JPS61285509A - Lateral displacement detector for guidance control of unmanned carrier - Google Patents

Lateral displacement detector for guidance control of unmanned carrier

Info

Publication number
JPS61285509A
JPS61285509A JP60127565A JP12756585A JPS61285509A JP S61285509 A JPS61285509 A JP S61285509A JP 60127565 A JP60127565 A JP 60127565A JP 12756585 A JP12756585 A JP 12756585A JP S61285509 A JPS61285509 A JP S61285509A
Authority
JP
Japan
Prior art keywords
induced
unmanned vehicle
lateral displacement
guidance
subtracter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60127565A
Other languages
Japanese (ja)
Inventor
Tatsuya Watabe
達也 渡部
Futoshi Kobashi
小橋 太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP60127565A priority Critical patent/JPS61285509A/en
Publication of JPS61285509A publication Critical patent/JPS61285509A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To omit a manual gain control operation for guidance control of an unmanned carrier by connecting an automatic gain controller between a waveform shaping circuit and a substractor and varying the frequency of the guidance signal which is flowed to a locus line. CONSTITUTION:The voltages VL and VR induced by the right and left pickup coils 12 and 13 are delivered to a waveform shaping circuit 14. The waveforms of the converted DC voltages DL and DR are smoothed by a smoothing circuit and delivered to an automatic gain control circuit 20 on the next stage. The circuit 20 can compensate automatically the variation of its gain if occurs by changing the sensitivities of both coils 12 and 13 in response to the changeover of the frequency of the guidance signal flowing to a locus line. Thus the gain of a fixed level can be secured at all times even though the frequency of the guidance signal is switched properly.

Description

【発明の詳細な説明】 発明の目的 (産業上の利用分野) この発明は電磁誘導方式の無人車の誘導制御のために採
用されている横変位検出装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Field of Industrial Application) The present invention relates to a lateral displacement detection device employed for guidance control of an electromagnetic induction type unmanned vehicle.

(従来技術) 従来、無人車、例えば無人搬送車の誘導方法は搬送車の
走行通路上に配設した1本の軌道線にコントロール室に
ある制御装置から低周波の誘導信号を流し、第3図に示
すように同搬送車の底面に設けた左右一対のピックアッ
プコイル1,2に誘起する誘導起電力をそれぞれ増幅器
3、バンドパスフィルタ4を介して整流回路5に出力し
、その両整流回路5からの出力電圧DL、DRの差(=
CH−DL )を減算器6にて求め、その差を軌導線に
対する搬送車の横変位量とし、その横変位量に基づいて
同搬送車を走行通路に沿って誘導させるようにしていた
(Prior Art) Conventionally, the method of guiding an unmanned vehicle, such as an automatic guided vehicle, is to send a low-frequency guidance signal from a control device in a control room to one track line arranged on the traveling path of the guided vehicle, and As shown in the figure, the induced electromotive force induced in a pair of left and right pickup coils 1 and 2 provided on the bottom of the carrier is outputted to a rectifier circuit 5 via an amplifier 3 and a bandpass filter 4, respectively, and both rectifier circuits. The difference between the output voltages DL and DR from 5 (=
CH-DL) is obtained by a subtractor 6, the difference is taken as the amount of lateral displacement of the guided vehicle with respect to the track line, and the guided vehicle is guided along the travel path based on the amount of lateral displacement.

(発明が解決しようとする問題点) ところが、この軌導線に流す誘導信号の周波数が変ると
ピックアップコイル1.2の感度が変りゲインが変るの
で、周波数を変えて搬送車を誘導制御する場合、周波数
が変わる度毎にゲインを一定にする必要がありその調整
作業は甚だ面倒であった。
(Problem to be Solved by the Invention) However, when the frequency of the guidance signal sent to the track line changes, the sensitivity of the pickup coil 1.2 changes and the gain changes, so when changing the frequency to control the guidance of the guided vehicle, It was necessary to keep the gain constant each time the frequency changed, and the adjustment work was extremely troublesome.

この発明の目的は前記問題点を解決するために1、  
軌導線に流す誘導信号の周波数を変えて無人搬送車を誘
導制御する場合、周波数を変える度毎にいちいちゲイン
調整をする必要がなく、その調整のための切換えスイッ
チ等が不要とすることができる無人車の誘導制御のため
の横変位検出装置を提供するにある。
The purpose of this invention is to solve the above problems: 1.
When guiding and controlling an automatic guided vehicle by changing the frequency of the guidance signal sent to the track line, there is no need to adjust the gain each time the frequency is changed, and there is no need for a changeover switch etc. for the adjustment. The present invention provides a lateral displacement detection device for guidance control of an unmanned vehicle.

発明の構成 (問題点を解決するための手段) この発明は上記目的を達成すべく、無人車の走行通路上
に配設された軌導線に流れる誘導信号を検出する左右一
対のピックアップコイルを無人車の底面に設け、各ピッ
クアップコイルを前記誘導信号に基づいて誘起する誘起
信号を波形整形回路にてそれぞれ波形整形し、その波形
整形された両誘起信号の差を減算器にて求め、その差を
前記軌導線と無人車との横変位量として検出する横変位
検出装置において、 前記波形整形回路と減算器の間に自動利得調整器を接続
した無人車の誘導制御のための横変位検出装置をその要
旨とするものである。
Structure of the Invention (Means for Solving Problems) In order to achieve the above-mentioned object, this invention unmanned a pair of left and right pickup coils that detect guidance signals flowing in a track line arranged on a travel path of an unmanned vehicle. A waveform shaping circuit shapes the induced signals that are provided on the bottom of the car and induces each pickup coil based on the induced signal, and the difference between the two waveform-shaped induced signals is determined using a subtracter. A lateral displacement detection device for detecting the amount of lateral displacement between the track line and the unmanned vehicle, wherein an automatic gain adjuster is connected between the waveform shaping circuit and the subtracter for guidance control of the unmanned vehicle. Its gist is as follows.

(作用) 軌導線に流れる誘導信号の周波数が切換ることによって
ピックアップコイルの感度が変りそのゲインが変動して
も自動利得調整器にてその変動を補償する。そして、誘
導信号の周波数を適宜切換えても常に一定のゲインを保
持する。
(Function) Even if the sensitivity of the pickup coil changes by switching the frequency of the induction signal flowing through the track line and its gain fluctuates, the automatic gain adjuster compensates for the fluctuation. Even if the frequency of the guiding signal is changed as appropriate, a constant gain is always maintained.

(実施例) 以下、この発明を具体化した一実施例を図面に従って説
明する。
(Example) An example embodying the present invention will be described below with reference to the drawings.

第1図において無人搬送車11の底面前側に設けた左右
一対のピックアップコイル12.13は無人搬送車11
の中心位置を通る走行方向の中心線りに対して左右対称
に配置され、それぞれ無人搬送車11の走行通路上に配
設した図示しない1本の軌道線に流れる低周波の誘導信
号を検知する。
In FIG. 1, a pair of left and right pickup coils 12 and 13 provided on the front side of the bottom of the automatic guided vehicle 11 are connected to the automatic guided vehicle 11.
They are arranged symmetrically with respect to the center line in the traveling direction passing through the center position of the automatic guided vehicle 11, and each detects a low-frequency guidance signal flowing to a single track line (not shown) arranged on the travel path of the automatic guided vehicle 11. .

すなわち、その両コイル12.13はそれぞれ前記軌導
線までの距離に相対した値の誘起電圧VLVRを出力す
る。従って、無人搬送車11が同搬送車11の中心線り
と軌導線とが一致した状態で走行している場合には誘起
電圧VL、VRは等しくなり、反対に、一致していない
場合には誘起電圧VL、VRは等しくならないことにな
る。
That is, both coils 12, 13 each output an induced voltage VLVR having a value relative to the distance to the track line. Therefore, when the automatic guided vehicle 11 is traveling with the center line of the guided vehicle 11 and the trajectory line aligned, the induced voltages VL and VR are equal; on the other hand, when they are not aligned, the induced voltages VL and VR are equal. The induced voltages VL and VR will not be equal.

左右一対のピックアップコイル12.13が誘起した誘
起電圧VL 、VRは第2図に示すようにそれぞれ波形
整形回路14に出力される。
The induced voltages VL and VR induced by the pair of left and right pickup coils 12 and 13 are respectively output to the waveform shaping circuit 14 as shown in FIG.

波形整形回路14は本実施例では増幅器15、バンドパ
スフィルタ16、整流回路17、及びコンデンサ18と
抵抗19とからなる平滑回路とから構成され、それぞれ
前記各誘起電圧VL、VRは増幅器15にて増幅された
後バンドパスフィルタ16にて所定の周波数帯域(本実
施例では軌導線に流れる誘導信号の周波数と一致する周
波数)のみ取り出され、続いて整流回路17にて直流に
変換される。そして、その変換された直流電圧DL、D
Rは平滑回路にてその波形が平滑化され、次段の自動利
得調整回路20に出力される。従って、直流電圧DL、
DRの値は前記誘起電圧VL。
In this embodiment, the waveform shaping circuit 14 is composed of an amplifier 15, a bandpass filter 16, a rectifier circuit 17, and a smoothing circuit consisting of a capacitor 18 and a resistor 19. After being amplified, only a predetermined frequency band (in this embodiment, a frequency that matches the frequency of the guidance signal flowing through the track line) is extracted by a band-pass filter 16, and then converted into direct current by a rectifier circuit 17. Then, the converted DC voltages DL, D
The waveform of R is smoothed by a smoothing circuit and output to the automatic gain adjustment circuit 20 at the next stage. Therefore, the DC voltage DL,
The value of DR is the induced voltage VL.

VRの値に相対して変化することになる。It will change relative to the value of VR.

自動利得調整器としての自動利得調整回路20は第1及
び第2の掛緯器21,22、加算器23、減算器24、
定数設定器25及び増幅器26から構成されていて、前
記左側ピックアップコイル12に基づく直流電圧(以下
、左側直流電圧という)DLは第1の掛算器21に、又
、右側ピックアップコイル13に基づく直流電圧(以下
、右側直流電圧という)DRは第2の掛算器22に出力
される。加算器23は前記第1及び第2の掛算器21゜
22の出力電圧ML 、MRを加算してその加算値Q 
(=ML 十MR)を減算器24に出力する。
The automatic gain adjustment circuit 20 as an automatic gain adjustment device includes first and second multipliers 21 and 22, an adder 23, a subtracter 24,
It is composed of a constant setter 25 and an amplifier 26, and the DC voltage (hereinafter referred to as left DC voltage) DL based on the left pickup coil 12 is applied to the first multiplier 21, and the DC voltage based on the right pickup coil 13 is input to the first multiplier 21. DR (hereinafter referred to as right-side DC voltage) is output to the second multiplier 22. An adder 23 adds the output voltages ML and MR of the first and second multipliers 21 and 22 to obtain the sum Q.
(=ML + MR) is output to the subtracter 24.

減算器24はこの加算値Qと定数設定器25から出力さ
れる予め定められた定数値Cとを減算し、その減算値P
 (=C−Q)を増幅率Aの増幅器26に出力するよう
になっている。増幅器26は減算器24の減算値Pを増
幅しその出力T (=P・A)を前記第1及び第2の!
)算器21.22に出力する。従って、第1の掛算器2
1の出力電圧M[は出力下と左側直流電圧D[の積とな
り、第2の掛算器22の出力電圧MRは出力Tと右側直
流電圧DRの積となる。
The subtracter 24 subtracts this added value Q from a predetermined constant value C output from the constant setting device 25, and obtains the subtracted value P.
(=C-Q) is output to an amplifier 26 with an amplification factor of A. The amplifier 26 amplifies the subtracted value P of the subtracter 24 and outputs its output T (=P·A) to the first and second !
) is output to calculators 21 and 22. Therefore, the first multiplier 2
1's output voltage M[ is the product of the output lower and left side DC voltages D[, and the output voltage MR of the second multiplier 22 is the product of the output T and the right side DC voltage DR.

なお、前記増幅器26の増幅率Aは本実施例で。Note that the amplification factor A of the amplifier 26 is as shown in this embodiment.

は Q=C−D/ (1/A+D>=C・・・■但し、[)
=[)L +l)R となる値に予め設定しである。
is Q=C-D/ (1/A+D>=C...■However, [)
It is set in advance to a value such that =[)L +l)R.

前記第1及び第2の掛算器21.22の出力電圧ML 
、MRは次段の減算器27に出力される。
Output voltage ML of the first and second multipliers 21 and 22
, MR are output to the subtracter 27 at the next stage.

そして、その減算器27は出力電圧MRを出力電圧ML
で減算し、その減算値Z (=MR−ML )を前記軌
導線に対する無人搬送車11の横変位量として出力する
ことになる。
Then, the subtracter 27 converts the output voltage MR into the output voltage ML.
The subtracted value Z (=MR-ML) is output as the amount of lateral displacement of the automatic guided vehicle 11 with respect to the track line.

すなわち、今、前記ピックアップコイル12゜13の誘
導信号の周波数変化に基づく前記ピックアップコイル1
2.13の利得変動率をKとし、その利得変動率Kに基
づく左側直流電圧りしをY(=に−DL>、右側直流電
圧DR@X (=K・DR>とすると、 Q=T (X+Y)          ・・・■T=
A−P=A・(C−Q)     ・・・■Z=MR−
ML =T・(X−Y)   ・・・■となる。そして
、式■、■及び弐〇より、減算値Z、すなわち、横変位
量は Z=Q・ (X−Y>/ (X+Y) =C・(X−Y)/ (X十Y) =C・ (DR−DL ) / (DR+DL >・・
・■ となる。
That is, now the pickup coil 1 based on the frequency change of the induction signal of the pickup coil 12 and 13.
Let K be the gain fluctuation rate in 2.13, and let the left DC voltage based on the gain fluctuation rate K be Y (= to −DL>, and the right DC voltage DR@X (=K・DR>), then Q=T (X+Y) ・・・■T=
A-P=A・(C-Q) ・・・■Z=MR-
ML=T・(X−Y)...■. Then, from formulas ■, ■, and 2〇, the subtracted value Z, that is, the amount of lateral displacement, is Z=Q・(X−Y>/ (X+Y) =C・(X−Y)/(X0Y) =C・(DR-DL) / (DR+DL>・・
・■ becomes.

従って、式■から明らかなように減算値Z、すなわち、
横変位量は誘導信号の周波数変化に伴う利得変動率にの
変動、すなわち、ピックアップコイル12.13の感度
変化に影響を受けないことになる。
Therefore, as is clear from the formula ■, the subtraction value Z, that is,
The amount of lateral displacement is not affected by changes in the gain fluctuation rate due to changes in the frequency of the induction signal, that is, changes in the sensitivity of the pickup coils 12 and 13.

そして、この減算器27から出力される減算値Zは無人
搬送車11の操舵輪を駆動制御して同搬送車を軌導線に
沿って走行させるためのデータとして無人搬送車11に
搭載された図示しないコントローラに出力されるように
なっている。
The subtracted value Z output from the subtractor 27 is used as data for driving and controlling the steering wheels of the automatic guided vehicle 11 to cause the guided vehicle to travel along the track line. It is designed to be output to a controller that does not.

このように、本実施例においては軌道線に流す誘導信号
の周波数を切換えても、従来のようにその切換えに伴う
ピックアップコイル12.13の感度調整を行なう必要
が全くなくなる。しかも、感度調整を行なわないことか
ら、その調整のためのゲイン切換え回路が不要となる。
In this way, in this embodiment, even if the frequency of the guidance signal applied to the track line is changed, there is no need to adjust the sensitivity of the pickup coils 12, 13 in conjunction with the change, as in the conventional case. Moreover, since sensitivity adjustment is not performed, a gain switching circuit for the adjustment is not required.

発明の効果 以上詳述したように、この発明によれば軌導線に流す誘
導信号の周波数を変えて無人搬送車を誘導制御する場合
、周波数を変える度毎にいちいちゲイン調整をする必要
がなく、その調整のための切換えスイッチ等が不要とす
ることができ、無人車の誘導制御のための横変位検出装
置として産業上優れた発明である。
Effects of the Invention As detailed above, according to the present invention, when guiding and controlling an automatic guided vehicle by changing the frequency of the guidance signal sent to the track line, there is no need to adjust the gain each time the frequency is changed. It is an industrially excellent invention as a lateral displacement detection device for guiding and controlling unmanned vehicles, since there is no need for a changeover switch or the like for the adjustment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明を具体化したピックアップコイルの配
置図、第2図は横変位検出装置の電気ブロック回路図、
第3図は従来の横変位検出装置の電気ブロック回路図で
ある。 図中、11は無人搬送車、12.13はピックアップコ
イル、14は波形整形回路、20は自動利得調整回路、
21.22は第1及び第2の掛算器、23は加算器、2
4.27は減算器、25は定数設定器、26は増幅器で
ある。
Fig. 1 is a layout diagram of a pickup coil embodying this invention, Fig. 2 is an electric block circuit diagram of a lateral displacement detection device,
FIG. 3 is an electrical block circuit diagram of a conventional lateral displacement detection device. In the figure, 11 is an automatic guided vehicle, 12 and 13 are pickup coils, 14 is a waveform shaping circuit, 20 is an automatic gain adjustment circuit,
21. 22 are first and second multipliers, 23 is an adder, 2
4.27 is a subtracter, 25 is a constant setter, and 26 is an amplifier.

Claims (1)

【特許請求の範囲】 1、無人車の走行通路上に配設された軌導線に流れる誘
導信号を検出する左右一対のピックアップコイルを無人
車の底面に設け、各ピックアップコイルが前記誘導信号
に基づいて誘起する誘起信号を波形整形回路にてそれぞ
れ波形整形し、その波形整形された両誘起信号の差を減
算器にて求め、その差を前記軌導線に対する無人車の横
変位量として検出する横変位検出装置において、 前記波形整形回路と減算器の間に自動利得調整器を接続
した無人車の誘導制御のための横変位検出装置。 2、波形整形回路はピックアップコイルが誘起する誘起
信号を増幅する増幅器と、その増幅された誘起信号の所
定の周波数帯域のみを取り出すバンドパスフィルタと、
そのバンドパスフィルタから出力される誘起信号を整流
する整流回路とから構成したものである特許請求の範囲
第1項記載の無人車の誘導制御のための横変位検出装置
。 3、自動利得調整器はそれぞれ各波形整形回路から出力
される波形整形された誘起信号を入力する掛算器と、両
掛算器の出力を加算する加算器と、その加算器の加算値
と予め定められた定数値を出力する定数設定器のその定
数値とで減算を行なう減算器と、前記減算器の減算値を
予め定めた増幅率にて増幅しその出力を前記各掛算器に
出力する増幅器とから構成したものである特許請求の範
囲第1項記載の無人車の誘導制御のための横変位検出装
置。
[Scope of Claims] 1. A pair of left and right pickup coils are provided on the bottom of the unmanned vehicle to detect a guidance signal flowing through a track line arranged on the travel path of the unmanned vehicle, and each pickup coil is configured to detect the guidance signal flowing through the track line arranged on the travel path of the unmanned vehicle. A waveform shaping circuit shapes the induced signals induced by the waveform, the difference between the two waveform-shaped induced signals is obtained by a subtracter, and the difference is detected as the amount of lateral displacement of the unmanned vehicle with respect to the track line. A lateral displacement detection device for guidance control of an unmanned vehicle, the displacement detection device comprising: an automatic gain adjuster connected between the waveform shaping circuit and the subtracter. 2. The waveform shaping circuit includes an amplifier that amplifies the induced signal induced by the pickup coil, and a bandpass filter that extracts only a predetermined frequency band of the amplified induced signal.
A lateral displacement detection device for guidance control of an unmanned vehicle according to claim 1, comprising a rectifier circuit that rectifies the induced signal output from the bandpass filter. 3. The automatic gain adjuster each includes a multiplier that inputs the waveform-shaped induced signal output from each waveform shaping circuit, an adder that adds the outputs of both multipliers, and a predetermined addition value of the adder. a subtracter that performs subtraction between the constant value of the constant setter and the constant value of the constant setter, and an amplifier that amplifies the subtracted value of the subtracter by a predetermined amplification factor and outputs the output to each of the multipliers. A lateral displacement detection device for guidance control of an unmanned vehicle according to claim 1, which comprises:
JP60127565A 1985-06-12 1985-06-12 Lateral displacement detector for guidance control of unmanned carrier Pending JPS61285509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60127565A JPS61285509A (en) 1985-06-12 1985-06-12 Lateral displacement detector for guidance control of unmanned carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60127565A JPS61285509A (en) 1985-06-12 1985-06-12 Lateral displacement detector for guidance control of unmanned carrier

Publications (1)

Publication Number Publication Date
JPS61285509A true JPS61285509A (en) 1986-12-16

Family

ID=14963179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60127565A Pending JPS61285509A (en) 1985-06-12 1985-06-12 Lateral displacement detector for guidance control of unmanned carrier

Country Status (1)

Country Link
JP (1) JPS61285509A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63204415A (en) * 1987-02-20 1988-08-24 Nec Corp Guiding method for unmanned vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50138283A (en) * 1974-04-20 1975-11-04
JPS59180611A (en) * 1983-03-30 1984-10-13 Daifuku Co Ltd Automatic maneuvering control device of unmanned car

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50138283A (en) * 1974-04-20 1975-11-04
JPS59180611A (en) * 1983-03-30 1984-10-13 Daifuku Co Ltd Automatic maneuvering control device of unmanned car

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63204415A (en) * 1987-02-20 1988-08-24 Nec Corp Guiding method for unmanned vehicle

Similar Documents

Publication Publication Date Title
US4524314A (en) Rear travel guidance system
US4160488A (en) Extended width sensor
JPS5775318A (en) Measuring device for traveling locus shift of selftraveling car
JPS61285509A (en) Lateral displacement detector for guidance control of unmanned carrier
JP3099336B2 (en) Electromagnetic digital current detector
US4469298A (en) Axle sensor
JP2931800B2 (en) Tracking control circuit of automatic guided vehicle
JPS61285508A (en) Lateral displacement detector for guidance control of unmanned carrier
JPS6327203Y2 (en)
JPS56145304A (en) Position detector
JP2590578B2 (en) Magnetic detector
JPH08286738A (en) Guidance controller for moving vehicle
JP3294735B2 (en) Guidance control device for mobile vehicles
JP3281758B2 (en) Guidance control device for mobile vehicles
JPH0423285B2 (en)
JP2897300B2 (en) Magnetic detector
JPS59180611A (en) Automatic maneuvering control device of unmanned car
US5915491A (en) Automatic travel control method for an unmanned vehicle
JPH0749522Y2 (en) Guidance signal detector for unmanned vehicles
JP2590581B2 (en) Runway judgment device for automatic guided vehicles
JPH08129417A (en) Guidance controller for mobile vehicle
JPS61271506A (en) Gain control device for unmanned carrier
JPH0738962Y2 (en) Unmanned vehicle
KR940002373B1 (en) Controlling method for a radio controlled car
JPH0481205B2 (en)