JP2590581B2 - Runway judgment device for automatic guided vehicles - Google Patents

Runway judgment device for automatic guided vehicles

Info

Publication number
JP2590581B2
JP2590581B2 JP2059161A JP5916190A JP2590581B2 JP 2590581 B2 JP2590581 B2 JP 2590581B2 JP 2059161 A JP2059161 A JP 2059161A JP 5916190 A JP5916190 A JP 5916190A JP 2590581 B2 JP2590581 B2 JP 2590581B2
Authority
JP
Japan
Prior art keywords
output
runway
automatic guided
voltage
detection coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2059161A
Other languages
Japanese (ja)
Other versions
JPH03260706A (en
Inventor
正 小林
鉄男 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP2059161A priority Critical patent/JP2590581B2/en
Publication of JPH03260706A publication Critical patent/JPH03260706A/en
Application granted granted Critical
Publication of JP2590581B2 publication Critical patent/JP2590581B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は走路に布設された磁性体または導電体を検知
して走行する無人搬送車の走路判定器に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a travel path determination device of an automatic guided vehicle that travels by detecting a magnetic substance or a conductor laid on a travel path.

〔従来の技術〕[Conventional technology]

磁性体の存在を検知する磁気検知器の1つに励振コイ
ルが発生する交流磁場によって誘導電圧を生じる検知コ
イルからなる自己励磁型のものがある。これは構造が簡
単で設計の自由度も大きいことから広く利用されてい
る。1つの利用分野として、種々の車両誘導システム等
に利用され役立っている。これらの誘導システムは、帯
状の磁性体または金属等の導電体を搬送車が誘導される
走路に布設し、搬送車に取付けられた検知器により操舵
が行われ目的の場所に誘導するものである。
One of the magnetic detectors for detecting the presence of a magnetic material is a self-excitation type including a detection coil that generates an induced voltage by an AC magnetic field generated by an excitation coil. This is widely used because of its simple structure and great design freedom. As one application field, it is used and useful in various vehicle guidance systems and the like. In these guidance systems, a strip-shaped conductor such as a magnetic material or a metal is laid on a track on which a carrier is guided, and steering is performed by a detector attached to the carrier to guide the vehicle to a target place. .

従来の無人搬送車の走路判定器では、磁気検知器とし
ては第3図のコイル配置で第4図の回路構成のものが知
られている。
In the conventional automatic guided vehicle traveling path determination device, a magnetic detector having a coil arrangement shown in FIG. 3 and a circuit configuration shown in FIG. 4 is known.

励振コイル2と2個の検知コイル3,13を金属ケース12
内に固定している。2個の検知コイル3,13はそれぞれ中
心軸Lに対し対称な位置に固定されている。
The excitation coil 2 and the two detection coils 3 and 13 are
It is fixed inside. The two detection coils 3 and 13 are fixed at symmetrical positions with respect to the central axis L.

この磁気検知器の動作について説明すると、励振コイ
ル2に発振器1を接続して、交流電流を励振コイル2に
流すと励振コイル2から励起磁界9が発生する。この励
起磁界9の一部が検知コイル3,13を貫くことにより、検
知コイル3,13に誘導電圧が生じる。この誘導電圧は、第
4図の信号処理の回路に入力される。検知コイル3,13の
誘導電圧はそれぞれ増幅回路4,14を経て整流回路10,20
で整流された後、電圧比較回路11,21に入力され、検知
コイル3,13による2つの信号が基準電圧と比較される。
電圧比較回路11,21の出力は合成回路22を通り走路を決
める判定信号として出力される。このような構成・機能
の磁気検知器において、検知コイル3,13に空気より大き
な透磁率をもつ磁性体が接近すると、磁界分布が変化
し、検知コイル3,13を貫ぬく磁束も変化する。また、導
電体が接近すると、導電体に生じる渦電流により磁界が
変化する。その結果、検知コイル3,13に誘導される電圧
も変化する。磁性体または導電体が2つの検知コイル3,
13の近い位置にある場合は、2つの検知コイル3,13の誘
導電圧も大きく、電圧比較回路11,21では基準電圧と比
較しても誘導電圧が大きいため合成回路22の出力VDO
より無人搬送車は、走路から離脱していないと判断す
る。しかし、磁性体または導電体が2つの検知コイル3,
13の一方または両方から違い位置にある場合は、2つの
検知コイル3,13の一方または両方の検知コイル3,13の誘
導電圧は小さく、電圧比較回路11,21で基準電圧と比較
すると誘導電圧側の方が小さいため、合成回路22の出力
VDOにより無人搬送車は走路から離脱していると判断す
る。
The operation of the magnetic detector will be described. When the oscillator 1 is connected to the excitation coil 2 and an alternating current flows through the excitation coil 2, an excitation magnetic field 9 is generated from the excitation coil 2. When a part of the excitation magnetic field 9 passes through the detection coils 3 and 13, an induced voltage is generated in the detection coils 3 and 13. This induced voltage is input to the signal processing circuit shown in FIG. The induced voltages of the detection coils 3 and 13 pass through the amplifier circuits 4 and 14 and the rectifier circuits 10 and 20 respectively.
After the rectification, the signals are input to the voltage comparison circuits 11 and 21, and the two signals from the detection coils 3 and 13 are compared with the reference voltage.
The outputs of the voltage comparison circuits 11 and 21 pass through the synthesis circuit 22 and are output as a determination signal for determining a track. In a magnetic detector having such a configuration and function, when a magnetic substance having a magnetic permeability higher than that of air approaches the detection coils 3 and 13, the magnetic field distribution changes and the magnetic flux penetrating the detection coils 3 and 13 also changes. When the conductor approaches, the magnetic field changes due to eddy current generated in the conductor. As a result, the voltage induced in the detection coils 3 and 13 also changes. A magnetic or conductive detection coil 3
When in the 13 close positions, the induction voltage of the two detection coils 3, 13 is large, unattended by the output V DO of combining circuit 22 for the induction voltage is compared with a reference voltage in the voltage comparator circuit 11, 21 large It is determined that the carrier has not left the track. However, if the magnetic material or the conductor has two sensing coils 3,
When the position is different from one or both of 13, the induced voltage of one or both of the two detection coils 3, 13 is small, and compared with the reference voltage by the voltage comparison circuits 11, 21. Since the side is smaller, the output of the synthesis circuit 22
The VDO determines that the automatic guided vehicle has left the track.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上述した従来の無人搬送車の走路判定方法は、励振コ
イル2と検知コイル3,13が接近しているため、被検知物
が近接しない場合にも検知コイル3,13に生じる電圧は大
きい。この場合被検知物が近接したことによる検知コイ
ル3,13に生じる電圧の変化は非常にわずかであり、回路
系の温度特性,ケースの機械歪等で電圧変化を検知する
ことが困難である。これを解決するために、第3図に示
すように検知コイル3,13に交差する磁界がバランスした
点の近くに検知コイル3,13を固定する必要がある。しか
しこのバランス点近傍は少しの取付誤差でも磁界の変化
が大きいため、位置設定が困難であるという欠点があっ
た。
In the above-described conventional method for determining the traveling path of an automatic guided vehicle, since the excitation coil 2 and the detection coils 3 and 13 are close to each other, the voltage generated in the detection coils 3 and 13 is large even when the detected object is not close. In this case, the change in the voltage generated in the detection coils 3 and 13 due to the proximity of the detection object is very small, and it is difficult to detect the voltage change due to the temperature characteristics of the circuit system, mechanical distortion of the case, and the like. In order to solve this, it is necessary to fix the detection coils 3, 13 near a point where the magnetic fields intersecting the detection coils 3, 13 are balanced as shown in FIG. However, near the balance point, there is a drawback that it is difficult to set the position because a change in the magnetic field is large even with a small mounting error.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の無人搬送車の走路判定器は、走路に布設され
た磁性体または導電体を検知して走行する無人搬送車に
取付けられる走路判定器において、発振器の出力が供給
され交流磁界を発生する励振コイルと、前記交流磁界に
より第1と第2の誘導電圧をそれぞれ出力する第1と第
2の検知コイルと、前記第1と第2の誘導電圧をそれぞ
れ増幅する第1と第2の増幅器と、この第1と第2の増
幅器からの出力を前記発振器の出力でそれぞれ同期検波
する第1と第2同期検波器と、この第1と第2の同期検
波器からの出力を差動増幅する差動増幅器とを有してい
る。
The runway determiner of the automatic guided vehicle of the present invention is a runway determiner attached to an automatic guided vehicle that travels by detecting a magnetic substance or a conductor laid on a runway, wherein an output of an oscillator is supplied to generate an AC magnetic field. An exciting coil, first and second sensing coils respectively outputting first and second induced voltages by the AC magnetic field, and first and second amplifiers respectively amplifying the first and second induced voltages. First and second synchronous detectors for synchronously detecting the outputs from the first and second amplifiers with the output of the oscillator, respectively, and differentially amplifying the outputs from the first and second synchronous detectors And a differential amplifier.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。第1図
は本発明の一実施例のブロック図である。
Next, the present invention will be described with reference to the drawings. FIG. 1 is a block diagram of one embodiment of the present invention.

本実施例は、発振器1の出力が供給され交流磁界9を
発生する励振コイル2と、交流磁界9により第1と第2
の誘導電圧をそれぞれ出力する第1と第2の検知コイル
3,13と、第1と第2の誘導電圧をそれぞれ増幅する第1
と第2の増幅器4,14と、この第1と第2の増幅器4,14か
らの出力を発振器1の出力でそれぞれ同期検波する第1
と第2の同期検波器5,15と、この第1と第2の同期検波
器5,15からの出力を差動増幅する差動増幅器8とを有し
て構成される。差動増幅器8の出力は検知コイル3,13で
検出した差電圧であり無人搬送車の走路判定信号にな
る。
In this embodiment, the excitation coil 2 to which the output of the oscillator 1 is supplied to generate an AC magnetic field 9, and the first and second AC magnetic fields 9 are used.
And second detection coils for respectively outputting induced voltages
3, 13 and the first amplifying the first and second induced voltages, respectively.
And second amplifiers 4 and 14, and a first amplifier for synchronously detecting the outputs from the first and second amplifiers 4 and 14 with the output of the oscillator 1.
And the second synchronous detectors 5, 15 and a differential amplifier 8 for differentially amplifying the output from the first and second synchronous detectors 5, 15. The output of the differential amplifier 8 is a difference voltage detected by the detection coils 3 and 13 and serves as a runway determination signal of the automatic guided vehicle.

次に本実施例の作用について説明する。発振器1は交
流信号を発生し励振コイル2を駆動する。励振コイル2
は発振器1からの交流電流により交流磁界を発生する。
第1および第2の検知コイル3,13は前記交流磁界に感応
して誘導電圧を発生する。第1および第2の増幅器4,14
は第1および第2の検知コイル3,13に発生した誘導電圧
を増幅する。第1および第2の同期検波器5,15は発振器
1の交流信号をそれぞれ基準信号として入力し、第1お
よび第2の増幅器4,14の出力信号をそれぞれ他方の入力
信号として入力し同期検波して交流成分を抑圧した直流
成分をそれぞれ出力する。差動増幅器8は第1および第
2の同期検波器5,15の出力を入力信号とし、差入力電圧
を増幅し出力する。差動増幅器8の出力が走路判定器の
出力信号になる。
Next, the operation of the present embodiment will be described. The oscillator 1 generates an AC signal and drives the excitation coil 2. Excitation coil 2
Generates an AC magnetic field by the AC current from the oscillator 1.
The first and second detection coils 3, 13 generate an induced voltage in response to the AC magnetic field. First and second amplifiers 4,14
Amplifies the induced voltage generated in the first and second detection coils 3 and 13. The first and second synchronous detectors 5 and 15 receive the AC signal of the oscillator 1 as reference signals, respectively, and receive the output signals of the first and second amplifiers 4 and 14 as the other input signals, respectively. Then, the DC component in which the AC component is suppressed is output. The differential amplifier 8 uses the outputs of the first and second synchronous detectors 5 and 15 as input signals, amplifies the differential input voltage, and outputs the amplified signal. The output of the differential amplifier 8 becomes the output signal of the track judgment unit.

例えば、走路に布設された磁性体の被検知物が近接し
た時に第1および第2の検知コイル3,13から等距離でな
い場合に第1および第2の検知コイル3,13の発生する誘
導電圧に差が生じ、第1および第2の増幅器4,14により
それぞれ増幅され、第1および第2の同期検波器5,15に
より同期検波され、差動増幅器8に供給され、第1およ
び第2の検知コイル3,13の誘導電圧の差信号として出力
される。この信号により被検知物が第1および第2の検
知コイル3,13の間にある場合は走路をはずれていないと
判定し、第1および第2の検知コイル3,13の間にない場
合は走路をはずれていると判定する。
For example, the induced voltage generated by the first and second detection coils 3 and 13 when the magnetic detection object laid on the runway is not equidistant from the first and second detection coils 3 and 13 when approaching. A difference is generated between the signals, the signals are amplified by the first and second amplifiers 4 and 14, respectively, synchronously detected by the first and second synchronous detectors 5 and 15, supplied to the differential amplifier 8, and supplied to the first and second amplifiers 8. Is output as a difference signal between the induced voltages of the detection coils 3, 13. When the detected object is between the first and second detection coils 3 and 13 based on this signal, it is determined that the track is not deviated. When the object is not between the first and second detection coils 3 and 13, It is determined that the vehicle is off the track.

このようにすると、被検知物が近接した際の検知コイ
ル3,13の誘導電圧の変化分のみが差動増幅器8から出力
され、磁界の変化が検知コイル3,13の左右どちら側でも
出力されることから、差動増幅器8の出力電圧を検出す
るのみで、無人搬送車が走路から離脱したことを判定で
きる。
In this way, only the change in the induced voltage of the detection coils 3 and 13 when the detection object approaches is output from the differential amplifier 8, and the change in the magnetic field is output on either the left or right side of the detection coils 3 and 13. Therefore, it is possible to determine that the automatic guided vehicle has left the traveling road only by detecting the output voltage of the differential amplifier 8.

第2図に本実施例の差動増幅器8の入出力電圧を示
す。横軸は磁気検知器と被測定物との距離であり、縦軸
は入出力電圧である。曲線VLは検知コイル3側、すなわ
ち、同期検波器5の出力電圧を示し、曲線VRは検知コイ
ル13側、すなわち、同期検波器15の出力電圧を示し、曲
線VDは差動増幅器8の出力電圧、すなわち、走路判定信
号を示す。VDが正(プラス)側のとき被検知物が第1の
検知コイル3と第2の検知コイル13の間にあり、走路上
にあることを示し、曲線VDが負(マイナス)側または零
のときは被検知物が第1の検知コイル3と第2のコイル
13の間になく、走路をはずれていることを示す。
FIG. 2 shows input / output voltages of the differential amplifier 8 of the present embodiment. The horizontal axis represents the distance between the magnetic detector and the device under test, and the vertical axis represents the input / output voltage. Curve V L is the sensing coil 3 side, i.e., shows the output voltage of the synchronous detector 5, the curve V R sensing coil 13 side, i.e., shows the output voltage of the synchronous detector 15, the curve V D differential amplifier 8 , That is, a runway determination signal. Located between the detection object when V D is positive (plus) side of the first detection coil 3 and the second detection coil 13, it indicates that on the runway, curve V D is negative (minus) side or When zero, the object to be detected is the first detection coil 3 and the second coil
Indicates that he is off the track, not between 13.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明は、検知コイルからの誘導
電圧を励振コイルの励振電圧により同期検波することに
より、被検知物が存在したときの差動増幅器の出力電圧
である走路判定信号で搬送車が走路から離脱したことを
容易に判定できる。また、励振コイルと検知コイルとの
間の位置設定も容易にできるという効果がある。
As described above, the present invention performs synchronous detection of an induced voltage from a detection coil by an excitation voltage of an excitation coil, and thereby provides a vehicle with a runway determination signal that is an output voltage of a differential amplifier when an object to be detected is present. Can easily be determined to have left the runway. Further, there is an effect that the position between the excitation coil and the detection coil can be easily set.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例のブロック図、第2図は本実
施例の動作を説明するための図、第3図は磁気検知器の
一例を示す図、第4図は従来の無人搬送車の走路判定方
法の一例を示すブロック図である。 1……発振器、2……励振コイル、3,13……検知コイ
ル、4,14……増幅器、5,15……同期検波器、8……差動
増幅器。
FIG. 1 is a block diagram of one embodiment of the present invention, FIG. 2 is a diagram for explaining the operation of this embodiment, FIG. 3 is a diagram showing an example of a magnetic detector, and FIG. It is a block diagram showing an example of a runway judgment method of a transportation vehicle. 1 ... Oscillator, 2 ... Exciting coil, 3,13 ... Detection coil, 4,14 ... Amplifier, 5,15 ... Synchronous detector, 8 ... Differential amplifier.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】走路に布設された磁性体または導電体を検
知して走行する無人搬送車に取付けられる走路判定器に
おいて、発振器の出力が供給され交流磁界を発生する励
振コイルと、前記交流磁界により第1と第2の誘導電圧
をそれぞれ出力する第1と第2の検知コイルと、前記第
1と第2の誘導電圧をそれぞれ増幅する第1と第2の増
幅器と、この第1と第2の増幅器からの出力を前記発振
器の出力でそれぞれ同期検波する第1と第2の同期検波
器と、この第1と第2の同期検波器からの出力を差動増
幅する差動増幅器とを有することを特徴とする無人搬送
車の走路判定器。
1. A runway determiner mounted on an automatic guided vehicle that travels by detecting a magnetic or conductive material laid on a runway, an excitation coil supplied with an output of an oscillator to generate an AC magnetic field, and an AC magnetic field. A first and a second sensing coil for outputting first and second induced voltages respectively, a first and a second amplifier for amplifying the first and second induced voltages, respectively, A first and a second synchronous detector for synchronously detecting the output from the second amplifier with the output of the oscillator, and a differential amplifier for differentially amplifying the output from the first and the second synchronous detector. A runway judging device for an automatic guided vehicle, comprising:
JP2059161A 1990-03-09 1990-03-09 Runway judgment device for automatic guided vehicles Expired - Lifetime JP2590581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2059161A JP2590581B2 (en) 1990-03-09 1990-03-09 Runway judgment device for automatic guided vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2059161A JP2590581B2 (en) 1990-03-09 1990-03-09 Runway judgment device for automatic guided vehicles

Publications (2)

Publication Number Publication Date
JPH03260706A JPH03260706A (en) 1991-11-20
JP2590581B2 true JP2590581B2 (en) 1997-03-12

Family

ID=13105372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2059161A Expired - Lifetime JP2590581B2 (en) 1990-03-09 1990-03-09 Runway judgment device for automatic guided vehicles

Country Status (1)

Country Link
JP (1) JP2590581B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6529230B2 (en) * 2014-08-28 2019-06-12 ニッカ電測株式会社 Metal detection device

Also Published As

Publication number Publication date
JPH03260706A (en) 1991-11-20

Similar Documents

Publication Publication Date Title
US4800978A (en) Magnetic object detecting system for automated guided vehicle system
US6971464B2 (en) Driverless vehicle guidance system and method
US3395341A (en) Method and apparatus for detecting the velocity of moving metallic masses by means of phasedisplacements produced in magnetic windings
JP2587412B2 (en) Magnetic detector
US6064315A (en) Zero speed transducer
JPS5836753B2 (en) Electromagnetic sensor that detects changes in magnetic field
JP2590581B2 (en) Runway judgment device for automatic guided vehicles
JPH10122806A (en) Position detecting sensor, combined position detecting sensor, and unmanned conveying car guiding control system using the sensors
JP2590578B2 (en) Magnetic detector
JP3091148B2 (en) Vehicle detection device
Engelberg Design of a correlation system for speed measurement of rail vehicles
JP2897300B2 (en) Magnetic detector
JP3205623B2 (en) Magnetic levitation transfer device
JP2910167B2 (en) Guide method of carrier
JP2512951B2 (en) Automatic guided vehicle guidance device
JPS5821504A (en) Device for measuring misalignment of rail
JPH02214907A (en) Magnetic sensor
KR950007188B1 (en) Magnetic induction device of unmanned moving body
JPS6097411A (en) Steering signal detector for unmanned carrier
JPH0423285B2 (en)
JPS6327203Y2 (en)
JPH0639364Y2 (en) Guide sensor
JPS62288501A (en) Magnet detector
JPH0481205B2 (en)
JPS59116815A (en) Detector for guide line for unmanned control vehicle