JPH02214907A - Magnetic sensor - Google Patents

Magnetic sensor

Info

Publication number
JPH02214907A
JPH02214907A JP1036543A JP3654389A JPH02214907A JP H02214907 A JPH02214907 A JP H02214907A JP 1036543 A JP1036543 A JP 1036543A JP 3654389 A JP3654389 A JP 3654389A JP H02214907 A JPH02214907 A JP H02214907A
Authority
JP
Japan
Prior art keywords
coils
coil
magnetic
sensor
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1036543A
Other languages
Japanese (ja)
Inventor
Natsuhiko Sakairi
坂入 夏彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1036543A priority Critical patent/JPH02214907A/en
Publication of JPH02214907A publication Critical patent/JPH02214907A/en
Pending legal-status Critical Current

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Navigation (AREA)

Abstract

PURPOSE:To facilitate the position control of a sensor coil by forming a sensor coil with using at least two coils by adding together the conductive voltage signals of both coils after amplifying them with each prescribed amplification factor. CONSTITUTION:The sensor coils 4 and 4a containing two coils 41/42 and 43/44 respectively are set against an exciting coil 2. The signals of coils 41 and 42 are amplified and added together via an addition circuit 5. In this case, the amplification factors are varied by the variable resistors 51 and 52. Both coils 41 and 42 are set opposite to each other centering on the balanced point of a magnetic field and therefore their inductive voltage phases are set adverse to each other. The coil 4a also has the same structure as the coil 4. Thus the positions of the sensor coils can be controlled via the control of the variable resistors. Then the position control is facilitated for the sensor coils.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁性体又は導電体を検知するための磁気検知器
に関し、特に、磁性体又は導電体をガイドレーンとして
走行する無人搬送車に使用されるガイドレーン用の磁気
検知器に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a magnetic detector for detecting a magnetic material or a conductive material, and in particular, it is used for an automatic guided vehicle that travels using a magnetic material or a conductive material as a guide lane. This invention relates to a magnetic detector for guide lanes.

〔従来の技術〕[Conventional technology]

磁性体の存在を検知する磁気検知器の1つに、交流磁場
を発生する励起コイルとそれが作る磁場によって誘導電
圧を生ずる検知コイルから成る自己励磁型のものがある
。これは、構造が簡単で設計の自由度も大きいことから
、従来広く利用されており、効果をあげている。
One type of magnetic detector that detects the presence of a magnetic substance is a self-excitation type that includes an excitation coil that generates an alternating magnetic field and a detection coil that generates an induced voltage by the generated magnetic field. This has been widely used and has been effective because it has a simple structure and a high degree of freedom in design.

1つの利用分野として、この技術は種々の車両誘導シス
テム等に利用され役立っている。これらの誘導システム
では、帯状の磁性体又は金属等の導電体をガイドレーン
として誘導すべき道に設けて、誘導されるべきもの(車
両等)に取り付けられた検知器の信号からカイドレーン
の方向を知り、それに応じて操車し、目的の場所に誘導
するものである。
As one field of application, this technology is used and useful in various vehicle guidance systems. In these guidance systems, a conductive material such as a magnetic or metal strip is installed as a guide lane on the road to be guided, and the direction of the guided lane is determined from the signal of a detector attached to the object to be guided (vehicle, etc.). This information is used to guide the vehicle to the desired location by steering the vehicle accordingly.

従来の磁気検知器としては、第4図のコイル配置で第3
図の回路構成のものが知られている。
As a conventional magnetic detector, the coil arrangement shown in Fig. 4 is
The circuit configuration shown in the figure is known.

この磁気検知器の動作について説明する。まず、励起コ
イル2に発振器1を接続して、交流電流を励起コイル2
に流す。すると、励起コイル2から励起磁界9が発生す
る。この励起磁界9の一部が検知コイル3,3aを貫く
ことにより、検知コイル3,33に誘導電圧が生じる。
The operation of this magnetic detector will be explained. First, connect the oscillator 1 to the excitation coil 2 and apply an alternating current to the excitation coil 2.
flow to. Then, an excitation magnetic field 9 is generated from the excitation coil 2. A part of this excitation magnetic field 9 penetrates the sensing coils 3, 3a, so that an induced voltage is generated in the sensing coils 3, 33.

この誘電電圧は、第3図の信号処理の回路に入力される
。検知コイル3,3aの誘導電圧はそれぞれ増幅回路8
.8aを経て整流回Fl@6.6aで整流された後、差
動回路7に入力され、検知コイル3.3fiによる2つ
の信号の差が出力される。
This dielectric voltage is input to the signal processing circuit shown in FIG. The induced voltages of the detection coils 3 and 3a are respectively amplified by an amplifier circuit 8.
.. After passing through 8a and being rectified by a rectifier circuit Fl@6.6a, it is input to a differential circuit 7, and the difference between the two signals by the detection coil 3.3fi is output.

このような構成・機能の磁気検知器において、検知コイ
ル3.31に空気より大きな比透磁率をもつ磁性体が接
近すると、磁界分布が変化し、検知コイル3.3aを貫
く磁束も変化する。また、導電体が接近すると、誘電体
に生ずる渦電流により磁界が変化する。こト1゛結果、
検知コイル338に誘導される電圧も変化することにな
る。磁性体又は誘電体が2つの検知コイル3,3aがら
対称な位置(第4図の中心軸り上)にある場合は磁界分
布は対称となり、2つの検知コイル336の誘導電圧も
等しいため、検知器出力も零となる。しかし、磁性体又
は誘電体で作られたガイドレーンが片側の検知コイルに
より接近すると、左右の検知コイル電圧が不平衡となり
、差動回路7の出力電圧が不平衡の程度に応じて正又は
負となる。従って、この電圧を制御信号として用いるこ
とにより、誘導されるべき物(車両等)をカイドレーン
に沿って走行させることかできる。
In a magnetic detector having such a structure and function, when a magnetic body having a relative magnetic permeability larger than air approaches the detection coil 3.31, the magnetic field distribution changes and the magnetic flux passing through the detection coil 3.3a also changes. Furthermore, when a conductor approaches, the magnetic field changes due to eddy currents generated in the dielectric. This 1. Result,
The voltage induced in sensing coil 338 will also change. If the magnetic material or dielectric material is located at a symmetrical position with respect to the two detection coils 3, 3a (on the center axis in Fig. 4), the magnetic field distribution will be symmetrical, and the induced voltages of the two detection coils 336 will be equal, so that detection will not be possible. The device output also becomes zero. However, when the guide lane made of magnetic or dielectric material approaches one side of the sensing coil, the voltages of the left and right sensing coils become unbalanced, and the output voltage of the differential circuit 7 becomes positive or negative depending on the degree of unbalance. becomes. Therefore, by using this voltage as a control signal, an object to be guided (such as a vehicle) can be caused to travel along the guided lane.

次に、磁性体か接近した時の磁界の変化についてより詳
細に説明する。
Next, changes in the magnetic field when a magnetic body approaches will be explained in more detail.

第5図(a)は検知コイル3.磁性体11およびその周
辺の磁力線について示したものである。
FIG. 5(a) shows the detection coil 3. It shows the magnetic body 11 and lines of magnetic force around it.

実線は磁性体11のない場合の磁力線101てあり、破
線は磁性体11が検知コイル3に接近したときの磁力線
10bである。第5図(a>に示すように、磁性体11
が接近すると、磁力線は、磁性体11に吸い込まれるよ
うに、実線から破線へというように変化する。この時、
検知コイル3を垂直に貫く磁束の総和も、第5図(b)
の実線矢印の大きさから破線矢印の大きさへと減少し、
誘導電圧は小さくなる。従って、第3図において、磁性
体11が近づいた側の整流回路の出力は、もう一方の整
梳回路の出力より小さくなり、差動回路7の出力はそれ
に応じて正又は負となる。
The solid line is the magnetic force line 101 when the magnetic body 11 is not present, and the broken line is the magnetic force line 10b when the magnetic body 11 approaches the detection coil 3. As shown in FIG. 5(a), the magnetic body 11
When approaches, the lines of magnetic force change from a solid line to a broken line as if being sucked into the magnetic body 11. At this time,
The total sum of magnetic flux that perpendicularly penetrates the detection coil 3 is also shown in Fig. 5(b).
decreases from the size of the solid arrow to the size of the dashed arrow,
The induced voltage becomes smaller. Therefore, in FIG. 3, the output of the rectifying circuit on the side closer to the magnetic body 11 is smaller than the output of the other rectifying circuit, and the output of the differential circuit 7 becomes positive or negative accordingly.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の磁気検知器ては、検知コイルに被検知物
(磁性体又は導電体)が近接した場合と周囲に被検知物
が存在しない時との出力電圧値の差を大きくとるため周
囲に被検知物が存在しない時に検知コfルニニ友導する
電圧を小さくする必要がある。すなわち、第6図に破線
で示す平衡な直線B、Cの直線C上の点Aのように、横
方向の磁界が左右平衡した点に近い所に検知コイルを固
定する必要がある。しかしながら、平衡点近傍の磁界強
さの変化率は大きいため位置設定が難しいという欠点が
ある。
In the conventional magnetic detector described above, in order to increase the difference in output voltage value when an object to be detected (magnetic material or conductive material) is close to the detection coil and when there is no object to be detected in the surrounding area, It is necessary to reduce the voltage applied to the detection circuit when there is no object to be detected. That is, it is necessary to fix the sensing coil near a point where the horizontal magnetic fields are balanced on the left and right sides, such as point A on straight line C of balanced straight lines B and C shown by broken lines in FIG. However, since the rate of change in the magnetic field strength near the equilibrium point is large, it has the disadvantage that position setting is difficult.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の磁気検知器は、発振回路と、該発振回路の出力
信号で直流磁界を発生する励起コイルと、該励起コイル
の作る前記交流磁界によって誘導電圧信号を発生するそ
れぞれか少くとも2個のコイルから成る2個の検知コイ
ルと、それぞれの前記コイルからの誘導電圧信号をそれ
ぞれ所定の比率で増幅しかつ加算する2個の加算回路と
を含んで構成される。
The magnetic detector of the present invention includes an oscillation circuit, an excitation coil that generates a DC magnetic field with the output signal of the oscillation circuit, and at least two that generate an induced voltage signal by the AC magnetic field generated by the excitation coil. It is configured to include two detection coils each consisting of a coil, and two adder circuits that amplify and add induced voltage signals from the respective coils at a predetermined ratio.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例のブロック図である。FIG. 1 is a block diagram of one embodiment of the present invention.

第1図に示すように、本実施例は発振回路1と、発振回
路1の出力信号で交流磁界を発生する励起コイル2と、
励起コイル2の作る交流磁界によって誘導電圧信号を発
生するそれぞれが2個のコイル41.42及び43.4
4から形成される検知コイル4,4aと、コイル41.
42とコイル43.44からの電圧信号をそれぞれの検
知コイル4,46ごとのそれぞれのコイルごとに所定の
比率で増幅し加算する加算回路5.51と、加算回路5
,58の出力を整流する整流回路6゜6Bと、整流回路
6.68の出力の差値を出力する差動回路7とを含んで
構成される。
As shown in FIG. 1, this embodiment includes an oscillation circuit 1, an excitation coil 2 that generates an alternating current magnetic field with the output signal of the oscillation circuit 1,
Two coils 41.42 and 43.4 each generate an induced voltage signal by the alternating magnetic field created by the excitation coil 2.
Detection coils 4, 4a formed from coils 41.4 and 41.4a;
42 and coils 43 and 44 at a predetermined ratio for each of the detection coils 4 and 46, and an addition circuit 5.51, and an addition circuit 5.
, 58, and a differential circuit 7 that outputs the difference value between the outputs of the rectifier circuits 6, 68.

第2図は第1図の実施例のコイル配置の平面図である。FIG. 2 is a plan view of the coil arrangement of the embodiment of FIG. 1.

第2図に示すように、励起コイル2に対しそれぞれが2
個のコイル41.42と43.44とを有する検知コイ
ル4,4aとが配置されている。
As shown in FIG.
Detection coils 4, 4a having coils 41, 42 and 43, 44 are arranged.

検知コイル4のコイル41.42の信号は、それぞれ加
算回路5で増幅され加算されるが、その増幅度は可変抵
抗器51.52により可変となっている。2個のコイル
41.42は磁界の平衡点をはさんで左右におかれてい
るため、誘導電圧位相は逆位相となる。又、検知コイル
4.の側も上記と同様である。
The signals from the coils 41 and 42 of the detection coil 4 are each amplified and added by the adder circuit 5, and the degree of amplification is made variable by variable resistors 51 and 52. Since the two coils 41 and 42 are placed on the left and right with the magnetic field equilibrium point in between, the induced voltage phases are opposite to each other. Also, the detection coil 4. The side is also the same as above.

したがって、これらの和をとることにより、被検知物が
周囲にない時の電圧を小さくすることができる。また、
この電圧値をある任意の値に設定しようとする際には、
検知コイルの位置調整の代りに可変抵抗器の調整のみで
行え、調整が容易になる。
Therefore, by calculating the sum of these values, it is possible to reduce the voltage when the object to be detected is not around. Also,
When trying to set this voltage value to an arbitrary value,
Instead of adjusting the position of the detection coil, only the variable resistor can be adjusted, making the adjustment easier.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、検知コイルを少くとも2
個のコイルで形成しかつそれぞれのコイルの誘導電圧信
号をそれぞれ所定の増幅率で増幅して加算することによ
り、検知コイルの位置調整を機械的調整の代りに電気的
調整で行うことができるので、調整が極めて容易になる
という効果がある。
As explained above, the present invention provides at least two detection coils.
By amplifying the induced voltage signals of each coil at a predetermined amplification factor and adding them together, the position of the detection coil can be adjusted electrically instead of mechanically. This has the effect of making adjustment extremely easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のブロック図、第2図は第1
図の実施例のコイル配置を示す平面図、第3図は従来の
磁気検知器の一例のブロック図、第4図は第3図の磁気
検知器のコイル配置を示す平面図、第5図(a)及び(
b)はそれぞれ第3図の磁気検知器の動作を説明するた
めの被検知物により検知コイルを通る磁力線の変化及び
検知コイルを垂直に貫く磁束の変化を示す説明図、第6
図は第3図の磁気検知器の動作を説明するための励起コ
イルの励起磁界を示す説明図である。 1・・・発振回路、2・・・励起コイル、3,3.。 4.4a・・・検知コイル、5,5a・・・加算回路、
6.68・・・整流回路、7・・・差動回路、8,8a
・・・増幅回路、9・・・励起磁界、10..10.・
・・磁力線、11・・・磁性体、41,42,43.4
4・・・コイル、51.52・・・可変抵抗器。
FIG. 1 is a block diagram of one embodiment of the present invention, and FIG. 2 is a block diagram of an embodiment of the present invention.
FIG. 3 is a block diagram of an example of a conventional magnetic detector; FIG. 4 is a plan view showing the coil arrangement of the magnetic detector of FIG. 3; FIG. a) and (
b) is an explanatory diagram showing changes in magnetic lines of force passing through the detection coil and changes in magnetic flux perpendicularly penetrating the detection coil due to an object to be detected, respectively, to explain the operation of the magnetic detector shown in Fig. 3;
This figure is an explanatory diagram showing an excitation magnetic field of an excitation coil for explaining the operation of the magnetic detector of FIG. 3. 1... Oscillation circuit, 2... Excitation coil, 3, 3. . 4.4a...detection coil, 5,5a...addition circuit,
6.68... Rectifier circuit, 7... Differential circuit, 8, 8a
...Amplification circuit, 9...Excitation magnetic field, 10. .. 10.・
... Lines of magnetic force, 11... Magnetic material, 41, 42, 43.4
4... Coil, 51.52... Variable resistor.

Claims (1)

【特許請求の範囲】[Claims] 発振回路と、該発振回路の出力信号で直流磁界を発生す
る励起コイルと、該励起コイルの作る前記交流磁界によ
って誘導電圧信号を発生するそれぞれが少くとも2個の
コイルから成る2個の検知コイルと、それぞれの前記コ
イルからの誘導電圧信号をそれぞれ所定の比率で増幅し
かつ加算する2個の加算回路とを含むことを特徴とする
磁気検知器。
an oscillator circuit, an excitation coil that generates a DC magnetic field with an output signal of the oscillation circuit, and two sensing coils each consisting of at least two coils that generate an induced voltage signal by the AC magnetic field generated by the excitation coil. and two adder circuits that amplify and add induced voltage signals from each of the coils at a predetermined ratio.
JP1036543A 1989-02-15 1989-02-15 Magnetic sensor Pending JPH02214907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1036543A JPH02214907A (en) 1989-02-15 1989-02-15 Magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1036543A JPH02214907A (en) 1989-02-15 1989-02-15 Magnetic sensor

Publications (1)

Publication Number Publication Date
JPH02214907A true JPH02214907A (en) 1990-08-27

Family

ID=12472687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1036543A Pending JPH02214907A (en) 1989-02-15 1989-02-15 Magnetic sensor

Country Status (1)

Country Link
JP (1) JPH02214907A (en)

Similar Documents

Publication Publication Date Title
US4800978A (en) Magnetic object detecting system for automated guided vehicle system
US4283643A (en) Hall sensing apparatus
US5610518A (en) Method and apparatus for detecting small magnetizable particles and flaws in nonmagnetic conductors
JP2587412B2 (en) Magnetic detector
EP0096568A1 (en) Metal detection system
US3340467A (en) Magnetic metal detector utilizing a magnetic bridge formed with permanent magnets and a hall effect sensor
US6064315A (en) Zero speed transducer
IL93794A (en) Low distortion linear variable displacement transformer
JPS5836753B2 (en) Electromagnetic sensor that detects changes in magnetic field
US3742357A (en) Noncontact electric apparatus for magnetically measuring strains
JP2882856B2 (en) Eddy current flaw detector
US2915699A (en) Metal detectors
JPH02214907A (en) Magnetic sensor
JP2897300B2 (en) Magnetic detector
JP2590578B2 (en) Magnetic detector
US3995211A (en) Electromagnetic induction type detectors
JP2590581B2 (en) Runway judgment device for automatic guided vehicles
EP0376095B1 (en) Magnetic flux measuring method and apparatus for embodying the same
JPH03150401A (en) Magnetic detector
JPH06148139A (en) Defect detecting device
JPS5852467B2 (en) Non-contact bevel sensor
JP2512951B2 (en) Automatic guided vehicle guidance device
JPS61248916A (en) Solenoid bearing device
RU2159946C2 (en) Conveyer metal detector
JPS61133890A (en) Magnetic sensor