JPS63204415A - Guiding method for unmanned vehicle - Google Patents

Guiding method for unmanned vehicle

Info

Publication number
JPS63204415A
JPS63204415A JP62038201A JP3820187A JPS63204415A JP S63204415 A JPS63204415 A JP S63204415A JP 62038201 A JP62038201 A JP 62038201A JP 3820187 A JP3820187 A JP 3820187A JP S63204415 A JPS63204415 A JP S63204415A
Authority
JP
Japan
Prior art keywords
sensor
unmanned vehicle
comparison voltage
output
differential output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62038201A
Other languages
Japanese (ja)
Inventor
Tsuneo Tsukagoshi
常雄 塚越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62038201A priority Critical patent/JPS63204415A/en
Publication of JPS63204415A publication Critical patent/JPS63204415A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To improve the running stability and reliability of an unmanned vehicle even with the inferior rout conditions by using two detectors to detect the mark substances set on the ground and outputting a steering instruction when the absolute value of the differential output of both detectors exceeds the comparison voltage level which varies in response to the sum output. CONSTITUTION:A sensor consists of detection coils 3a and 3b which detect the mark substances set on the ground and this sensor output varies according to the distance of detection between the sensor and the mark substances. Thus, the differential output between both detection coils has smaller amplitude as the distance of detection increases. A steering signal is outputted when the sensor gets out of its play width and the absolute value of the differential output exceeds the comparison voltage level Vref so that the sensor is set again within said play width. While a sum signal varies according to the height of the sensor and therefore the optimum play width is secured regardless of the height of the sensor by changing the level of Vref in response to the increase/ decrease of the sum signal level. As a result, the running stability and reliability can be improved for an unmanned vehicle even with the inferior route conditions.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は無人車の誘導方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for guiding an unmanned vehicle.

〔従来の技術〕[Conventional technology]

無人車の誘導方法として従来より各種方式(例えば特開
昭59−202512号、特開昭57−130200号
)が開発され、これが実用に供されている。無人車の操
舵用信号は第3図の曲線(a)に示すように通常誘導用
センサの誘導用標識体からの左右のずれに対応して極性
の違う値を示す。車の操舵方法としては、ずれ量に応じ
た操舵量をもたせる方式と、誘導用センサのずれ量にし
きい値(比較電圧Vref)を設けておき、あるしきい
値以上のずれ量になると操舵する方式が共に実用化され
ている。前者はずれ量に応じてきめ細かなフィードバッ
クができるが、制御は複雑になる。後者は制御が前者に
比べ単純であるから精度を要しない場所での使用には適
している。
Various methods for guiding unmanned vehicles (for example, Japanese Patent Application Laid-Open No. 59-202512 and Japanese Patent Application Laid-open No. 57-130200) have been developed and put into practical use. The steering signal for an unmanned vehicle normally exhibits values of different polarities in response to the left and right deviations of the guidance sensor from the guidance marker, as shown by the curve (a) in FIG. As for the steering method of the car, there is a method in which the amount of steering is determined according to the amount of deviation, and a threshold value (comparison voltage Vref) is set for the amount of deviation of the guidance sensor, and when the amount of deviation exceeds a certain threshold, the vehicle is steered. Both methods have been put into practical use. The former allows fine-grained feedback depending on the amount of deviation, but the control becomes complicated. The latter has simpler control than the former, and is therefore suitable for use in places where precision is not required.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

後者の方式によれば第3図の曲線(a)に示すように比
較電圧Vref以上にセンサが標識体からずれたことは
差動出力が比較電圧以上になることで判断している。従
って左右のずれの範囲に対し第3図の(a′)に示すよ
うにずれ修正のための操舵信号が得られる。差動出力が
比較電圧値以下では、操舵しない遊びがある。その遊び
の大きさは車の走行性に大きく影響している。遊びが大
きすぎれば収束性が悪く、大きく蛇行し、逆に遊びが小
さいとハンチングを起こし、絶えず舵を切った状態にな
るため、動力エネルギーの消費が大きく、また、タイヤ
の摩耗も問題となる。したがってどちらの状態も安定し
たなめらかな走行ではない。操舵の遊びは操舵系のトル
クや重量バランスなどでその最適値が決定されるが、こ
の操舵の遊びをもたせるためのセンサの比較電圧は、ず
れ量と差動出力の関係(第3図)から求めている。とこ
ろが、実際のセンサにおいては、センサと標識体の距離
(検知距離)は、悪路における路面の凹凸やバウンド、
また坂道の前後でも変化する。検知距離が変化したとき
のセンサの差動出力は第3図の(a)〜(c)のように
変化する。ところが従来方式では比較電圧Vrefが固
定されており、遊び幅はセンサの高さによって第3図の
(a′)〜(a′)のように大きく変化してしまい、こ
れが悪路や坂道での蛇行やコースアラ1〜の原因になっ
ていた。
According to the latter method, as shown in the curve (a) of FIG. 3, the fact that the sensor has deviated from the marker by more than the comparison voltage Vref is determined by the fact that the differential output becomes more than the comparison voltage. Therefore, a steering signal for correcting the deviation as shown in FIG. 3(a') can be obtained for the range of left and right deviations. When the differential output is below the comparison voltage value, there is play that does not result in steering. The amount of play greatly affects the driving performance of the car. If there is too much play, the convergence will be poor and the wheel will meander significantly, while if the play is too little, it will cause hunting and the steering will be constantly turned, which will consume a lot of power energy and cause problems with tire wear. . Therefore, neither state is stable and smooth running. The optimum value of the steering play is determined by the torque and weight balance of the steering system, but the comparison voltage of the sensor to provide this steering play is determined from the relationship between the amount of deviation and the differential output (Figure 3). I'm looking for it. However, in actual sensors, the distance between the sensor and the sign (detection distance) is determined by the unevenness of the road surface, bounce, and
It also changes before and after going up the slope. The differential output of the sensor changes as shown in FIGS. 3(a) to 3(c) when the detection distance changes. However, in the conventional method, the comparison voltage Vref is fixed, and the width of play varies greatly depending on the height of the sensor, as shown in (a') to (a') in Figure 3. This was causing meandering and course roughness.

本発明の目的は悪路や坂道においても蛇行やコースアウ
トしない無人車の誘導方法を提供することにある。
An object of the present invention is to provide a method for guiding an unmanned vehicle that does not meander or go off course even on rough roads or slopes.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は無人車上から地上の誘導用標識体を2つの検知
器にてそれぞれ検知し、両検知器の差動出力の絶対値が
両検知器の和出力に伴って変化する比較電圧を越えた場
合に操舵制御指令を出力することを特徴とした無人車の
誘導方法である。
The present invention detects a guidance sign on the ground from above an unmanned vehicle using two detectors, and the absolute value of the differential output of both detectors exceeds a comparison voltage that changes with the sum output of both detectors. This is a method for guiding an unmanned vehicle, which is characterized by outputting a steering control command when

〔作用〕[Effect]

無人車の誘導用センサは通常誘導用標識体を検知するた
めに2つの検知部を有し、センサと標識体との位置関係
を変化させると、2つの検知出力は第4図の曲線(a)
のようになるが、この出力はセンサと標識体との距離(
検知距離h)が小さくなると曲線(b)のように増大し
、検知距離りが大きい程曲線(c)のように小さくなる
。そのため、両検知器の差動出力は第3図に示すように
検知距離りが大きい程小さな振幅となっている。一方、
操舵用信号は遊び幅よりセンサがずれ、差動出力の絶対
値がある比較電圧Vrefを越えたときにONになるよ
うに設定されている。走行中、センサの標識体からのず
れが遊び幅を越えると操舵用動力が働き、センサが遊び
幅の範囲に戻るように操舵する。
A guidance sensor for an unmanned vehicle usually has two detection parts to detect a guidance sign, and when the positional relationship between the sensor and the sign is changed, the two detection outputs change according to the curve (a) in Figure 4. )
However, this output is determined by the distance between the sensor and the marker (
As the detection distance h) becomes smaller, it increases as shown in curve (b), and as the detection distance increases, it decreases as shown in curve (c). Therefore, as shown in FIG. 3, the amplitude of the differential output of both detectors becomes smaller as the detection distance increases. on the other hand,
The steering signal is set to turn ON when the sensor deviates from the play width and the absolute value of the differential output exceeds a certain comparison voltage Vref. While the vehicle is running, if the deviation of the sensor from the marker exceeds the play width, the steering power is applied to steer the sensor so that it returns to the play range.

ここで、両検知器の和信号に注目すると第4図の曲線(
a′)〜(a′)に示すように検知距離りに対し大きく
変化している。そこでこのセンサの高さ変化による和信
号の増減に連動して比較電圧Vrefを変化させ、和信
号が大きくなれば比較電圧Vrefを大きくとり、和信
号が小さくなれば比較電圧Vrefも小さくすることに
よって、差動出力の標識体中央付近の傾斜に対して比較
電圧Vrefが規定するセンサの遊び幅をほぼ一定に保
つことができる。即ち、センサが高さ変化しても常に操
舵に対し、最適な遊び幅を与え、良好な収束性を維持で
きるようになる。
Now, if we pay attention to the sum signal of both detectors, we can see the curve (
As shown in a') to (a'), there is a large change with respect to the detection distance. Therefore, by changing the comparison voltage Vref in conjunction with the increase/decrease in the sum signal due to the change in the height of the sensor, if the sum signal becomes large, the comparison voltage Vref is increased, and if the sum signal becomes small, the comparison voltage Vref is also reduced. , the width of play of the sensor defined by the comparison voltage Vref can be kept almost constant with respect to the slope of the differential output near the center of the marker. In other words, even if the height of the sensor changes, it is possible to always provide the optimum play width for steering and maintain good convergence.

以上、2つの検知部をもつセンサが標識体を検知する場
合について述べたが、センサと標識体との関係は、磁気
センサと磁性体標識体、誘導センサと誘導ケーブル、光
センサと光反射体との組合せに対しても全く同様に適用
できるものである。
Above, we have described the case where a sensor with two detection parts detects a marker, but the relationships between the sensor and the marker are: a magnetic sensor and a magnetic marker, an induction sensor and a guide cable, and an optical sensor and a light reflector. It can be applied in exactly the same way to a combination with.

〔実施例〕〔Example〕

以下に本発明による無人車の誘導方法を軟磁性体フェラ
イトを誘導用標識体に用いる磁気誘導システムに応用し
た例を示す。標識体を検知する磁気センサは第1図に示
すように交流磁場励磁型で、1つの励磁コイル1と2つ
の検知コイル3a、 3bとを有し1図示の回路にて構
成されている。図において、交流磁場発生器2の励磁に
より地上の標識体の有無を検知コイル3a、3bに発生
する誘導電圧の変化として検出する。検知信号は、整流
器4,5で整流されそれぞれ和算回路6、差動回路7に
入る。和信号は比較電圧発生回路8に入力され、比較電
圧発生回路8は和出力に比例した比較電圧Vrefを比
較回路9に与えている。比較回路9では差動出力の絶対
値が比較電圧Vrefを越えるとTTLでHigh L
evslを出力する。
An example in which the method for guiding an unmanned vehicle according to the present invention is applied to a magnetic guidance system using soft magnetic ferrite as a guidance marker will be shown below. As shown in FIG. 1, the magnetic sensor for detecting a labeled object is of the alternating current magnetic field excitation type, and has one excitation coil 1 and two detection coils 3a and 3b, and is constituted by a circuit as shown in the figure. In the figure, the presence or absence of a marker on the ground is detected as a change in induced voltage generated in detection coils 3a and 3b by excitation of an alternating current magnetic field generator 2. The detection signals are rectified by rectifiers 4 and 5 and enter a summation circuit 6 and a differential circuit 7, respectively. The sum signal is input to a comparison voltage generation circuit 8, and the comparison voltage generation circuit 8 provides a comparison voltage Vref proportional to the sum output to a comparison circuit 9. In the comparator circuit 9, when the absolute value of the differential output exceeds the comparison voltage Vref, it becomes High L at TTL.
Output evsl.

センサが誘導体の中央付近にあるとき、差動出力はセン
サの検知距離がh=10nmに対し約4V/■。
When the sensor is located near the center of the dielectric, the differential output is approximately 4 V/■ for the sensor's detection distance of h=10 nm.

h=20+m+で約2V/an、 h =30+mで約
1.4V/anのずれ幅−出力特性をもっている。h 
=201TI++のときの遊び幅が10mになるように
このときの比較電圧Vrefを1vに設定した。一方、
和出力はh −40,20,30−で8.4.2.3V
であり、その約174の値を比較電圧として用いること
により、遊び幅をほぼ10!1111に保つことができ
た。
It has a deviation width-output characteristic of about 2 V/an when h=20+m+ and about 1.4 V/an when h=30+m. h
The comparison voltage Vref at this time was set to 1v so that the play width when =201TI++ was 10m. on the other hand,
The sum output is 8.4.2.3V at h -40, 20, 30-
By using the value of approximately 174 as the comparison voltage, the play width could be maintained at approximately 10!1111.

以上磁気センサを用いて±50%の高さ変動に対応でき
る出力補正方法を示した。この方法で処理された出力を
操舵に用いることによって、悪路においても収束性の良
い無人車の走行をさせることができるようになった。以
上磁気センサを用いた場合を示したが、誘導センサ、光
センサであっても勿論適用できる。
An output correction method that can cope with height fluctuations of ±50% using a magnetic sensor has been described above. By using the output processed in this way for steering, it is now possible to drive an unmanned vehicle with good convergence even on rough roads. Although the case where a magnetic sensor is used has been described above, it is of course applicable to an inductive sensor or an optical sensor.

〔発明の効果〕〔Effect of the invention〕

本発明によればセンサの検出距離の変動は避けられない
ものと考えられていた悪路においても無人車の走行を安
定させシステムの信頼性を飛躍的に向上させることがで
きる効果を有するものである。
According to the present invention, it is possible to stabilize the running of an unmanned vehicle even on rough roads where fluctuations in the detection distance of the sensor were thought to be unavoidable, and to dramatically improve the reliability of the system. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の誘導方法に用いるセンサの信号処理装
置のブロック図、第2図は本発明による声ンサの差動出
力と比較電圧との関係を示す図、第3図はセンサの差動
出力と従来の比較電圧による操舵範囲を示す図、第4図
はセンサの2つの検知出力とその和信号の高さ変化を示
す図である。
Fig. 1 is a block diagram of a sensor signal processing device used in the guidance method of the present invention, Fig. 2 is a diagram showing the relationship between the differential output of the voice sensor and the comparison voltage according to the present invention, and Fig. 3 is a diagram showing the difference between the sensors. FIG. 4 is a diagram showing the steering range according to the dynamic output and the conventional comparison voltage, and FIG. 4 is a diagram showing the height change of two detection outputs of the sensor and their sum signal.

Claims (1)

【特許請求の範囲】[Claims] (1)無人車上から地上の誘導用標識体を2つの検知器
にてそれぞれ検知し、両検知器の差動出力の絶対値が両
検知器の和出力に伴って変化する比較電圧を越えた場合
に誘導用標識体に沿って無人車を走行させるに必要な操
舵制御指令を出力することを特徴とした無人車の誘導方
法。
(1) Detect the guidance sign on the ground from above the unmanned vehicle using two detectors, and the absolute value of the differential output of both detectors exceeds the comparison voltage that changes with the sum output of both detectors. 1. A method for guiding an unmanned vehicle, the method comprising: outputting a steering control command necessary for driving the unmanned vehicle along a guidance sign when
JP62038201A 1987-02-20 1987-02-20 Guiding method for unmanned vehicle Pending JPS63204415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62038201A JPS63204415A (en) 1987-02-20 1987-02-20 Guiding method for unmanned vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62038201A JPS63204415A (en) 1987-02-20 1987-02-20 Guiding method for unmanned vehicle

Publications (1)

Publication Number Publication Date
JPS63204415A true JPS63204415A (en) 1988-08-24

Family

ID=12518729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62038201A Pending JPS63204415A (en) 1987-02-20 1987-02-20 Guiding method for unmanned vehicle

Country Status (1)

Country Link
JP (1) JPS63204415A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5008604A (en) * 1989-12-05 1991-04-16 Crown Equipment Corporation Dynamic clipper for use in a vehicle guidance system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515790A (en) * 1974-07-02 1976-01-17 Omron Tateisi Electronics Co Idotaiseigyosochi
JPS56137410A (en) * 1980-03-31 1981-10-27 Hitachi Ltd Controller for running track for trackless mobile body
JPS59180611A (en) * 1983-03-30 1984-10-13 Daifuku Co Ltd Automatic maneuvering control device of unmanned car
JPS61169910A (en) * 1985-01-24 1986-07-31 Nec Corp Detecting method of positional shift
JPS61285509A (en) * 1985-06-12 1986-12-16 Toyoda Autom Loom Works Ltd Lateral displacement detector for guidance control of unmanned carrier
JPS639605B2 (en) * 1981-02-17 1988-03-01 Yamatake Honeywell Co Ltd

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515790A (en) * 1974-07-02 1976-01-17 Omron Tateisi Electronics Co Idotaiseigyosochi
JPS56137410A (en) * 1980-03-31 1981-10-27 Hitachi Ltd Controller for running track for trackless mobile body
JPS639605B2 (en) * 1981-02-17 1988-03-01 Yamatake Honeywell Co Ltd
JPS59180611A (en) * 1983-03-30 1984-10-13 Daifuku Co Ltd Automatic maneuvering control device of unmanned car
JPS61169910A (en) * 1985-01-24 1986-07-31 Nec Corp Detecting method of positional shift
JPS61285509A (en) * 1985-06-12 1986-12-16 Toyoda Autom Loom Works Ltd Lateral displacement detector for guidance control of unmanned carrier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5008604A (en) * 1989-12-05 1991-04-16 Crown Equipment Corporation Dynamic clipper for use in a vehicle guidance system

Similar Documents

Publication Publication Date Title
EP0268979A2 (en) Guidance system for inductively coupled electric vehicles
US5218542A (en) Control system for unmanned carrier vehicle
US4524314A (en) Rear travel guidance system
US3653456A (en) Control system for moving vehicle along a predetermined path
JPH0767270A (en) Displacement detector in noncontact power supply for mobile body
JPS63204415A (en) Guiding method for unmanned vehicle
US3029890A (en) Vehicle skid control
JPH0370802B2 (en)
JP2931800B2 (en) Tracking control circuit of automatic guided vehicle
JPH03282705A (en) Steering angle controller for unmanned carrier vehicle
JPS61169910A (en) Detecting method of positional shift
KR0160302B1 (en) Control system for unmanned carrier vehicle
JPS61224009A (en) Automatic steering device of unmanned car
JP3024179B2 (en) Guidance sensor
JPH0738962Y2 (en) Unmanned vehicle
JPH02231608A (en) Magnetic guidance system for vehicle
JPS59180611A (en) Automatic maneuvering control device of unmanned car
KR910009226B1 (en) Nonhuman vehicle sensor
JPH0639364Y2 (en) Guide sensor
JPH03127105A (en) Steering device of magnetic induction type unmanned carrying car
JPS6125218A (en) Controller of motor-driven truck
KR100198024B1 (en) Speed control apparatus of a manless car
JPH02231607A (en) Magnetic guidance system for vehicle
JP2652196B2 (en) Guidance detection device and guidance control method for automatic guided vehicle
JPS59128612A (en) Guiding device of travelling car