JPS63102371A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS63102371A
JPS63102371A JP61248755A JP24875586A JPS63102371A JP S63102371 A JPS63102371 A JP S63102371A JP 61248755 A JP61248755 A JP 61248755A JP 24875586 A JP24875586 A JP 24875586A JP S63102371 A JPS63102371 A JP S63102371A
Authority
JP
Japan
Prior art keywords
type
layer
epitaxial layer
conductivity type
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61248755A
Other languages
Japanese (ja)
Inventor
Kazuo Sato
和夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP61248755A priority Critical patent/JPS63102371A/en
Publication of JPS63102371A publication Critical patent/JPS63102371A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To reduce the area required for isolation when various elements coexist on a same chip by a method wherein an MIS nonvolatile memory device is formed in 1st well region and a same conductivity type MIS field effect transistor is formed in 2nd well region and an opposite conductivity type MIS field effect transistor is formed in an epitaxial layer. CONSTITUTION:A 1st P-type well layer 4 and a 2nd P-type well layers 5 which reach a buried layer 2 are formed from the surface of an epitaxial layer 3. Then, field oxide films 7 are formed by selective oxidation technology and, after the materials for gate insulating films and gate electrodes are applied to the whole surface, patterning is carried out to form the gate insulating films 8 and 10 and the gate electrodes 9 and 11 are formed. Then P-type impurity ions and N-type impurity ions are implanted to form N-type diffused layers 15, 16, 17 and 18 and P-type diffused layers 19 and 20. Finally, processes of forming layer insulating films, contacts, wirings and protective films are carried out to make an NMOS nonvolatile memory device and a CMOS device coexist on the same chip.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はMis (金属〜絶縁物−半導体)型不揮発性
記憶素子を備えた半導体装置の高集積化をはかることの
できる製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a semiconductor device having a Mis (metal-insulator-semiconductor) type nonvolatile memory element with a high degree of integration.

従来の技術 半導体プロセス技術の進歩に伴ない、半導体集債回路の
高性能化、高機能化が進む中で、同一チップ上にM I
 S型不揮発性記憶素子を用いた電気的書き換え可能な
ROM(EEPROM)とマイクロコンピュータなどの
コントロール回路機能を共存させるデバイスに対する要
求が高まりつつある。たとえば、MIS型不型光揮発性
記憶素子つとして、シリコン基板上に薄い酸化膜を形成
し、その上に窒化シリコン膜を形成させ、さらにその上
にゲート電極を形成したMNOS (金属−窒化シリコ
ン膜−酸化シリコン膜−半導体)構造の不揮発性メモリ
トランジスタがよく知られているが、このMNOSメモ
リトランジスタを用いたメモリ回路部と、このメモリ回
路をコントロールする制御回路部とを同一チップ上に共
存させたMNOSメモリ内蔵lチップマイクロコンピュ
ータがある。
Conventional technology With the advancement of semiconductor process technology, the performance and functionality of semiconductor integrated circuits are increasing.
2. Description of the Related Art There is an increasing demand for a device that has the functions of an electrically rewritable ROM (EEPROM) using an S-type nonvolatile memory element and a control circuit such as a microcomputer. For example, an MNOS (metal-silicon nitride) is used as an MIS type non-volatile optical storage element, in which a thin oxide film is formed on a silicon substrate, a silicon nitride film is formed on top of that, and a gate electrode is further formed on top of that. Nonvolatile memory transistors with a film-silicon oxide film-semiconductor structure are well known, but it is possible to coexist a memory circuit section using this MNOS memory transistor and a control circuit section that controls this memory circuit on the same chip. There is an L-chip microcomputer with built-in MNOS memory.

このようなMIS型不型光揮発性記憶素子なるメモリ回
路部と、MIS型電界効果トランジスタからなる周辺回
路部とを同一基板上に共存させた半導体装置においては
、メモリ以外の周辺回路を同一チップ上に集積するので
、チップの消費電力が増加し、このため、チップの温度
上昇が起こり、同一チップ上に共存させた不揮発性記憶
素子の記憶保持特性に悪い影響を与え、これを防ぐため
、周辺回路部はできるだけ低消費電力化が可能なCMO
8(相補M OS )化することが必要である。
In a semiconductor device in which a memory circuit section consisting of such an MIS-type non-type optical volatile storage element and a peripheral circuit section consisting of an MIS-type field effect transistor coexist on the same substrate, the peripheral circuits other than the memory are placed on the same chip. Because they are integrated on the same chip, the power consumption of the chip increases, which causes the temperature of the chip to rise, which has a negative impact on the memory retention characteristics of nonvolatile memory elements coexisting on the same chip.To prevent this, The peripheral circuit section is a CMO that can reduce power consumption as much as possible.
8 (complementary M OS).

不揮発性記憶素子とCMO3素子とを同一チップ上に共
存させるためには、不揮発性記憶素子とCM OS素子
とを電気的に分離する必要があり、従来は第2図に示す
ように、一導電型の半導体基板上に反対導電型のエピタ
キシャル層を形成し、前記エピタキシャル層を同一導電
型の拡散層により分離し、この分離されたエピタキシャ
ル層内に不揮発性記憶素子を形成し、一方CMOS素子
をエピタキシャル層およびエピタキシャル層内のウェル
領域に形成して分離する方法が通常であった。
In order to coexist a nonvolatile memory element and a CMO3 element on the same chip, it is necessary to electrically separate the nonvolatile memory element and the CMOS element. epitaxial layers of opposite conductivity type are formed on a semiconductor substrate of the same type, the epitaxial layers are separated by a diffusion layer of the same conductivity type, a nonvolatile memory element is formed in the separated epitaxial layer, while a CMOS element is Conventional methods have been to form and isolate epitaxial layers and well regions within the epitaxial layers.

発明が解決しようとする問題点 しかしながら、従来の製造方法ではCM OSのウェル
領域の空乏層と基板の空乏層が接近してウェル領域が基
板と同電位とならないようにするために、エピタキシャ
ル層の厚みを十分厚((通常15〜20μm)しており
、このため不揮発性記憶素子を分離する分離拡散層を非
常に深(拡散させる必要があり、それに伴い分離拡散の
横方向の拡散も非常に大きくなり、分離に要する面積を
増大させ、その結果メモリ回路部の集積度があまり上が
らないといった欠点を有していた。
Problems to be Solved by the Invention However, in conventional manufacturing methods, the epitaxial layer is The thickness is sufficiently thick (usually 15 to 20 μm), so it is necessary to diffuse the isolation diffusion layer that separates the nonvolatile memory elements very deeply, and the lateral diffusion of the isolation diffusion is also very deep. This has the disadvantage that the area required for isolation increases, and as a result, the degree of integration of the memory circuit section cannot be increased very much.

本発明の目的は、MIS型不型光揮発性記憶素子びCM
O3回路を同一チップ上に共存させる際に、MIS型不
型光揮発性記憶素子離に必要な面問題点を解決するため
の手段 上記目的を達成するために、本発明は一導電型半導体基
板に反対導電型の埋め込み層を形成する工程と、前記基
板上に同基板と同一導電型のエピタキシャル層を形成す
る工程と、前記エピタキシャル層に、反対導電型の第1
のウェル領域および前記埋め込み層に達して前記エピタ
キシャル層を分離する第2のウェル領域を形成する工程
と、前記第1のウェル領域内にMIS型不揮発性記憶素
子を形成する工程と、前記第2のウェル領域内に同一導
電型のMIS型電界効果トランジスタを形成する工程と
、前記分離されたエピタキシャル層内に反対導電型のM
IS型電界効果トランジスタを形成する工程とを備えた
半導体装置の製造方法である。
The object of the present invention is to
Means for solving problems necessary for separation of MIS type non-volatile optical storage elements when O3 circuits coexist on the same chip In order to achieve the above object, the present invention provides a single conductivity type semiconductor substrate forming a buried layer of the opposite conductivity type on the substrate; forming an epitaxial layer of the same conductivity type as the substrate on the substrate;
forming a second well region reaching the well region and the buried layer to separate the epitaxial layer; forming a MIS type nonvolatile memory element in the first well region; a step of forming an MIS field effect transistor of the same conductivity type in the well region of the well region, and a step of forming an MIS field effect transistor of the opposite conductivity type in the separated epitaxial layer.
A method of manufacturing a semiconductor device includes a step of forming an IS type field effect transistor.

作用 本発明の製造方法によれば、不揮発性記憶素子はエピタ
キシャル層のウェル領域内に分離可能となり、従来のエ
ピタキシャル層表面からの分離拡散工程は必要なく、分
離に要する面積を非常に小さくすることが可能となる。
Effect: According to the manufacturing method of the present invention, the nonvolatile memory element can be separated into the well region of the epitaxial layer, and the conventional separation and diffusion process from the surface of the epitaxial layer is not necessary, making the area required for separation extremely small. becomes possible.

実施例 以下、具体的な実施例を図面を用いて説明する。Example Hereinafter, specific examples will be described using the drawings.

第1図a”−eは、本発明の製造方法の一実施例を示し
た工程順断面図である。
FIGS. 1a" to 1e are cross-sectional views in order of steps showing an embodiment of the manufacturing method of the present invention.

まず、第1図aに示すように、n型シリコン基板1上に
通常の選択拡散技術によりP型の埋め込み層2を形成し
、ついでジクロルシラン(Si82Ce2 )の熱分解
を利用してn型のエピタキシャル層3を形成させる。本
実施例では、n型のシリコン基板1に、不純物濃度2X
10cm  程度のものを用い、n型のエピタキシャル
層3は、リンをI X 10 ”cm”−’程度の濃度
、厚みを7μmとした。
First, as shown in FIG. 1a, a P-type buried layer 2 is formed on an n-type silicon substrate 1 by ordinary selective diffusion technology, and then an n-type epitaxial layer is formed using thermal decomposition of dichlorosilane (Si82Ce2). Form layer 3. In this example, an n-type silicon substrate 1 is doped with an impurity concentration of 2X.
The n-type epitaxial layer 3 had a phosphorus concentration of about I x 10 "cm"-' and a thickness of 7 μm.

また、P型の埋め込み層2は、ボロンを不純物として用
い、その濃度を1018 cm 3程度とした。
Further, the P-type buried layer 2 uses boron as an impurity, and has a concentration of about 1018 cm3.

次に、第1図すに示すように、エピタキシャル層3の表
面から第1のP型ウェル層4と、埋め込み層2に達する
第2のP型ウェル層5を形成させる。この工程では、第
2のP型ウェル層5と埋め込み層2により、エピタキシ
ャル層を分離することができ、n型の分離エピタキシャ
ル層6が形成できる。本実施例では、第1のウェル層4
と第2のウェル層5とは同時に形成させ、両ウェルとも
、その不純物表面温度を約1×10 C11、拡散深さ
を約5μmとした。また、同ウェル層を形成する熱処理
において、P型の埋め込み層2が上部にも拡散するので
、ウェル層5とP型の埋め込み層が十分オーバーラツプ
するように熱処理条件を制御した。
Next, as shown in FIG. 1, a first P-type well layer 4 and a second P-type well layer 5 reaching the buried layer 2 are formed from the surface of the epitaxial layer 3. In this step, the epitaxial layer can be separated by the second P-type well layer 5 and the buried layer 2, and an n-type isolated epitaxial layer 6 can be formed. In this embodiment, the first well layer 4
and the second well layer 5 were formed at the same time, and both wells had an impurity surface temperature of about 1×10 5 C11 and a diffusion depth of about 5 μm. Furthermore, in the heat treatment for forming the well layer, the P-type buried layer 2 diffuses into the upper part, so the heat treatment conditions were controlled so that the well layer 5 and the P-type buried layer overlap sufficiently.

次に、第1図Cに示すように、窒化シリコン膜を用いた
選択酸化技術によりフィールド酸化膜7を形成する。本
実施例では膜厚を8000Aとした。ついで、ゲート絶
縁膜、ゲート電極となる材料を全面に被着後、フォトエ
ツチング技術によりパターンニングを行い、ゲート絶縁
膜8,10、ゲート電極9,11を形成する。本実施例
ではゲート絶縁膜8,10として二酸化シリコン膜を用
い、その膜厚を50OAとした。また、ゲート電極9,
11としては、リンをドープ(10c+a  程度)し
たポリシリコン膜を用い、膜厚を5000Aとした。
Next, as shown in FIG. 1C, a field oxide film 7 is formed by a selective oxidation technique using a silicon nitride film. In this example, the film thickness was 8000A. Next, materials for the gate insulating films and gate electrodes are deposited on the entire surface, and patterning is performed using photoetching technology to form gate insulating films 8 and 10 and gate electrodes 9 and 11. In this embodiment, silicon dioxide films were used as the gate insulating films 8 and 10, and the film thickness was set to 50 OA. In addition, the gate electrode 9,
As 11, a polysilicon film doped with phosphorus (approximately 10c+a) was used, and the film thickness was set to 5000 Å.

次に、第1図dに示すように、非常に薄い酸化シリコン
膜12を800℃、酸素雰囲気中で酸化して形成し、つ
いで酸化シリコン膜12上に、シラン(SiH4)とア
ンモニア(NH3)の化学反応に基づ(気相成長法によ
り窒化シリコン膜13を形成させ、さらに窒化シリコン
膜13上にゲート電極14となりうるリンをドープ(1
0c+w  程度)したポリシリコン膜を被着させ、フ
オトエ・ンチング技術によりパターンニングを行う。本
実施例では、酸化シリコン膜12は、トンネリング媒体
となりうるように、膜厚を20Aとし、窒化シリコン膜
13は、成長温度750℃、ガス流量比NHs/5iH
4=50の条件下で500A成長させた。
Next, as shown in FIG. 1d, a very thin silicon oxide film 12 is oxidized at 800° C. in an oxygen atmosphere, and then silane (SiH4) and ammonia (NH3) are added to the silicon oxide film 12. A silicon nitride film 13 is formed by a chemical reaction (vapor phase growth method), and phosphorus (1
A polysilicon film (about 0c+w) is deposited and patterned using a photoetching technique. In this example, the silicon oxide film 12 has a thickness of 20A so that it can serve as a tunneling medium, and the silicon nitride film 13 has a growth temperature of 750°C and a gas flow rate ratio of NHs/5iH.
It was grown at 500A under the condition of 4=50.

次に、第1図eに示すようにフォトレジストおよびフィ
ールド酸化膜を用いたセルファライン技術を用いて、P
型の不純物イオンおよびn型の不純物イオンを注入し、
n型拡散層15.16.17゜18、P型拡散層19.
20を形成し、CMOSトランジスタおよびM N O
Sメモリトランジスタの各々のソース、ドレインとした
。本実施例では、P型の不純物イオンとしてB+イオン
、n型の不純物イオンとしてAs+イオンを用いた。
Next, as shown in Figure 1e, P
implanting type impurity ions and n-type impurity ions,
N-type diffusion layer 15.16.17゜18, P-type diffusion layer 19.
20, CMOS transistor and MNO
These were used as the source and drain of each S memory transistor. In this example, B+ ions were used as P-type impurity ions, and As+ ions were used as N-type impurity ions.

最後に層間絶縁膜形成、コンタクト形成、配線形成、保
護膜形成工程を行うことでMNO8型不揮発性記憶素子
とCMO3素子とを同一チップ上に共存させた半導体装
置を作製することができる。
Finally, by performing interlayer insulating film formation, contact formation, wiring formation, and protective film formation steps, a semiconductor device in which an MNO8 type nonvolatile memory element and a CMO3 element coexist on the same chip can be manufactured.

発明の効果 以上のように、本発明の製造方法によれば、従来のエピ
タキシャル層表面からの分離拡散工程が必要な(、分離
に要する面積を大幅に減少でき、MIS型不揮発性記憶
素子を備えた半導体装置の高集積化に大きく寄与するも
のである。
Effects of the Invention As described above, according to the manufacturing method of the present invention, it is possible to significantly reduce the area required for separation (which requires a separation and diffusion process from the surface of the epitaxial layer in the conventional method), and it is possible to significantly reduce the area required for separation from the surface of the epitaxial layer. This greatly contributes to higher integration of semiconductor devices.

【図面の簡単な説明】 第1図a −eは本発明の一実施例である半導体装置の
製造方法を示す工程順断面図、第2図は従来の製造方法
により得られる半導体装置の断面構造図である。 1・・・・・・n型シリコン基板、2・・・・・・P型
埋込層、3・・・・・・n型エピタキシャル層、4,5
・・・・・・P型ウェル層、6・・・・・・分離エピタ
キシャル層、7・・・・・・フィールド酸化膜、8・・
・・・・ゲート絶縁膜、9・・・・・・ゲート電極、1
0・・・・・・ゲート絶縁膜、11・・・・・・ゲート
電極、12・・・・・・酸化シリコン膜、13・・・・
・・窒化シリコン膜、14・・・・・・ゲート電極、1
5〜18・・・・・・n型拡散層、19.20・・・・
・・P型拡散層。
[Brief Description of the Drawings] Figures 1a-e are step-by-step cross-sectional views showing a method for manufacturing a semiconductor device according to an embodiment of the present invention, and Figure 2 is a cross-sectional structure of a semiconductor device obtained by a conventional manufacturing method. It is a diagram. 1... N-type silicon substrate, 2... P-type buried layer, 3... N-type epitaxial layer, 4, 5
... P-type well layer, 6 ... Isolation epitaxial layer, 7 ... Field oxide film, 8 ...
...Gate insulating film, 9...Gate electrode, 1
0... Gate insulating film, 11... Gate electrode, 12... Silicon oxide film, 13...
...Silicon nitride film, 14...Gate electrode, 1
5-18...n-type diffusion layer, 19.20...
...P-type diffusion layer.

Claims (1)

【特許請求の範囲】[Claims] (1)一導電型半導体基板に反対導電型の埋め込み層を
形成する工程と、前記基板上に同一導電型のエピタキシ
ャル層を形成する工程と、前記エピタキシャル層に反対
導電型の第1のウェル領域および前記埋め込み拡散領域
に達して前記エピタキシャル層を分離する第2のウェル
領域を形成する工程と、前記第1のウェル領域内にMI
S型不揮発性記憶素子を形成する工程と、前記第2のウ
ェル領域内に同一導電型のMIS型電界効果トランジス
タを形成する工程と、前記分離されたエピタキシャル層
内に反対導電型のMIS型電界効果トランジスタを形成
する工程とを備えたことを特徴とする半導体装置の製造
方法。
(1) A step of forming a buried layer of an opposite conductivity type on a semiconductor substrate of one conductivity type, a step of forming an epitaxial layer of the same conductivity type on the substrate, and a first well region of an opposite conductivity type in the epitaxial layer. and forming a second well region that reaches the buried diffusion region and separates the epitaxial layer;
a step of forming an S-type nonvolatile memory element, a step of forming an MIS field effect transistor of the same conductivity type in the second well region, and a step of forming an MIS field effect transistor of the opposite conductivity type in the separated epitaxial layer. 1. A method of manufacturing a semiconductor device, comprising the step of forming an effect transistor.
JP61248755A 1986-10-20 1986-10-20 Manufacture of semiconductor device Pending JPS63102371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61248755A JPS63102371A (en) 1986-10-20 1986-10-20 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61248755A JPS63102371A (en) 1986-10-20 1986-10-20 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS63102371A true JPS63102371A (en) 1988-05-07

Family

ID=17182893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61248755A Pending JPS63102371A (en) 1986-10-20 1986-10-20 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS63102371A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032688A (en) * 2004-07-16 2006-02-02 Fujitsu Ltd Solid state imaging apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032688A (en) * 2004-07-16 2006-02-02 Fujitsu Ltd Solid state imaging apparatus

Similar Documents

Publication Publication Date Title
KR101947363B1 (en) Method of fabricating a charge-trapping gate stack using a cmos process flow
EP0258396B1 (en) Fabrication process for stacked mos devices
JPS61179567A (en) Manufacture of self-aligning laminated cmos structure
JPH0355984B2 (en)
JPS62271474A (en) Electrically programmable read-only memory device
JPH08255846A (en) Semiconductor device and manufacture thereof
JPH04179159A (en) Manufacture of semiconductor device
JPS594067A (en) Semiconductor device
JPS63102371A (en) Manufacture of semiconductor device
JP4146121B2 (en) Manufacturing method of semiconductor device
JPH0831539B2 (en) Non-volatile memory manufacturing method
JPS62131581A (en) Manufacture of semiconductor device
JPS61124165A (en) Manufacture of semiconductor device
JPS63102370A (en) Semiconductor device
JPH08162523A (en) Semiconductor device, and its manufacture
JPS63128626A (en) Method of forming contact of semiconductor integrated circuit device
JPH0449270B2 (en)
KR20050016123A (en) Semiconductor memory device and manufacturing method thereof
JPH06224379A (en) Manufacture of semiconductor device
JPH10261726A (en) Semiconductor device and its manufacture
JPS6244700B2 (en)
JPH05251446A (en) Semiconductor device and manufacture thereof
JPH05175508A (en) Nonvolatile semiconductor device and its manufacture
JPS61125165A (en) Manufacture of semiconductor device
JPS6376470A (en) Manufacture of semiconductor device