JPS6327203Y2 - - Google Patents

Info

Publication number
JPS6327203Y2
JPS6327203Y2 JP1980107950U JP10795080U JPS6327203Y2 JP S6327203 Y2 JPS6327203 Y2 JP S6327203Y2 JP 1980107950 U JP1980107950 U JP 1980107950U JP 10795080 U JP10795080 U JP 10795080U JP S6327203 Y2 JPS6327203 Y2 JP S6327203Y2
Authority
JP
Japan
Prior art keywords
vehicle
signal
coils
deviation
attitude angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1980107950U
Other languages
Japanese (ja)
Other versions
JPS5734006U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1980107950U priority Critical patent/JPS6327203Y2/ja
Priority to GB8117007A priority patent/GB2080576A/en
Priority to US06/271,651 priority patent/US4456088A/en
Priority to SE8103620A priority patent/SE454816B/en
Priority to DE19813122970 priority patent/DE3122970A1/en
Publication of JPS5734006U publication Critical patent/JPS5734006U/ja
Application granted granted Critical
Publication of JPS6327203Y2 publication Critical patent/JPS6327203Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Steering Controls (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

【考案の詳細な説明】 本考案は床面に敷設した誘導線からの信号によ
り車輌の走行を制御するようにした無人走行車の
走行制御装置に関する。
[Detailed Description of the Invention] The present invention relates to a running control device for an unmanned vehicle that controls the running of the vehicle by signals from a guide wire laid on the floor.

従来、無人走行車輌における走行制御は、第1
図のように床面に敷設した誘導線4に交流電流を
流し誘導線4により発生する磁界を、車体1に取
り付けた2つのピツクアツプコイル2a,2bに
より検出し、これら2つのピツクアツプコイルの
誘起電圧の差により車輌の操舵制御を行なうよう
にしていた。また、車輌を安定させて走行させる
ためには、進行方向に対して固定輪5の前方にピ
ツクアツプコイルを取り付ける必要がある。そこ
で、前進用ピツクアツプコイル2a,2bおよび
後進用ピツクアツプコイル3a,3bを設け、車
輌の前後進の切り換えと同時にこれらピツクアツ
プコイルも切り換えるようにしていた。このよう
な無人走行車輌が前進するときは、ピツクアツプ
コイル2a,2bと固定輪5の車軸との距離Ls
が大きい程走行状態が安定する。しかしながら、
車体の構造上距離Lsの大きさには限界があり、
従つてこの欠点を補うために前進用ピツクアツプ
コイル2a,2bをそれぞれ車体の中心線と所定
の角度を持たせて取り付け姿勢角を検出するよう
にしていた。このようなピツクアツプコイルによ
つては、ケーブルからの距離のみあるいは距離と
角度(姿勢角)成分とが混合した値としての検出
値が得られるにすぎず、しかもピツクアツプコイ
ルの検出値すなわち誘起電圧は誘導線を流れる電
流の変動や誘導障害、例えばケーブルの周囲の透
磁率の変化等の影響を受け易く、このため正確な
走行制御が困難であつた。
Conventionally, driving control in unmanned vehicles has been
As shown in the figure, an alternating current is passed through the induction wire 4 laid on the floor, and the magnetic field generated by the induction wire 4 is detected by two pickup coils 2a and 2b attached to the vehicle body 1, and the induced voltage of these two pickup coils is The steering of the vehicle was controlled based on the difference between the two. Furthermore, in order to run the vehicle stably, it is necessary to install a pick-up coil in front of the fixed wheels 5 in the direction of travel. Therefore, forward pickup coils 2a, 2b and reverse pickup coils 3a, 3b are provided so that these pickup coils can be switched at the same time as the vehicle is switched between forward and backward movement. When such an unmanned vehicle moves forward, the distance Ls between the pick-up coils 2a, 2b and the axle of the fixed wheel 5 is
The larger the value, the more stable the running condition will be. however,
There is a limit to the size of distance Ls due to the structure of the vehicle body.
Therefore, in order to compensate for this drawback, the forward pick-up coils 2a and 2b are each set at a predetermined angle with respect to the center line of the vehicle body to detect the mounting attitude angle. With such a pick-up coil, a detected value can only be obtained as a value of distance from the cable or a mixture of distance and angle (attitude angle) components, and furthermore, the detected value of the pick-up coil, that is, the induced voltage is It is easily affected by fluctuations in the current flowing through the guide wire and induction disturbances, such as changes in magnetic permeability around the cable, making accurate running control difficult.

本考案は上記従来の欠点を除去する目的でなさ
れたもので誘導線から発生される磁界の互いに直
交する3方向の成分を1つのセンサで検出し、こ
れらの各検出値により操舵制御を行なうようにし
た無人走行車の走行制御装置を提供するものであ
る。
The present invention was developed with the aim of eliminating the above-mentioned drawbacks of the conventional system, and uses a single sensor to detect the components of the magnetic field generated from the guiding wire in three mutually orthogonal directions, and performs steering control based on each of these detected values. The present invention provides a driving control device for an unmanned vehicle.

以下、本考案を添附図面の一実施例に基づいて
詳細に説明する。
Hereinafter, the present invention will be described in detail based on one embodiment of the accompanying drawings.

第3図は、本考案の制御装置に用いる検出器S
の一例を示す図で、検出器Sは、互いに垂直な
X、Y、Z軸方向におのおの2つのコイルをその
極性を合わせて平行に配し、かつこれらの各軸方
向に対をなすコイル7,8,9,10,11,1
2を互いに図示のごとく組み合わせ、更に、同一
軸方向を向く2つのコイルの出力を加え合せるよ
うに形成される。そして、この検出器Sは車輌A
の車体1の床面に長手方向の中心軸P上の位置H
(第4図)に、この中心軸Pの方向と検出器Sの
Y軸方向とが一致するように取り付けられてい
る。
Figure 3 shows the detector S used in the control device of the present invention.
In the figure showing an example, the detector S includes two coils arranged in parallel with each other in X, Y, and Z axes directions perpendicular to each other, and coils 7 arranged in parallel with each other with their polarities matched in the directions of these axes. ,8,9,10,11,1
2 are combined with each other as shown in the figure, and the outputs of the two coils facing the same axis are added together. This detector S is connected to vehicle A.
Position H on the longitudinal center axis P on the floor of the vehicle body 1
(FIG. 4), the detector S is mounted so that the direction of the central axis P and the Y-axis direction of the detector S coincide with each other.

いま、例えば第5図のように車体1の中心軸P
と誘導線4とがなす角(これを姿勢角という)が
で、検出器Sの中心と誘導線4との水平距離
(これをずれという)がlのとき、検出器Sのコ
イル7にeX1、コイル8にeX2、コイル9にeY1、コ
イル10にeY2、コイル11にeZ1、コイル12に
はeZ2なる誘起電圧が生じる。そして、同一軸方
向を向く2つのコイルの出力を加えた信号をeX
eY,eZとすれば、eX=eX1+eX2,eY=eY1+eY2,eZ
=eZ1+eZ2、と表わされる。そして姿勢角およ
びずれlはこれらの各誘起電圧eX,eY,eZを用い
て次式のように表わされる。
Now, for example, as shown in FIG.
When the angle between the center of the detector S and the guide line 4 (this is called the attitude angle) is l, and the horizontal distance between the center of the detector S and the guide line 4 (this is called the deviation) is l, the coil 7 of the detector S X1 , e X2 in the coil 8, e Y1 in the coil 9, e Y2 in the coil 10, e Z1 in the coil 11, and e Z2 in the coil 12 are generated. Then, the signal obtained by adding the outputs of the two coils facing the same axis is e X ,
If e Y , e Z , e X = e X1 + e X2 , e Y = e Y1 + e Y2 , e Z
It is expressed as =e Z1 +e Z2 . The attitude angle and the deviation l are expressed as follows using these induced voltages e X , e Y , and e Z .

=a tan-1eY/eX …(イ) l=b cos×eZ/eX …(ロ) ここに、aおよびbは定数である。 =a tan -1 e Y / e X ...(a) l=b cos×e Z /e

上式(イ),(ロ)に示す如く、姿勢角をコイル9,
10の出力eYとコイル7,8の出力eXの比に基づ
いて求め、ずれlをコイル11,12の出力eZ
コイル7,8の出力eXの比に基づいて求めるよう
にすれば、誘導線4に流れる電流の変動や誘導線
近傍に存在する磁性物体等の影響で誘導磁界に乱
れが生じたとしても、この磁界の乱れによる影響
が姿勢角およびずれlの算出値に現われない。
たとえば上記誘導磁界の乱れによつて(イ)式の電圧
eYがK倍されたとすると、同式中の電圧eXもK倍
されることになるので、姿勢角の算出値に上記
磁界の乱れの影響は現われず、同様の理由により
ずれlの算出値も上記磁界の乱れの影響を受けな
い。
As shown in the above formulas (a) and (b), the attitude angle is set by coil 9,
The deviation l is calculated based on the ratio between the output e Y of coils 11 and 12 and the output e For example, even if the induced magnetic field is disturbed due to fluctuations in the current flowing through the guide wire 4 or due to the influence of magnetic objects existing near the guide wire, the influence of this disturbance of the magnetic field will appear in the calculated values of the attitude angle and the deviation l. do not have.
For example, due to the disturbance of the induced magnetic field mentioned above, the voltage of equation (a)
If e Y is multiplied by K, the voltage e The value is also not affected by the disturbance of the magnetic field.

第6図は制御回路の一例を示す図で検出器Sの
各出力信号eX,eY,eZはそれぞれバンドパスフイ
ルタ15,14,13を介して雑音が除去され
る。信号eXは整流器18を介して演算回路19に
入力され、信号eYは信号eXにより同期整流器16
で同期整流された後演算回路19に入力される。
また、信号eZは信号eYと同様に信号eXにより同期
整流器17で同期整流された後演算回路20に入
力される。演算回路19は信号eYと信号eXとによ
り前記(イ)式の演算を実行し、e2==a tan-1
eY/eXなる姿勢角信号e2を算出して前後進切換スイ ツチ23に加える。演算回路20は信号eZと信号
eXとにより前記(ロ)式の演算を実行し、e1=l=b
eZ/eXcosなるずれ信号e1を算出して差動増幅器2 4の側入力に加える。ずれ設定器21は誘導線
4と車体1とのずれの量をあらかじめ設定するも
ので、ずれ設定信号e0を差動増幅器24の側入
力に加える。差動増幅器24は信号e1とずれ設定
値e0との偏差を増幅して、これを姿勢角設定値と
して差動増幅器25,26の側入力に加える。
前後進判別器22は、車輌の前後進を判別し車輌
が前進するときは前後進切換スイツチ23を接点
23aに、後進するときは接点23bに切換制御
する制御信号を前後進切換スイツチ23に加え
る。前後進切換スイツチ23は姿勢角e2を、車輌
が前進するときは差動増幅器25の側入力に、
また後進するときは符号反転器27で反転した後
差動増幅器26の側入力に加える。差動増幅器
25は前進時に姿勢角設定値と姿勢角との偏差信
号e〓を差動増幅器28の側入力に加える。また
差動増幅器26の出力−e〓は後進時に差動増幅器
28の側入力に加えられる。差動増幅器28は
信号e〓または−e〓とフイードバツク信号efとの偏
差eを出力して操舵制御装置29に加える。操舵
制御装置29は入力信号eに応じて当該車輌Aの
操舵制御を行ない車輌Aを誘導線4に沿つて走行
させる。
FIG. 6 is a diagram showing an example of a control circuit, in which noise is removed from the output signals e X , e Y , and e Z of the detector S through band pass filters 15, 14, and 13, respectively. The signal e
After being synchronously rectified at , the signal is input to the arithmetic circuit 19 .
Further, the signal e Z is synchronously rectified by the synchronous rectifier 17 in accordance with the signal e X , like the signal e Y , and then input to the arithmetic circuit 20. The arithmetic circuit 19 executes the arithmetic operation of the above formula (A) using the signal e Y and the signal e X , and e 2 ==a tan -1
An attitude angle signal e 2 of e Y /e X is calculated and applied to the forward/reverse changeover switch 23 . The arithmetic circuit 20 outputs the signal e Z and the signal
Execute the calculation of the above formula (b) using e X , e 1 = l = b
A deviation signal e 1 of e Z /e X cos is calculated and applied to the side input of the differential amplifier 24. The deviation setting device 21 is used to preset the amount of deviation between the guide wire 4 and the vehicle body 1, and applies a deviation setting signal e 0 to the side input of the differential amplifier 24. The differential amplifier 24 amplifies the deviation between the signal e 1 and the deviation set value e 0 and applies it to the side inputs of the differential amplifiers 25 and 26 as the attitude angle set value.
The forward/reverse discriminator 22 determines whether the vehicle is moving forward or backward, and applies a control signal to the forward/reverse selector switch 23 to switch the forward/reverse selector switch 23 to the contact 23a when the vehicle is moving forward, and to the contact 23b when the vehicle is going backwards. . The forward/reverse selector switch 23 outputs the attitude angle e 2 to the side input of the differential amplifier 25 when the vehicle moves forward.
When moving backward, the signal is inverted by the sign inverter 27 and then applied to the side input of the differential amplifier 26. The differential amplifier 25 applies a deviation signal e between the attitude angle setting value and the attitude angle to the side input of the differential amplifier 28 during forward movement. Further, the output -e of the differential amplifier 26 is applied to the side input of the differential amplifier 28 when the vehicle is moving backward. The differential amplifier 28 outputs the deviation e between the signal e〓 or -e〓 and the feedback signal e f and applies it to the steering control device 29 . The steering control device 29 performs steering control of the vehicle A in response to the input signal e, and causes the vehicle A to travel along the guide line 4.

なお、車輌の中心が誘導線4と合致する走行制
御を行なうとき、ずれ設定量は零である。
Note that when performing travel control in which the center of the vehicle coincides with the guide line 4, the set deviation amount is zero.

いま、例えば、第7図aのように前進中の無人
走行車輌Aの検出器Sの位置が誘導線4からl1
け離れており、また車輌Aの姿勢角が1である
とする。また、ずれ設定量が零であるときには、
ずれ信号e1がそのまま姿勢角設定値の元信号とな
る。この姿勢角設定値と姿勢角1との偏差信号
が舵角設定値として差動増幅器28の側入力に
加えられ、同時に現在の操蛇輪の蛇角θ1に対応す
る舵角信号efが差動増幅器28の側入力に加え
られる。そして、差動増幅器28の出力信号によ
り操蛇輪6の蛇角が制御され、ずれおよび姿勢角
が共に変化する。そして、ずれ信号および姿勢角
信号は制御に応じて刻刻と変化し、l==0と
なるまで、すなわち車輌Aが第7図bの状態とな
るまで続行される。
For example, assume that the position of the detector S of the unmanned vehicle A that is moving forward is l1 away from the guide line 4, as shown in FIG. 7a, and that the attitude angle of the vehicle A is 1 . Also, when the deviation setting amount is zero,
The deviation signal e1 directly becomes the original signal for the attitude angle setting value. A deviation signal between this attitude angle setting value and attitude angle 1 is applied as a steering angle setting value to the side input of the differential amplifier 28, and at the same time, a steering angle signal e f corresponding to the current steering wheel steering angle θ 1 is input. It is applied to the side input of differential amplifier 28. Then, the output signal of the differential amplifier 28 controls the snake angle of the steering wheel 6, and both the deviation and the attitude angle change. Then, the deviation signal and attitude angle signal change every moment according to the control, and continue until l==0, that is, until the vehicle A is in the state shown in FIG. 7b.

以上説明したように本考案によれば、1つの検
出器により誘導磁界のX、Y、Z方向成分を簡単
且つ正確に検出することができる。また誘導線を
流れる電流の変動や誘導線近傍に存在する磁性物
体に基因して誘導磁界に乱れが生じたとしても、
車輌の姿勢角およびずれを精度よく検出すること
ができるので、上記誘導磁界の乱れによらず車輌
を適正に誘導走行させることができる。
As explained above, according to the present invention, the X, Y, and Z components of the induced magnetic field can be detected simply and accurately by a single detector. Even if the induced magnetic field is disturbed due to a fluctuation in the current flowing through the induction wire or a magnetic object existing near the induction wire,
Since the attitude angle and deviation of the vehicle can be detected with high accuracy, the vehicle can be properly guided to travel regardless of the disturbance of the induction magnetic field.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は無人走行車の従来例を示す
図、第3図は本考案に係る無人走行車の走行制御
装置に用いる検出器の一実施例を示す斜視図、第
4図は、本考案に係る無人走行車において第3図
に示すセンサを取付ける場合の一実施例を示す
図、第5図は操蛇の原理を説明する図、第6図は
本考案に係る無人走行車の走行制御装置の一実施
例を示すブロツク図、第7図は本考案に係る制御
装置による操蛇制御の説明図である。 1……車体、5……固定輪、6……操蛇輪、
7,8,9,10,11,12……コイル、1
3,14,15……バンドパスフイルタ、16,
17……同期整流器、18……整流器、19,2
0……演算回路、21……ずれ設定器、22……
前後進判別器、23……前後進切換スイツチ、2
4,25,26,28……差動増幅器、27……
符号反転器、29……操蛇制御装置、S……検出
器、A……車両。
1 and 2 are diagrams showing a conventional example of an unmanned vehicle, FIG. 3 is a perspective view showing an embodiment of a detector used in the travel control device for an unmanned vehicle according to the present invention, and FIG. 4 is a diagram showing a conventional example of an unmanned vehicle. , A diagram showing an example of installing the sensor shown in FIG. 3 in an unmanned vehicle according to the present invention, FIG. 5 is a diagram explaining the principle of snake steering, and FIG. 6 is an unmanned vehicle according to the present invention. FIG. 7 is a block diagram showing an embodiment of the travel control device according to the present invention, and FIG. 7 is an explanatory diagram of the steering control by the control device according to the present invention. 1...Vehicle body, 5...Fixed wheels, 6...Switching wheels,
7, 8, 9, 10, 11, 12...Coil, 1
3, 14, 15...Band pass filter, 16,
17...Synchronous rectifier, 18...Rectifier, 19,2
0...Arithmetic circuit, 21...Difference setting device, 22...
Forward/forward discriminator, 23... Forward/forward switching switch, 2
4, 25, 26, 28... Differential amplifier, 27...
Sign inverter, 29...Snap steering control device, S...Detector, A...Vehicle.

Claims (1)

【実用新案登録請求の範囲】 誘導線より発生する磁界を検出して無人走行車
輌の操舵制御を行なう走行制制装置において、 それぞれの軸線が上記車輌の車幅方向X、前後
方向Yおよび上下方向Zに向く態様で上記車輌に
互いに近接して配設された誘導磁界検出用の第
1、第2および第3のピツクアツプコイルと、 上記第1、第2のピツクアツプコイルで各々検
出される上記磁界の大きさの比に基づいて、上記
誘導線に対する上記車輌の姿勢角を求める第1の
演算手段と、 上記第1、第3のピツクアツプコイルで各々検
出される上記磁界の大きさの比に基づいて、上記
誘導線に対する上記車輌のずれを求める第2の演
算手段と、 上記第1、第2の演算手段の各出力に基づいて
上記車輌の操舵制御を行なう手段とを備えること
を特徴とする 無人走行車の走行制御装置。
[Scope of Claim for Utility Model Registration] In a travel control device that detects a magnetic field generated from a guide wire to control the steering of an unmanned vehicle, the respective axes are in the vehicle width direction X, longitudinal direction Y, and vertical direction of the vehicle. first, second, and third pick-up coils for detecting induced magnetic fields disposed close to each other on the vehicle in a manner facing Z; and the magnetic field detected by the first and second pick-up coils, respectively. a first calculation means for determining the attitude angle of the vehicle with respect to the guide line based on the ratio of the magnitudes of the magnetic fields detected by the first and third pickup coils, respectively; The present invention is characterized by comprising: second calculation means for determining the deviation of the vehicle with respect to the guide line; and means for controlling the steering of the vehicle based on each output of the first and second calculation means. Travel control device for unmanned vehicles.
JP1980107950U 1980-06-11 1980-07-30 Expired JPS6327203Y2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1980107950U JPS6327203Y2 (en) 1980-07-30 1980-07-30
GB8117007A GB2080576A (en) 1980-06-11 1981-06-03 Unmanned vehicle travel control device
US06/271,651 US4456088A (en) 1980-06-11 1981-06-08 Unmanned vehicle travel control device
SE8103620A SE454816B (en) 1980-06-11 1981-06-10 MAGNET FIELD DETECTOR AND UNDEMOTED VEHICLE CONTROL DEVICE
DE19813122970 DE3122970A1 (en) 1980-06-11 1981-06-10 STEERING DEVICE FOR CONTROLLING THE STEERING OF AN UNMANNED VEHICLE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1980107950U JPS6327203Y2 (en) 1980-07-30 1980-07-30

Publications (2)

Publication Number Publication Date
JPS5734006U JPS5734006U (en) 1982-02-23
JPS6327203Y2 true JPS6327203Y2 (en) 1988-07-22

Family

ID=29469232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1980107950U Expired JPS6327203Y2 (en) 1980-06-11 1980-07-30

Country Status (1)

Country Link
JP (1) JPS6327203Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5551250A (en) * 1978-10-09 1980-04-14 Sharp Corp Temperature/humidity controller for air conditioner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55168138U (en) * 1979-05-23 1980-12-03

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5551250A (en) * 1978-10-09 1980-04-14 Sharp Corp Temperature/humidity controller for air conditioner

Also Published As

Publication number Publication date
JPS5734006U (en) 1982-02-23

Similar Documents

Publication Publication Date Title
US4456088A (en) Unmanned vehicle travel control device
EP0614134A1 (en) Automated guided vehicle wire guidance apparatus
US4524314A (en) Rear travel guidance system
JPS6327203Y2 (en)
JPH0767271A (en) Displacement detector in noncontact power supply for mobile body
JPS6247241B2 (en)
JPS61224009A (en) Automatic steering device of unmanned car
JPH0749522Y2 (en) Guidance signal detector for unmanned vehicles
JPH0423285B2 (en)
JPH0250488B2 (en)
JPH06119036A (en) Electromagnetic guide system for unmanned carrier
JP3281758B2 (en) Guidance control device for mobile vehicles
JPS6230444B2 (en)
JPS61285509A (en) Lateral displacement detector for guidance control of unmanned carrier
JPH03127105A (en) Steering device of magnetic induction type unmanned carrying car
JP2534165Y2 (en) Steering system of electromagnetic induction type unmanned vehicle
JP2590581B2 (en) Runway judgment device for automatic guided vehicles
JP2823287B2 (en) Magnetic sensor and magnetic induction device
JPH11125502A (en) Device and method for vehicle position detection
JPH04288605A (en) Vehicle running position detector
RU2136035C1 (en) Method and device for vehicle control
JP2590578B2 (en) Magnetic detector
JPS62245406A (en) Guiding system for unmanned traveling vehicle
JPS61271506A (en) Gain control device for unmanned carrier
JPS6315313A (en) Wirecross detecting system for unattended carrier