JPS61224009A - Automatic steering device of unmanned car - Google Patents

Automatic steering device of unmanned car

Info

Publication number
JPS61224009A
JPS61224009A JP60065443A JP6544385A JPS61224009A JP S61224009 A JPS61224009 A JP S61224009A JP 60065443 A JP60065443 A JP 60065443A JP 6544385 A JP6544385 A JP 6544385A JP S61224009 A JPS61224009 A JP S61224009A
Authority
JP
Japan
Prior art keywords
pole
magnetic
deviation
unmanned vehicle
guiding belt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60065443A
Other languages
Japanese (ja)
Inventor
Hisatsugu Watanabe
久嗣 渡辺
Yuki Suzuki
鈴木 勇記
Masakatsu Tsubokawa
坪川 正勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kito KK
Kito Corp
Original Assignee
Kito KK
Kito Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kito KK, Kito Corp filed Critical Kito KK
Priority to JP60065443A priority Critical patent/JPS61224009A/en
Publication of JPS61224009A publication Critical patent/JPS61224009A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • G05D1/0263Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means using magnetic strips

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To make it possible to guide at high accuracy using simple constitution by detecting the size of magnetic fluxes of N pole and S pole coming from a guiding belt consisting of a beltlike magnet separately, and detecting deviation of an unmanned car from a guiding belt from the difference of the detected value. CONSTITUTION:A guiding belt 11 is laid on the road surface on which the unmanned car travels and constituted of a beltlike magnet both sides of which become continuous N pole or S pole. A magnetism detector 12 consists of a magnetism detecting element 12a and a deviation signal generating circuit 12b, and the element 12a detects the size of magnetic sluxes of N pole and S pole coming from the guiding belt 11 separately and outputs to the circuit 12b. The circuit 12b generates a deviation signal that indicates the amount of deviation of the unmanned car from the guiding belt 11 and sends the signal to a control device 13. The device 13 controls a steering gear 14 according to the deviation signal, and controls to make the center of the unmanned car coincide with the center of the guiding belt 11. By this constitution, one magnetism detecting element is enough for the purpose and constitution of the magnetism detector and control device become simple, and at the same time, highly accurate conducting becomes possible.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、無人車を走行路面に敷設した誘導帯に沿って
自動的に無人車を誘導する無人車の自動操舵装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an automatic steering device for an unmanned vehicle that automatically guides the unmanned vehicle along a guide strip laid on a road surface on which the unmanned vehicle travels.

〔従来技術〕[Prior art]

無人車を自動的に誘導する方法には、従来各種ノ方法が
用いられている。その中で近年無人車の走行路面に磁気
を帯びた誘導帯を敷設し、該誘導帯に沿って無人車を誘
導する方法が開発されている。
Various methods have been used to automatically guide unmanned vehicles. Among these, in recent years, a method has been developed in which a magnetic guide strip is laid on the road surface on which an unmanned vehicle travels and the unmanned vehicle is guided along the guide strip.

上記技術として特開昭59−202514号公報に記載
されたものがある。第2図及び第3図は該文献に記@き
れた無人台車の誘導装置を示す図で、第2図は台車と誘
導帯を示す平面図、第3図は誘導帯と磁気検出センサの
関係を示す図である6図示するように、無人台車の走行
路面に磁気を帯びた誘導帯1を敷設し、一方無人台車は
台車2の下面の前端部及び後端部に磁気センサ3,3′
を設け、該磁気セ〉す3,3′で誘導帯1からの磁気を
検出して誘導帯1に沿って無人台車を誘導する。
The above technique is described in Japanese Patent Application Laid-open No. 59-202514. Figures 2 and 3 are diagrams showing the guidance system for an unmanned trolley as described in the document. Figure 2 is a plan view showing the trolley and the guide band, and Figure 3 is the relationship between the guide band and the magnetic detection sensor. As shown in Figure 6, a magnetic guide strip 1 is laid on the road surface of the unmanned truck, and magnetic sensors 3, 3' are placed on the front and rear ends of the lower surface of the unmanned truck 2.
The unmanned truck is guided along the guide zone 1 by detecting the magnetism from the guide zone 1 with the magnetic sections 3 and 3'.

磁気センサ3,3′は多数の磁気検出素子4より構成き
れており、各磁気検出素子4は、一定の磁力をもつ誘導
帯1の磁界5の強さに反応する高さ位置で且つ台車2の
左右方向へ所定のピッチで配設許れている。台車2が走
行中にたとえば右側へずれたとすると、磁気センサ3の
中央よりも左側に位置する複数の磁気検出素子4とが誘
導帯1の磁気を検出することになる。今、磁気センサ3
の中央から磁気を感知している第n8番目の磁気検出素
子4までの距離をllx同じく第n2番目の磁気検出素
子4までの距離を1.とすると、磁気センサ3の中央か
ら誘導帯1の中心線上までの1++It 距JlILは、L−□ で表わされ、この距離が誘導帯
1からのずれの量となる。このずれの量が零になるよう
に制御装置で自動的に制御しながら無人台車を誘導する
The magnetic sensors 3, 3' are composed of a large number of magnetic detection elements 4, and each magnetic detection element 4 is located at a height position that responds to the strength of the magnetic field 5 of the induction band 1 having a constant magnetic force, and at a position close to the trolley 2. They are allowed to be arranged at a predetermined pitch in the left and right direction. For example, if the truck 2 shifts to the right side while traveling, the plurality of magnetic detection elements 4 located to the left of the center of the magnetic sensor 3 will detect the magnetism of the guide band 1. Now, magnetic sensor 3
The distance from the center to the n8th magnetic sensing element 4 sensing magnetism is llx, and the distance from the center to the n2nd magnetic sensing element 4 is 1. Then, the 1++It distance JlIL from the center of the magnetic sensor 3 to the center line of the guide band 1 is expressed as L-□, and this distance is the amount of deviation from the guide band 1. The control device automatically guides the unmanned cart so that the amount of deviation becomes zero.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記構成の無人車の誘導装置は磁気検出
素子4を多数用いて磁気センサ3,3゛を構成するため
、磁気検出器11のコストが高くなると共に、磁気検出
素子4の間隔ピッチ以下の微妙な調整ができないという
欠点があった。
However, since the guidance system for an unmanned vehicle having the above configuration uses a large number of magnetic detection elements 4 to constitute the magnetic sensors 3, 3', the cost of the magnetic detector 11 increases, and the distance between the magnetic detection elements 4 is The drawback was that it was not possible to make subtle adjustments.

本発明は上述の点に鑑みてなされたもので、磁気センサ
のコストが安価で、且つ誘導体からの微/hなすれに対
しても的確に応答でき、且つ精度良く誘導する無人車の
自動操舵装置を提供することにある。
The present invention has been made in view of the above-mentioned points, and provides an automatic steering system for an unmanned vehicle that uses a magnetic sensor at a low cost, can accurately respond to slight / h slippage from an inductor, and guides the vehicle with high precision. The goal is to provide equipment.

〔問題点を解決するための手段〕[Means for solving problems]

上記、問題点を解決するため本発明は、無人車の走行路
面に両側面が連続したN極或いはS極となる帯状の磁石
からなる誘導帯を敷設すると共に、無人車には該誘導帯
からのN極或いはS極の磁気を別々に検出し該検出値の
差から無人車の前記誘導帯からのずれを検出する磁気検
出器と、該磁気検出器からの出力で無人車の操舵装置を
制御してずれを零にする制御装置とを設けて無人車の自
動操舵装置を構成した。
In order to solve the above-mentioned problems, the present invention lays a guide strip made of band-shaped magnets with continuous N or S poles on both sides on the road surface on which an unmanned vehicle runs, and also provides a guide strip for the unmanned vehicle from the guide strip. A magnetic detector that separately detects the magnetism of the north pole or south pole of the vehicle and detects the deviation of the unmanned vehicle from the guide zone based on the difference between the detected values, and the output from the magnetic detector controls the steering system of the unmanned vehicle. An automatic steering system for an unmanned vehicle is constructed by providing a control device that controls the deviation to zero.

〔作用〕[Effect]

上記のように構成することにより、磁気検出器は、誘導
帯からのN極或いはS極の磁束の大きさを別々に検出し
該検出値の差から無人車の誘導帯からのずれを検出し、
該ずれが零になるように無人車の操舵装置を制御するか
ら誘導帯からの微小なすれにだいしても的確に応答し精
度の良い誘導が可能になる。
With the above configuration, the magnetic detector separately detects the magnitude of the N-pole or S-pole magnetic flux from the inductive band, and detects the deviation of the unmanned vehicle from the inductive band based on the difference between the detected values. ,
Since the steering system of the unmanned vehicle is controlled so that the deviation becomes zero, it is possible to accurately respond to even the slightest deviation from the guidance zone and to provide highly accurate guidance.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図は、本発明に係る無人車の自動操舵装置の構成を
示すブロック図である。自動操舵装置は、誘導帯11と
、無人車の誘導帯11からのずれを検出する磁気検出器
12と、制御装置13と、操舵装置14と、ポテンショ
メータ15と、タコジェネレータ16とから構成される
FIG. 1 is a block diagram showing the configuration of an automatic steering device for an unmanned vehicle according to the present invention. The automatic steering device includes a guide band 11, a magnetic detector 12 that detects deviation of the unmanned vehicle from the guide band 11, a control device 13, a steering device 14, a potentiometer 15, and a tacho generator 16. .

誘導帯11は、無人車の走行路面に敷設きれており、第
7図に示すように両面が連続したN極或いはS極となる
帯状の磁石体からなる。また、該誘導帯11を構成する
磁石体は、無人車の誘導経路に沿って敷設されるため柔
軟性のある例えば、ゴム磁石等を用いる。
The guide strip 11 is completely laid down on the road surface on which the unmanned vehicle is running, and is made of a strip-shaped magnet whose both sides have continuous north or south poles, as shown in FIG. In addition, since the magnetic body constituting the guide band 11 is laid along the guide route of the unmanned vehicle, a flexible magnet such as a rubber magnet is used.

磁気検出器12は、後に詳述するように磁気検出素子1
2aと偏差信号発生回路12bとから構成きれる。該磁
気検出素子12aは、誘導帯11から発せられるN極及
びS極の磁束の大きさを別々に検出して偏差信号発生回
路12bに出力する。該偏差信号発生回路12bは、前
記磁気検出素子12aで検出きれたN極およびS極の磁
束の大きさから無人車が誘導帯11よりどれだけずれて
いるかを示す偏差信号を発生し、該偏差信号を制御装置
13に送る。制御装置13は、前記偏差信号により操舵
装置14を制御して、無人車の中心が誘導帯11の中心
に一致誇せるように制御する。操舵装置14は操舵用モ
ータ14bと、該操舵用モータ14bを駆動するモータ
駆動装置14aとから構成されている。操舵用モータ1
4bの操舵量は、ポテンショメータ15で検出きれ前記
制御装置13にフィードバックきれる。タコジェネレー
タ16は、操舵用モータ14bの過回転を防止するため
のものであり、必ずしも必要な物ではない。
The magnetic detector 12 includes a magnetic detection element 1 as will be described in detail later.
2a and a deviation signal generating circuit 12b. The magnetic detection element 12a separately detects the magnitude of the N-pole and S-pole magnetic fluxes emitted from the induction band 11 and outputs them to the deviation signal generation circuit 12b. The deviation signal generation circuit 12b generates a deviation signal indicating how much the unmanned vehicle is deviated from the guide band 11 based on the magnitude of the N-pole and S-pole magnetic fluxes detected by the magnetic detection element 12a, and calculates the deviation. A signal is sent to the control device 13. The control device 13 controls the steering device 14 using the deviation signal so that the center of the unmanned vehicle is aligned with the center of the guide zone 11. The steering device 14 includes a steering motor 14b and a motor drive device 14a that drives the steering motor 14b. Steering motor 1
The amount of steering 4b can be detected by a potentiometer 15 and fed back to the control device 13. The tachogenerator 16 is for preventing over-rotation of the steering motor 14b, and is not necessarily necessary.

第4図は磁気検出器12の構成を示す回路図である。同
図に置いて、Fは磁芯であり、該磁芯FにはコイルLL
 、L2が巻かれており、該コイルLl及びフィルL2
にはそれぞれ発振回路O8から抵抗器R1、R2を通し
て高周波(fキロ、7khz)電流が通電きれる。フィ
ルL1及びフィルL2の巻き方向は、コイルLl 、L
2から発せられる磁束が同じ向きになるようにする。コ
イルLl、L2に、発振回路O5から高周波電流が流れ
磁束が発生し、該磁束に比例した電圧がコイルLL 、
L2に発生する。該電圧をダイオードD1、D2を通し
て偏差信号発生回路12bに送り、該偏差信号発生回路
12bで無人車の誘導帯11からのずれ(実際には磁気
検出素子12aの誘導帯11からのずれ)を検出する。
FIG. 4 is a circuit diagram showing the configuration of the magnetic detector 12. In the same figure, F is a magnetic core, and the magnetic core F has a coil LL.
, L2 are wound, the coil Ll and the fill L2
A high frequency (fkm, 7kHz) current is passed from the oscillation circuit O8 through the resistors R1 and R2, respectively. The winding direction of the fill L1 and the fill L2 is the coil Ll, L
Make sure that the magnetic fluxes emitted from 2 are in the same direction. A high-frequency current flows from the oscillation circuit O5 to the coils Ll and L2, generating magnetic flux, and a voltage proportional to the magnetic flux is applied to the coils LL and L2.
Occurs in L2. The voltage is sent to the deviation signal generation circuit 12b through the diodes D1 and D2, and the deviation signal generation circuit 12b detects the deviation of the unmanned vehicle from the induction band 11 (actually, the deviation of the magnetic detection element 12a from the induction band 11). do.

第5図は偏差信号発生回路12bの出力例を示す図で、
第6図に示すように、磁気検出素子12aの誘導帯11
のN極側へのずれを“−”としS極側のずれを“+”と
すると、偏差信号値Iの変化は第5図に示すようになる
。即ち磁気検出素子12aの中心と誘導帯11の中心が
一致しているときは偏差信号値Iは零であり、磁気検出
素子12aが誘導帯11のS極側にずれると偏差信号値
■プラス方向にずれの量と比例して増加する。また、反
対にN極側にずれると偏差信号値Iはマイナス方向へず
れの量と比例して増加する。
FIG. 5 is a diagram showing an example of the output of the deviation signal generation circuit 12b.
As shown in FIG. 6, the induction band 11 of the magnetic detection element 12a
When the deviation toward the N pole side is assumed to be "-" and the deviation toward the S pole side is assumed to be "+", the change in the deviation signal value I becomes as shown in FIG. That is, when the center of the magnetic sensing element 12a and the center of the inductive band 11 coincide, the deviation signal value I is zero, and when the magnetic sensing element 12a shifts to the S pole side of the inductive band 11, the deviation signal value I becomes positive. increases in proportion to the amount of deviation. On the other hand, when there is a shift toward the N pole side, the deviation signal value I increases in the negative direction in proportion to the amount of shift.

上記構成の無人車の自動操舵装置において、無人車が走
行装置(図示せず)で誘導帯11に沿って走行する際、
磁気検出素子12aは誘導帯11からの磁束により発生
する電圧をN極及びS極それぞれ別々に検出し偏差信号
発生回路12bに送る。偏差信号発生回路12bでは、
前記に説明した原理で偏差信号値Iを検出して、該偏差
信号値■を制御装置13に送る。制御装置13は、偏差
信号値工に基づいているモータ駆動装置14aを制御し
て操舵用モータ14bを起動制御する。操舵用モータ1
4bによる操舵量はポテンショメータ15により検出さ
れて制御装置13にフィードバックきれる。
In the automatic steering system for an unmanned vehicle having the above configuration, when the unmanned vehicle travels along the guide zone 11 using a traveling device (not shown),
The magnetic detection element 12a detects the voltage generated by the magnetic flux from the induction band 11 separately for the N pole and the S pole, and sends it to the deviation signal generation circuit 12b. In the deviation signal generation circuit 12b,
The deviation signal value I is detected according to the principle explained above, and the deviation signal value ■ is sent to the control device 13. The control device 13 controls a motor drive device 14a based on the deviation signal value to start and control the steering motor 14b. Steering motor 1
The amount of steering by 4b is detected by potentiometer 15 and fed back to control device 13.

第8図は無人車の走行床面の走行経路に沿って張り巡ら
きれた誘導帯11を示す図である0図示するように、無
人車の走行経路La、Lb、Lc、Ldに沿って誘導帯
11が敷設きれて、走行経路の所定の位置には経路切り
換え用の磁性体からなるフード板18が設けられている
。無人車には、第9図に示すように前記走行経路La、
Lb。
FIG. 8 is a diagram showing the guidance belt 11 stretched out along the running route of the unmanned vehicle on the running floor surface. After the belt 11 is completely laid, a hood plate 18 made of a magnetic material for route switching is provided at a predetermined position on the travel route. As shown in FIG. 9, the unmanned vehicle has the traveling route La,
Lb.

走行経路Lc、Ld、走行経路Lb、Ldに対応して2
個の磁気検出器12−1.12−2と1個の切り換えセ
ンサ19が設けられる。今、走行経路Lc上を磁気検出
器12−1で、誘導帯11からの磁気を検出しながら無
人車が走行し、切り換え点CHに到達するとセンサ19
がコード板18のコードを読みとり該フード情報に基づ
き、例えば磁気検出器12−1を磁気検出器12−2へ
切り換えると無人車は走行経路LcからLdに切り換え
走行経路Ldに沿って走行する。このような事は他の走
行経路La、Lb及び走行経路La。
2 corresponding to the traveling routes Lc, Ld, and the traveling routes Lb, Ld.
magnetic detectors 12-1, 12-2 and one switching sensor 19 are provided. Now, the unmanned vehicle is traveling on the traveling route Lc while detecting the magnetism from the guide band 11 with the magnetic detector 12-1, and when it reaches the switching point CH, the sensor 19
reads the code on the code board 18 and switches, for example, the magnetic detector 12-1 to the magnetic detector 12-2 based on the hood information, and the unmanned vehicle switches from the traveling route Lc to Ld and travels along the traveling route Ld. This applies to other travel routes La, Lb and travel route La.

Lcにおいても同様に行なうことが可能である。The same can be done for Lc as well.

以上説明したように、上記実施例によれば磁気検出器1
2により誘導帯11からのN極及びS極の磁束の強さを
それぞれ検出して、その検出値の差より無人車の誘導帯
11からのずれを検出し、該ずれが零になるように制御
装置13で操舵装置14を制御して無人車を誘導帯11
に沿って走行するように誘導するので、従来のように複
数の磁気検出素子から構成される磁気センサで誘導帯か
ら発せられる磁気を検出して誘導する方法と異なり磁気
センサの価格も安価にできると共に無人車の誘導帯11
からの微小なずれに対しても精度よく作動するから無人
車が蛇行するような事がなくなる。
As explained above, according to the above embodiment, the magnetic detector 1
2, detect the strength of the N-pole and S-pole magnetic fluxes from the guide band 11, detect the deviation of the unmanned vehicle from the guide band 11 from the difference between the detected values, and make the deviation zero. The control device 13 controls the steering device 14 to move the unmanned vehicle to the guide zone 11.
Since the magnetic sensor is guided to run along the magnetic field, the price of the magnetic sensor can be reduced, unlike the conventional method of detecting the magnetism emitted from the induction band using a magnetic sensor composed of multiple magnetic detection elements. Along with unmanned vehicle guidance zone 11
Since it operates with high precision even when there is a slight deviation from the position, the unmanned vehicle will no longer meander.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、無人車の走行路面
に両側面が連続したN極或いはS極となる帯状の磁石を
敷設してなる誘導帯を設け、無人蜜1けた磁気検出器で
該誘導帯11からのN極及びS極の磁束を別々に検出し
て該検出値の差から無人車の誘導帯からのずれを検出し
て、該ずれが零になるように無人車を誘導するので、無
人車を誘導帯に沿って精度良く誘導できると共に、磁気
検出器を構成する霊気検出素子が一個で済み磁気検出器
及びその出力を処理する制御装置の構成が簡単で、かつ
価格が安価にできる等の優れた効果が得られる。
As explained above, according to the present invention, an induction zone is provided on the road surface on which an unmanned vehicle runs, and is made up of strip-shaped magnets with continuous N or S poles on both sides. The N-pole and S-pole magnetic fluxes from the guide band 11 are separately detected, the deviation of the unmanned vehicle from the guide band is detected from the difference between the detected values, and the unmanned vehicle is guided so that the deviation becomes zero. Therefore, it is possible to accurately guide an unmanned vehicle along the guidance zone, and since only one aether detection element is required to constitute the magnetic detector, the configuration of the magnetic detector and the control device that processes its output is simple and inexpensive. Excellent effects such as low cost can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る自動操舵装置の構成を示すブロッ
ク図、第2図及び第3図は従来の自動操舵装置の概略構
成を示す図、第4図は本発明の自動操舵装置に用いる磁
気検出素子の構成を示す回路図、第5図は磁気検出器の
出力例を示す図、第6図は磁気検出素子と誘導帯の関係
を示す図、第7図は誘導帯の形状を示す一部斜視図、第
8図は無人車の走行経路の一例を示す図、第9図はその
誘導帯と磁気検出器等の関係を示す図である。 図中、11・・・誘導帯、12・・・磁気検出器、13
・・・制御装置、14・・・操舵装置、15・・・ポテ
ンショメータ、16・・・タコジェネレータ、La、L
b。 Lc、Ld・・・走行経路、18・・・コード板、19
・・・センサ。
FIG. 1 is a block diagram showing the configuration of an automatic steering device according to the present invention, FIGS. 2 and 3 are diagrams showing a schematic configuration of a conventional automatic steering device, and FIG. 4 is a block diagram showing the configuration of an automatic steering device according to the present invention. A circuit diagram showing the configuration of the magnetic detection element, Fig. 5 is a diagram showing an example of the output of the magnetic detector, Fig. 6 is a diagram showing the relationship between the magnetic detection element and the induction band, and Fig. 7 shows the shape of the induction band. A partial perspective view, FIG. 8 is a diagram showing an example of the travel route of an unmanned vehicle, and FIG. 9 is a diagram showing the relationship between the guide belt, magnetic detector, etc. In the figure, 11... Induction band, 12... Magnetic detector, 13
...Control device, 14... Steering device, 15... Potentiometer, 16... Tacho generator, La, L
b. Lc, Ld... Travel route, 18... Code board, 19
...Sensor.

Claims (1)

【特許請求の範囲】[Claims] 無人車の走行路面に両側面が連続したN極或いはS極と
なる帯状の磁石からなる誘導帯を敷設すると共に、無人
車には該誘導帯からのN極或いはS極の磁束の強さを別
々に検出し該検出値の差から無人車の前記誘導帯からの
ずれを検出する磁気検出器と、該磁気検出器からの出力
を受け前記無人車の操舵装置を制御して前記ずれを零に
する制御装置とを設けたことを特徴とする無人車の自動
操舵装置。
A guide strip consisting of a band-shaped magnet with continuous north or south poles on both sides is laid on the road surface on which the unmanned vehicle runs, and the strength of the magnetic flux of the north or south pole from the guide strip is set on the unmanned vehicle. a magnetic detector that separately detects and detects a deviation of the unmanned vehicle from the guide zone from the difference between the detected values; and a magnetic detector that receives the output from the magnetic detector and controls a steering device of the unmanned vehicle to eliminate the deviation. An automatic steering device for an unmanned vehicle, characterized in that it is provided with a control device for controlling the vehicle.
JP60065443A 1985-03-29 1985-03-29 Automatic steering device of unmanned car Pending JPS61224009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60065443A JPS61224009A (en) 1985-03-29 1985-03-29 Automatic steering device of unmanned car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60065443A JPS61224009A (en) 1985-03-29 1985-03-29 Automatic steering device of unmanned car

Publications (1)

Publication Number Publication Date
JPS61224009A true JPS61224009A (en) 1986-10-04

Family

ID=13287280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60065443A Pending JPS61224009A (en) 1985-03-29 1985-03-29 Automatic steering device of unmanned car

Country Status (1)

Country Link
JP (1) JPS61224009A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63126907U (en) * 1987-02-06 1988-08-19
JPS6438810A (en) * 1987-08-04 1989-02-09 Kito Kk Magnetic guide device for unattended vehicle
US5034673A (en) * 1989-08-25 1991-07-23 Takeshi Miura Method of moving and guiding golf cart
JPH0374005U (en) * 1989-11-17 1991-07-25
JPH0612119A (en) * 1991-08-16 1994-01-21 Shikoku Sogo Kenkyusho:Kk Guiding device for running work wagon

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5147196U (en) * 1974-10-04 1976-04-07
JPS5512605A (en) * 1978-07-12 1980-01-29 Nippon Telegraph & Telephone Method of manufacturing sea bottom calbe sheath wire

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5147196U (en) * 1974-10-04 1976-04-07
JPS5512605A (en) * 1978-07-12 1980-01-29 Nippon Telegraph & Telephone Method of manufacturing sea bottom calbe sheath wire

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63126907U (en) * 1987-02-06 1988-08-19
JPS6438810A (en) * 1987-08-04 1989-02-09 Kito Kk Magnetic guide device for unattended vehicle
US5034673A (en) * 1989-08-25 1991-07-23 Takeshi Miura Method of moving and guiding golf cart
JPH0374005U (en) * 1989-11-17 1991-07-25
JPH0612119A (en) * 1991-08-16 1994-01-21 Shikoku Sogo Kenkyusho:Kk Guiding device for running work wagon

Similar Documents

Publication Publication Date Title
EP0242940B1 (en) Magnetic detector
US4847774A (en) Method and apparatus for detecting traveling position and/or direction of an unmanned vehicle
US3653456A (en) Control system for moving vehicle along a predetermined path
JPS61224009A (en) Automatic steering device of unmanned car
JPH10122806A (en) Position detecting sensor, combined position detecting sensor, and unmanned conveying car guiding control system using the sensors
WO1994018615A1 (en) Method of guiding driving of golf cart
JPH0370802B2 (en)
JPH0625641B2 (en) Magnetic detector
JP2001057713A (en) Device for detecting speed and position of linear motor drive carrying vehicle
JPH0749522Y2 (en) Guidance signal detector for unmanned vehicles
JP2001014029A (en) Magnetic sensor for automatic traveling golf cart
JPS6327203Y2 (en)
JP2823287B2 (en) Magnetic sensor and magnetic induction device
JPS6095616A (en) Swerving detecting device of free-running vehicle
JPH0684881B2 (en) Multiple magnetic detection switch
JPH0816236A (en) Magnetic field induction cable and vehicle position detector using the cable
JPS59154511A (en) Multiple magnetic sensor and carriage guiding device using multiple magnetic sensor
JPH07306716A (en) Method for controlling travel of moving body and device therefor
JPH0423285B2 (en)
JP2582655B2 (en) Moving body course deviation detection device
JP3362154B2 (en) Guided traveling vehicle
JPS6230444B2 (en)
JPH0527830A (en) Guiding/stopping method for unmanned carriage
JPS60205724A (en) Marker for guiding moving object
JP2512951B2 (en) Automatic guided vehicle guidance device