KR910009226B1 - Nonhuman vehicle sensor - Google Patents

Nonhuman vehicle sensor Download PDF

Info

Publication number
KR910009226B1
KR910009226B1 KR1019890007471A KR890007471A KR910009226B1 KR 910009226 B1 KR910009226 B1 KR 910009226B1 KR 1019890007471 A KR1019890007471 A KR 1019890007471A KR 890007471 A KR890007471 A KR 890007471A KR 910009226 B1 KR910009226 B1 KR 910009226B1
Authority
KR
South Korea
Prior art keywords
operational amplifier
output
sensor
coil
vehicle
Prior art date
Application number
KR1019890007471A
Other languages
Korean (ko)
Other versions
KR900018646A (en
Inventor
변재현
Original Assignee
금성계전 주식회사
백중영
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금성계전 주식회사, 백중영 filed Critical 금성계전 주식회사
Priority to KR1019890007471A priority Critical patent/KR910009226B1/en
Publication of KR900018646A publication Critical patent/KR900018646A/en
Application granted granted Critical
Publication of KR910009226B1 publication Critical patent/KR910009226B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/2006Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

내용 없음.No content.

Description

무인운반차 유도용 센서Unmanned Vehicle Induction Sensor

제1도 및 제2도는 종래 무인운반차 유도용 센서의 계통도.1 and 2 are schematic diagrams of a conventional unmanned vehicle induction sensor.

제3도는 종래 유도선 포설로를 보인 설명도.3 is an explanatory diagram showing a conventional guideline installation route.

제4도는 종래 무인운반차 유도용센서에 있어서, 주파수필터 회로도.4 is a frequency filter circuit diagram of a conventional unmanned vehicle induction sensor.

제5도는 본 발명 무인운반차 유도용센서의 블럭도.5 is a block diagram of the sensor for induction transport of the present invention.

제6도는 본 발명 무인운반차 유도용센서의 회로도.6 is a circuit diagram of the sensor for induction transport of the present invention.

제7도는 본 발명 유도선 포설로를 보인 설명도.Figure 7 is an explanatory view showing a guide line installation route of the present invention.

제8도는 본 발명 코일에 대한 설치도.8 is an installation diagram for the coil of the present invention.

제9a도 내지 제9c도는 본 발명 무인운반차 유도용센서에 있어서, 정상상태의 각부파형도.9A to 9C are angle waveforms of steady state in the unmanned vehicle induction sensor of the present invention.

제10a도 내지 제10c도는 본 발명 무인운반차 유도용센서에 있어서, 기울어진 상태에 대한 각부파형도.10a to 10c is a angular waveform diagram for the inclined state in the sensor of the present invention unmanned vehicle.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for the main parts of the drawings

21 : 에러검출부 22 : 레퍼런스검출부21: error detector 22: reference detector

23 : 증폭부 24,25 : 정류위상비교부23: amplification section 24, 25: rectification phase comparison section

26 : 부호변환부 27 : 증폭 및 평활부26: code conversion unit 27: amplification and smoothing unit

28 : 분기점 R1-R30 : 저항28: branch point R1-R30: resistance

VR1-VR3 : 가변저항 C1-C6 : 콘덴서VR1-VR3: Variable resistor C1-C6: Capacitor

OP1-PO6 : 연산증폭기 EL : 에러코일OP1-PO6: Operational Amplifier EL: Error Coil

RL : 레퍼런스코일RL: Reference Coil

본 발명은 무인운반차 유도용센서에 관한 것으로, 특히 전자유도식 무인차에 적당하도록한 무인운반차 유도용센서에 관한 것이다.The present invention relates to an unmanned vehicle induction sensor, and more particularly, to an unmanned vehicle induction sensor adapted to be suitable for an electromagnetic induction vehicle.

종래 무인운반차 유도용센서는 제1도 및 제2도에 도시한 바와같이, 전방 유등륜(3)의 좌,우측에 설치된 센서(4a)(4b)가 유도선(5)에 흐르는 고주파전류(2-3KHZ)에서 발생되는 교번자계를 검출하여 이를 무인운반차 유도용센서 검출회로(2)에 보내며, 좌,우측센서(4a)(4b)의 출력을 증폭기(7)(8)에서 1차증폭한후 차동증폭기(7)를 통해 센서의 입력차를 증폭하여 무인운반차 방향제어회로(1)에 입력함에 따라 유동륜(3)이 유도선(5)을 따라 수행하게 구성된다.In the conventional unmanned vehicle induction sensor, as shown in FIGS. 1 and 2, a high frequency current flowing through the induction line 5 is caused by the sensors 4a and 4b provided on the left and right sides of the front light ring 3. Detects the alternating magnetic field generated at (2-3KHZ) and sends it to the unmanned vehicle induction sensor detection circuit (2), and outputs the left and right sensors (4a) and (4b) from the amplifier (7) (8). After the differential amplification, the differential wheel 7 amplifies the input difference of the sensor and inputs it to the unmanned vehicle direction control circuit 1 so that the flow wheel 3 is configured to perform along the guide line 5.

이와같이 구성된 종래의 무인운반차 유도용센서는 좌,우센서(4a)(4b)의 출력이 유도선(5)과의 거리에 비례적으로 발생되어 유동륜(3)이 유도선(5)위를 정확하게 주행하고 있으면 유도선(5)에 흐르는 고주파전류에 의해 발생되는 교번자계에 의해 센서(4a)(4b)로 유기되는 전압이 같게된다.In the conventional unmanned vehicle induction sensor configured as described above, the outputs of the left and right sensors 4a and 4b are generated in proportion to the distance from the induction line 5 so that the flow wheel 3 is positioned above the induction line 5. When traveling correctly, the voltage induced by the sensors 4a and 4b by the alternating magnetic field generated by the high frequency current flowing through the induction line 5 becomes equal.

그러므로 이를 차동증폭기(7)에 입력시키면 출력이 ″0″으로 되고, 좌측으로 벗어나게되면 좌센서(4a)에서의 출력이 크게되어 ″0″이 아닌 신호가 출력되므로 방향제어회로(1)에서 모터(6)를 우측으로 조정한다.Therefore, if this is inputted to the differential amplifier 7, the output becomes ″ 0 ″, and if it is displaced to the left, the output from the left sensor 4a becomes large and a signal other than ″ 0 ″ is output. Adjust (6) to the right.

또한 우측으로 벗어나게되면 우센서(4b)에서의 출력이 크게되어 좌측으로 벗어났을때와 반대출력이 발생되므로 방향제어회로(1)에서 모터(6)를 좌측으로 하여 무인운반차의 유동륜(3)이 유도선(5)위를 따라 주행하도록 한다.In addition, if the output of the right sensor 4b is large, the output of the right sensor 4b becomes large, and the output of the opposite direction is generated. The vehicle runs along the guide line 5.

여기서 증폭기(7)(8)전단에 제4도에 도시한 바와같은 f1,f2 필터(11)(12)로된 필터회로를 삽입한후 제3도에 도시한 바와같은 유도선 포셀로에 의해 설명하면 다음과 같다.Here, the filter circuit composed of the f1 and f2 filters 11 and 12 as shown in FIG. 4 is inserted into the front of the amplifiers 7 and 8, and then the induction line porselle as shown in FIG. The explanation is as follows.

좌측선로(S2)에는 f2 주파수필터(12)의 f2 주파수, 우측선로(53)에는 f1 주파수필터(11)의 f1 주파수를 각각 흘려주고, 곡인차(10)를 선로(S1)에서 절환스위치(SW1)에 의해 f1 주파수를 선택하여 출발시킨후 분기점에서 f2 주파수를 선택하면 무인차(10)가 좌측선로(S2)의 유도선을 따라 주행하게된다.The f2 frequency of the f2 frequency filter 12 is flown to the left line S2, and the f1 frequency of the f1 frequency filter 11 is flown to the right line 53, and the indifference difference 10 is switched from the line S1 to the switch ( After the frequency f1 is selected and started by SW1), when the frequency f2 is selected at the branch point, the driverless vehicle 10 travels along the guide line of the left line S2.

이때 우측선로(S3)로 무인차(10)를 보내려고하면 계속 f1 주파수를 선택하여 주행시킴에 따라 무인차(10)가 우측유도선위를 주행하게된다.At this time, if the driverless vehicle 10 is to be sent to the right track S3, the driverless vehicle 10 travels on the right induction line as the driving continues by selecting the frequency f1.

따라서 분기점에서 차를 운행시키려면 f1,f2 주파수를 위한 2개이상의 발진기를 사용하여 유도선을 포설하여야 하므로 센서구성이 복잡해지고, 선로의 폐회로를 만들어주기 위해 바닦에 걸리는 외선은 천정배관등의 방법으로 발진기에 돌아와 폐회로를 구성하여야 하므로 배선공사가 복잡해지는 문제점이 있었다.Therefore, in order to operate the car at the branch point, two or more oscillators for f1 and f2 frequencies need to be installed, so the sensor configuration is complicated, and the external rays that are caught on the ground to make the closed circuit of the line can be Return to the oscillator has to be a closed circuit configuration has a problem that the wiring work is complicated.

본 발명은 이와같은 종래의 문제점을 개선하기 위해 무인차의 전좌, 전우, 후좌, 후우에 레퍼런스코일, 에러코일을 설치한후 에러상태를 자동으로 검출함으로써 센서의 선택만으로 방향을 분기하도록한 무인운반차 유도용센서를 창안한 것으로, 이하 첨부한 도면에 의해 상세히 설명한다.The present invention is to install the reference coil, error coil in the front left, front right, rear left, rear right of the driverless vehicle to improve the conventional problems, and then automatically detects the error state, so that the direction is diverted only by selecting the sensor. Invented a car inductive sensor, which will be described in detail with reference to the accompanying drawings.

제5도 및 제6도는 본 발명 무인운반차 유도용센서의 블럭도 및 회로도로서 이에 도시한 바와같이, 병렬 접속된 에러코일(EL), 콘덴서(C1)(C2), 저항(R1)을 통해 무인차의 기울어짐을 검출하는 에러검출부(21)와, 병렬접속된 레퍼런스코일(RL), 콘덴서(C3-C5), 저항(R2)을 통해 무인차의 기준상태를 검출하는 레퍼런스검출부(22)와, 상기 레퍼런스검출부(22)의 출력이 저항(R23-R25)과 접속된 반전(-)증폭용 연산증폭기(OP3), 저항(R26-R30) 및 가변저항(VR3)과 접속된 반전증폭용 연산증폭기(OP4)를 통해 연속 증폭되어 차의 방향제어회로(1)에 인가되게한 증폭부(23)와, 상기 에러검출부(21), 레퍼런스검출부(22)의 출력이 저항(R3)(R4)을 통해 합성되고, 다이오드(D1)(D2), 저항(R5)(R6)과 접속된 연산증폭기(OP1)를 통해 정류되어 위상을 비교하는 정류위상비교부(25)와, 상기 에러검출부(21), 레퍼런스검출부(22)의 출력이 저항(R7)(R8)을 통해 합성되어 저항(R9)(R10), 다이오드(D3)(D4)와 접속된 연산증폭기(OP2)를 통해 정류되어 위상을 비교하는 정류위상비교부(24)와, 상기 정류위상비교부(24)의 출력의 부호가 저항(R11-R13)과 접속된 반전(-)증폭용 연산증폭기(OP5)를 통해 변환되는 부호변환부(26)와, 상기 정류위상비교부(25), 부호변환부(26)의 출릭이 저항(R14)(R15)을 통해 합성되고, 저항(R17-R22), 가변저항(VR1)(VR2), 콘덴서(C6)를 통해 접속된 연산증폭기(OP6)로 비교하여 에러출력을 인가하는 증폭 및 평활부(27)로 구성한다.5 and 6 are block diagrams and circuit diagrams of the unmanned vehicle induction sensor according to the present invention. As shown therein, an error coil EL, a capacitor C1, a C2, and a resistor R1 are connected in parallel. An error detector 21 for detecting the inclination of the driverless vehicle, a reference detector 22 for detecting a reference state of the driverless vehicle through the reference coil RL, the capacitor C3-C5, and the resistor R2 connected in parallel; The inverted amplification operation OP3 connected to the resistors R23 to R25 with the outputs of the reference detector 22 connected to the resistors R23 to R25, and the inverted amplification operation connected to the resistors R26 to R30 and the variable resistor VR3. The amplifier 23 continuously amplifies through the amplifier OP4 and is applied to the vehicle direction control circuit 1, and the outputs of the error detector 21 and the reference detector 22 are resistors R3 and R4. And a rectifying phase comparator 25 for comparing the phases by commutating through the operational amplifiers OP1 connected to the diodes D1, D2, and resistors R5, R6, and the error detector 21. ), The output of the reference detector 22 is synthesized through the resistors R7 and R8 and rectified through the operational amplifier OP2 connected to the resistors R9 and R10 and the diodes D3 and D4. Code conversion for comparing the rectifying phase comparing unit 24 and the output of the rectifying phase comparing unit 24 through an inverting amplifying operational amplifier OP5 connected to the resistors R11 to R13. The unit 26, the rectification of the rectifying phase comparator 25 and the code conversion unit 26 are synthesized through the resistors R14 and R15, and the resistors R17 to R22 and the variable resistor VR1 and VR2. And an amplification and smoothing unit 27 for applying an error output as compared with the operational amplifier OP6 connected through the capacitor C6.

제7도는 본 발명 유도선 포설로를 보인 설명도로서 이에 도시한 바와같이, 유도전원주파수(11)에 의해 구동되는 무인차(10)가 좌센서(4a), 우센서(4b)의 검출에 의해 분기점(28)에서 좌측선로(S2), 우측선로(S3)로 자동으로 주행하는 것을 나타낸다.FIG. 7 is an explanatory view showing the induction line laying path of the present invention, as shown in FIG. 7, in which the driverless vehicle 10 driven by the induction power source frequency 11 detects the left sensor 4a and the right sensor 4b. This indicates that the vehicle automatically travels from the branch point 28 to the left line S2 and the right line S3.

제8도는 본 발명 코일에 대한 설치도로서 이에 도시한 바와같이, 무인차(10)에 부착된 레퍼런스코일(RL), 에러코일(EL)의 배치상태를 나타낸 것이다.8 is an installation diagram of the coil of the present invention, as shown therein, shows an arrangement state of the reference coil RL and the error coil EL attached to the driverless vehicle 10.

제9도 및 제10도는 본 발명 무인운반차 유도용센서에 있어서, 정상상태 및 기울어진 상태에 대한 각부 파형도로서 이에 도시한 바와같이, (a)는 연산증폭기(OP1)(OP2)의 출력파형, (b)는 연산증폭기(OP5)의 출력파형, (c)는 연산증폭기(OP6)의 반전(-)입력파형을 나타낸 것으로, 이하 작용효과를 설명한다.9 and 10 are waveform diagrams of each part of the steady state and the inclined state in the unmanned vehicle induction sensor of the present invention, as shown therein, (a) is the output of the operational amplifier (OP1) (OP2) The waveform (b) shows the output waveform of the operational amplifier OP5, and (c) shows the inverted (-) input waveform of the operational amplifier OP6. The operation and effect will be described below.

제6도에 도시한 바와같이, 레퍼런스코일(RL), 저항(R2), 콘덴서(C3-C5)를 통해 감지된 레퍼런스전압이 저항(R23-R25)과 접속된 연산증폭기(OP3)를 통해 반전증폭되며, 이의 신호가 저항(R26-R29) 및 가변저항(VR3)과 접속된 연산증폭기(OP4)를 통해 다시 반전증폭된후 차의 방향제어회로(1)에 인가됨에 따라 차가 선로위에 있는가, 선로를 벗어났는가를 판단한다. 즉 입력된 전압의 크기와 거리가 반비례하므로 입력 전압이 일정한 전압이하로 되면 차가 선로를 벗어난 것으로 판단한다.As shown in FIG. 6, the reference voltage sensed through the reference coil RL, the resistor R2 and the capacitors C3-C5 is inverted through the operational amplifier OP3 connected to the resistors R23-R25. Is the difference on the track as its signal is inverted and amplified again through the operational amplifier OP4 connected to the resistors R26-R29 and the variable resistor VR3 and then applied to the direction control circuit 1 of the vehicle, Determine if you are off the track. That is, since the magnitude and distance of the input voltage are inversely proportional, it is determined that the difference is out of the line when the input voltage falls below a certain voltage.

이때 차가 정상적인 주행을 하게되면 자속의 방향과 코일의 감긴방향이 같게되어 에러코일(EL), 저항(R1), 콘덴서(C1)(C2)를 통해 유기되는 전압이 ″0″으로 되므로 레퍼런스코일(RL)을 통해, 인가된 전압이 저항(R4)(R7)을 통해 인가되고, 각각의 다이오드(D1)(D2)(D3)(D4)를 통해 정류됨과 아울러 연산증폭기(OP1)(OP2)를 통해 증폭됨에 따라 제9a도에 도시한 바와같은 출력이 발생된다. 이와동시에 연산증폭기(OP2)의 출력이 저항(R11)을 통해 인가된후 저항(R12)(R13)과 럽속된 연산증폭기(OP5)를 통해 반전증폭됨에 따라 제9b도에 도시한 바와같은 출력이 발생되며, 이의 출력이 저항(R14)(R15)을 통해 반대위상을 갖는 연산증폭기(OP1)의 출력과 합성됨에 따라 제9c도에 도시한 바와같은 ″0″ 전압레벨이 발생되어 연산증폭기(OP6)에 입력된다. 이와같이하여 연산증폭기(OP6)의 입력전압의 크기가 같고 부호가 반대이므로 출력전압이 ″0″ V로 되어 차의 방향제어회로(1)에 인가됨에 따라 차의 정상적인 주행이 판정된다.At this time, if the car runs normally, the direction of the magnetic flux and the winding direction of the coil are the same, and the voltage induced through the error coil EL, the resistor R1, and the capacitor C1 and C2 becomes ″ 0 ″. Through RL, an applied voltage is applied through resistors R4 and R7, rectified through respective diodes D1, D2, D3 and D4, and the operational amplifiers OP1 and OP2. As amplified through, an output as shown in FIG. 9A is generated. At the same time, as the output of the operational amplifier OP2 is applied through the resistor R11 and then inverted through the operational amplifier OP5 coupled with the resistors R12 and R13, the output as shown in FIG. As the output thereof is combined with the output of the operational amplifier OP1 having the opposite phase through the resistors R14 and R15, a voltage level of ″ 0 ″ as shown in FIG. 9C is generated to generate the operational amplifier OP6. ) Is entered. In this way, since the magnitude of the input voltage of the operational amplifier OP6 is the same and the sign is opposite, the output voltage becomes ″ 0 ″ V and is applied to the direction control circuit 1 of the car, whereby normal driving of the car is determined.

또한 차가 주행중 좌측,우측으로 기울어지게 되면 에러코일(EL)을 통해 유도되는 전압은 기울어진 각도에 비례하여 발생되는 것으로, 저항(R3)(R4)을 통해 레퍼런스코일(RL)의 유기전압과 합성된 전압이 다이오드(D1)(D2)를 통해 정류됨과 아울러 연산증폭기(OP1)를 통해 증폭됨에 따라 제10a도에 도시한 바와같은 출력이 발생된다. 이와동시에 저항(R7)(R8)을 통해 연산증폭기(OP2)에 입력되는 전압은 위상이 반대이므로 레퍼런스코일(RL)에서 에러코일(EL)의 전압을 감산한 전압이 저항(R11)을 통과한후 연산증폭기(OP5)를 통해 반전증폭됨에 따라 제10b도에 도시한 바와같은 출력이 발생되며, 이의 출력이 연산증폭기(OP1)의 출력과 합성됨에 따라 제10c도에 도시한 바와같은 파형이 발생된다. 이를 최종 출력용 연산증폭기(OP6)에 입력하면 콘덴서(C6)에 의해 평활된 직류전압으로 출력된다. 이때 차가 반대방향으로 기울게되면 연산증폭기(OP1)(OP2)로 입력되는 에러코일(EL)의 위상이 반대로 되므로 상기와 반대되는 직류전압이 출력된다. 이와같이하여 발생된 신호는 무인운반차의 방향제어회로(1)에 입력되어 무인운반차가 유도선위를 정확하게 주행할 수 있도록 방향을 제어하는데 사용된다.In addition, when the vehicle is inclined to the left and right while driving, the voltage induced through the error coil EL is generated in proportion to the inclination angle, and is synthesized with the induced voltage of the reference coil RL through the resistors R3 and R4. As the voltage is rectified through the diodes D1 and D2 and amplified by the operational amplifier OP1, an output as shown in FIG. 10A is generated. At the same time, since the voltage input to the operational amplifier OP2 through the resistors R7 and R8 is opposite in phase, a voltage obtained by subtracting the voltage of the error coil EL from the reference coil RL passes through the resistor R11. After the inverted amplification through the operational amplifier OP5, an output as shown in FIG. 10b is generated, and its output is combined with the output of the operational amplifier OP1 to generate a waveform as shown in FIG. 10c. do. When this is input to the operational amplifier OP6 for final output, the capacitor C6 outputs the smoothed DC voltage. At this time, when the difference is inclined in the opposite direction, the phase of the error coil EL input to the operational amplifiers OP1 and OP2 is reversed, and thus the DC voltage opposite to the above is output. The signal generated in this way is input to the direction control circuit 1 of the unmanned vehicle and used to control the direction so that the unmanned vehicle can travel accurately on the guide line.

따라서, 제7도에 도시한 바와같이, 무인차(10)가 주행로(S1)에서 우측센서(4b)를 선택하여 출발한 경우에는 무인차(10)가 분기점(28)을 지날때 좌측센서(4a)를 선택하여 주행하면 차의 진행방향에서 보았을때 좌측의 유도선을 따라 주행하게 되므로 차를 주행로(S2)로 보내게되며, 무인차(10)가 주행로(S1)에서 좌측 센서(4a)를 선택하여 출발한 경우에는 무인차(10)가 분기점(28)을 지날때 계속 센서를 선택하여 주행하면 차의 진행방향에서 보았을때 좌측의 유도선을 따라 주행하게 되므로 차를 주행로(S2)로 보내게 된다. 여기서 무인차(10)를 주행로(S3)로 보내려하는 경우에는 분기점(28)에서 우측센서(4b)를 선택하면 된다.Therefore, as shown in FIG. 7, when the driverless vehicle 10 starts by selecting the right sensor 4b in the driving path S1, the left sensor when the driverless vehicle 10 passes the branch point 28. If you select (4a) and drive in the direction of the car, the vehicle moves along the guide line on the left side so that the vehicle is sent to the driving path (S2), and the unmanned vehicle 10 is the left sensor at the driving path (S1). In the case of selecting (4a), when the driverless vehicle 10 crosses the branch point 28 and continues to select the sensor, the vehicle runs along the guidance line on the left side when viewed in the direction of travel of the vehicle. It is sent to (S2). In this case, when the driverless vehicle 10 is to be sent to the driving path S3, the right sensor 4b may be selected at the branch point 28.

이상에서 상세히 설명한 바와같이 본 발명은 단일유도전원주파수에 의해 폐회로를 형성하여 무인운반차의 분기를 감지하여 유도하므로 설치공사가 간편해질 수 있는 효과가 있다.As described in detail above, the present invention has an effect that the installation work can be simplified because the closed circuit is formed by a single induction power supply frequency to detect and induce branching of the unmanned vehicle.

Claims (1)

에러코일(EL)과 레퍼런스코일(RL)을 별도로 설치하여, 상기 레퍼런스코일(RL)의 출력은 반전증폭용 연산증폭기(OP3)(OP4)를 통해 연속증폭하여 유도선위의 무인운반차를 판별하고, 각각의 저항(R3)(R4)(R7)(R8)을 통해 상기 에러코일(EL), 레퍼런스코일(RL)의 전압을 가산한후 각각의 다이오드(D1-D4)와 접속된 연산증폭기(OP1)(OP2)를 통해 정류 및 증폭하여, 상기 연산증폭기(OP5)를 통해 상기 연산증폭기(OP2)의 출력을 반전증폭하여 상기 연산증폭기(OP1)의 출력과 합성하고, 연산증폭기(OP6)를 통해 비교하여 무인운반차의 기울어진 방향 및 정도를 판별하게 구성하여 된 것을 특징으로 하는 무인운반차 유도용센서.The error coil EL and the reference coil RL are separately installed, and the output of the reference coil RL is continuously amplified through the operational amplifier OP3 and OP4 for inverting amplification to determine the unmanned transport difference of the guide line. After adding the voltages of the error coil EL and the reference coil RL through the resistors R3, R4, R7, and R8, an operational amplifier connected to each diode D1-D4 Rectifying and amplifying through OP1) and OP2, and inverting and amplifying the output of the operational amplifier OP2 through the operational amplifier OP5 and combining the output of the operational amplifier OP1 and combining the operational amplifier OP6. Unmanned transport induction sensor, characterized in that configured to determine the inclination direction and degree of the unmanned transport by comparing through.
KR1019890007471A 1989-05-31 1989-05-31 Nonhuman vehicle sensor KR910009226B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019890007471A KR910009226B1 (en) 1989-05-31 1989-05-31 Nonhuman vehicle sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019890007471A KR910009226B1 (en) 1989-05-31 1989-05-31 Nonhuman vehicle sensor

Publications (2)

Publication Number Publication Date
KR900018646A KR900018646A (en) 1990-12-22
KR910009226B1 true KR910009226B1 (en) 1991-11-05

Family

ID=19286675

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019890007471A KR910009226B1 (en) 1989-05-31 1989-05-31 Nonhuman vehicle sensor

Country Status (1)

Country Link
KR (1) KR910009226B1 (en)

Also Published As

Publication number Publication date
KR900018646A (en) 1990-12-22

Similar Documents

Publication Publication Date Title
US4656406A (en) Electric field guidance system for automated vehicles
US5404087A (en) Automated guided vehicle wire guidance apparatus
US3763955A (en) Arrangement for controlling the steering of vehicles directed along apredetermined path
KR100817826B1 (en) Transport carriage system
US4524314A (en) Rear travel guidance system
JPH0767270A (en) Displacement detector in noncontact power supply for mobile body
KR910009226B1 (en) Nonhuman vehicle sensor
JPH0767271A (en) Displacement detector in noncontact power supply for mobile body
JPS56145304A (en) Position detector
JPS61224009A (en) Automatic steering device of unmanned car
JPS6328203A (en) Position detector
KR0160302B1 (en) Control system for unmanned carrier vehicle
JP3024179B2 (en) Guidance sensor
SU830493A1 (en) Device for control of automatic transport movement
JPH0749522Y2 (en) Guidance signal detector for unmanned vehicles
KR100246581B1 (en) System for stopping automatic guided vehicle
JPS60193023A (en) Guide device for unmanned truck
JPS63204415A (en) Guiding method for unmanned vehicle
JPS6249283A (en) Ferrite proximity sensor
JP2519141B2 (en) Magnetic bearing device
Dunlop et al. Design of magnetic steering sensors for a serpentine driverless vehicle
JPS62113211A (en) Controller for unmanned vehicle
JP2897300B2 (en) Magnetic detector
JP2639009B2 (en) Guidance sensor
KR960002923Y1 (en) Inspecting device of driving root in a spraying apparatus

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 19971227

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee