A (en) 1986-06-11

Family

ID=17130650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59245234A Pending JPS61124165A (en) 1984-11-20 1984-11-20 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS61124165A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03165554A (en) * 1989-11-24 1991-07-17 Mitsubishi Electric Corp Manufacture of complementry field effect transistor
JPH03173172A (en) * 1989-11-30 1991-07-26 Mitsubishi Electric Corp Complementary field-effect element and manufacture thereof
JPH04162567A (en) * 1990-10-25 1992-06-08 Nec Ic Microcomput Syst Ltd Semiconductor memory device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5619653A (en) * 1979-07-27 1981-02-24 Hitachi Ltd Bipolar cmos semiconductor device and manufacture thereof
JPS5623751A (en) * 1979-08-02 1981-03-06 Pioneer Electronic Corp Manufacture of integrated circuit device
JPS5748256A (en) * 1980-09-08 1982-03-19 Toshiba Corp Manufacture of semiconductor integrated circuit
JPS59144168A (en) * 1983-02-07 1984-08-18 Hitachi Ltd Bipolar mos semiconductor device and manufacture thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5619653A (en) * 1979-07-27 1981-02-24 Hitachi Ltd Bipolar cmos semiconductor device and manufacture thereof
JPS5623751A (en) * 1979-08-02 1981-03-06 Pioneer Electronic Corp Manufacture of integrated circuit device
JPS5748256A (en) * 1980-09-08 1982-03-19 Toshiba Corp Manufacture of semiconductor integrated circuit
JPS59144168A (en) * 1983-02-07 1984-08-18 Hitachi Ltd Bipolar mos semiconductor device and manufacture thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03165554A (en) * 1989-11-24 1991-07-17 Mitsubishi Electric Corp Manufacture of complementry field effect transistor
JPH03173172A (en) * 1989-11-30 1991-07-26 Mitsubishi Electric Corp Complementary field-effect element and manufacture thereof
JPH04162567A (en) * 1990-10-25 1992-06-08 Nec Ic Microcomput Syst Ltd Semiconductor memory device

Similar Documents

Publication Publication Date Title
US4476475A (en) Stacked MOS transistor
JPH0481337B2 (en)
EP0196757A2 (en) Semiconductor device comprising a bipolar transistor and a MOS transistor and method of manufacturing the same
JPH0510828B2 (en)
EP0239216A2 (en) CMOS compatible bipolar transistor
JP2587444B2 (en) Bipolar transistor using CMOS technology and method of manufacturing the same
JP2509690B2 (en) Semiconductor device
JPH065706B2 (en) Method for manufacturing BiCMOS device
JPH08213478A (en) Semiconductor integrated circuit device and its manufacture
JPS61124165A (en) Manufacture of semiconductor device
CA1191970A (en) Stacked mos transistor
KR100482950B1 (en) Semiconductor device and manufacturing method thereof
JPH10163338A (en) Semiconductor device and its manufacturing method
JPS62131581A (en) Manufacture of semiconductor device
JP2575876B2 (en) Semiconductor device
JPS5944784B2 (en) Complementary MOS semiconductor device
JPS62234365A (en) Manufacture of semiconductor device
JPH07114241B2 (en) Semiconductor device
JP3247106B2 (en) Manufacturing method and structure of integrated circuit
JPH0221648A (en) Semiconductor device and manufacture thereof
JP3253712B2 (en) Method for manufacturing semiconductor device
JP3400234B2 (en) Semiconductor device
JPS60211867A (en) Semiconductor device and manufacture thereof
JPS63102371A (en) Manufacture of semiconductor device
JPH04245473A (en) Semiconductor integrated circuit and manufacture thereof