JPS61169910A - Detecting method of positional shift - Google Patents

Detecting method of positional shift

Info

Publication number
JPS61169910A
JPS61169910A JP60011251A JP1125185A JPS61169910A JP S61169910 A JPS61169910 A JP S61169910A JP 60011251 A JP60011251 A JP 60011251A JP 1125185 A JP1125185 A JP 1125185A JP S61169910 A JPS61169910 A JP S61169910A
Authority
JP
Japan
Prior art keywords
detection
circuits
output
detected
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60011251A
Other languages
Japanese (ja)
Inventor
Tokunori Miura
三浦 徳紀
Yojiro Kondo
陽二郎 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60011251A priority Critical patent/JPS61169910A/en
Priority to US06/796,209 priority patent/US4800978A/en
Publication of JPS61169910A publication Critical patent/JPS61169910A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • G05D1/0263Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means using magnetic strips

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Warehouses Or Storage Devices (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To correct the variation of a detected output due to the variation of the height of a detected body and to improve the detecting accuracy of positional shift by controlling the gain of a signal processing system so that the sum of the output voltages of two detecting coils fitted to the detected body is always fixed. CONSTITUTION:The AC output voltages a1, a2 of the detecting coils 1, 2 are amplified by pre-amplifier circuits A1, A2 and their outputs b1, b2 are converted into DC voltages c1, c2 by a rectifier smoothing circuits B1, B2 and then inputted to AGC amplifier circuits C1, C2. The outputs d1, d2 of the circuits C1, C2 are added by an adder D and its output (e) is fed back to the circuits C1, C2. The circuits C1, C2 control their gain at an equal rate so that the feedback signal (e) coincides with a reference value (r). Although the signal (e) is changed in accordance with the height between the coils 1, 2 and the detected body, the variation of the outputs d1, d2 due to the height (h) can be corrected by controlling the gain of the circuits C1, C2 so that the signal (e) is kept at a fixed value.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、被検出体との位置ずれ量を検出する装置に関
するもので、たとえば無人車に搭載し、ガイドからの位
置ずれ量を検出する装置に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a device that detects the amount of positional deviation from a detected object, and is mounted on an unmanned vehicle, for example, to detect the amount of positional deviation from a guide. Regarding equipment.

(従来技術とその問題点) 従来から無人車の誘導方法として誘導ケーブルや帯状の
金属板、磁性体板をガイドとして用いる方式が提案され
、一部は実用化されている。(自動搬送技術:トリケッ
プス社発行 P268 、特開昭59−059808号
公報)無人車の誘導は、走行路に沿って実質的に連続に
設置したガイドに対して車体が左右どちらの方向にどの
程度ずれたかを検出し、ずれと逆の方向に適当な量だけ
操舵することKよシ行なう。被検出体すなわちガイドと
して誘導ケーブルを用いる場合には、該誘導ケーブルに
交流電流を流しその作る磁場を無人車に搭載した検出コ
イルによって検出する。また、ガイドとして金属板や磁
性体を用いる場合には、検出コイルの他に励磁用コイル
を設け、該励磁用コイルの発生する交流磁場の金属板あ
るいは磁性体による変化を検出コイルによって検出する
(Prior Art and Its Problems) Conventionally, as a method for guiding unmanned vehicles, methods using a guide cable, a band-shaped metal plate, or a magnetic plate as a guide have been proposed, and some of them have been put into practical use. (Automatic transportation technology: P268 published by Triceps, Japanese Patent Application Laid-Open No. 59-059808) The guidance of an unmanned vehicle is to determine how far the vehicle body moves in the left or right direction with respect to guides that are installed substantially continuously along the driving path. It detects the deviation and performs steering by an appropriate amount in the direction opposite to the deviation. When an induction cable is used as the object to be detected, that is, the guide, an alternating current is passed through the induction cable, and the magnetic field generated is detected by a detection coil mounted on an unmanned vehicle. Further, when a metal plate or a magnetic body is used as a guide, an excitation coil is provided in addition to the detection coil, and the change in the alternating current magnetic field generated by the excitation coil due to the metal plate or magnetic body is detected by the detection coil.

どちらの場合も、ガイドからのずれの量と方向向を知る
ため、第4図に示すように、ガイドの左右に対向する位
置に1個ずつ、計2個の検出コイル1.2を無人車に搭
載する。各検出コイルの出力は第5図に示すような出力
特性を持つので、検出コイルの出力に応じて位置ずれの
量を、また2つの検出出力の大小関係からずれの方向(
左あるいは右)を検出することができる。また、雨検出
コイルの出力電圧を整流した後電気的に両者の差を取り
、該差信号の大きさと極性からずれの竜と方向を得る方
法もよく用いられている。
In either case, in order to know the amount and direction of deviation from the guide, two detection coils 1.2 are installed on the unmanned vehicle, one each on the left and right sides of the guide, as shown in Figure 4. be installed on. Since the output of each detection coil has output characteristics as shown in Figure 5, the amount of positional deviation can be determined according to the output of the detection coil, and the direction of deviation (
left or right). Another commonly used method is to rectify the output voltage of the rain detection coil, then electrically calculate the difference between the two, and obtain the magnitude and direction of the deviation from the magnitude and polarity of the difference signal.

以上のように、従来の方法では位置ずれの量を知るため
に、検出コイルの出力電圧の大きさを用いている。しか
し、検出コイルの出力電圧は被検出体からの水平方向の
ずれだけでなく、垂直方向すなわち高さの変動によって
も変化する。
As described above, in the conventional method, the magnitude of the output voltage of the detection coil is used to determine the amount of positional deviation. However, the output voltage of the detection coil changes not only due to the horizontal displacement from the object to be detected, but also due to the vertical direction, that is, the height variation.

第6図は、第4図に示した2個の検出コイルの出力の差
動値を示したものである。差動出力は、その大きさが検
出コイルと被検出体間の高さによって変化している。し
たがって、たとえば無人車ではそのバウンドや載荷の重
量により、シャーシの高さが変動すると検出コイルの出
力電圧が一定ではなくなる。このため適切な操舵量が得
られなくなシ、精度のよい走行ができなくなるという欠
点があった。
FIG. 6 shows the differential value of the outputs of the two detection coils shown in FIG. 4. The magnitude of the differential output changes depending on the height between the detection coil and the object to be detected. Therefore, for example, in an unmanned vehicle, if the height of the chassis changes due to its bounce or the weight of the load, the output voltage of the detection coil will not be constant. As a result, there is a drawback that an appropriate amount of steering cannot be obtained and accurate driving cannot be achieved.

(発明の目的) 本発明は以上のような欠点に鑑み、位置ずれ検出装置と
被検出体との間の高さ変動による、検出出力の変動を補
正し、水平方向の位置ずれに対する出力電圧を上記の高
さ変動によらず一定に保つことを目的とするものである
う (発明の構成) 本発明は、被検出体の左右に対応するように設けた2個
の検出コイルの出力電圧の振幅の和が常に一定になるよ
うに、両コイルにそれぞれ接続した信号処理系の利得を
制御することを特徴とする位置ずれ検出方法である。
(Object of the Invention) In view of the above-mentioned drawbacks, the present invention corrects fluctuations in the detection output due to height fluctuations between the positional deviation detection device and the detected object, and corrects the output voltage for horizontal positional deviation. The purpose of the present invention is to maintain the output voltage constant regardless of the above-mentioned height fluctuation (Structure of the invention). This positional deviation detection method is characterized by controlling the gains of signal processing systems connected to both coils so that the sum of amplitudes is always constant.

(作用) 第4.7図を用いて、本発明の詳細な説明する。(effect) The present invention will be explained in detail with reference to FIG. 4.7.

第4図のように、ケーブル3に流した電流の作る磁場を
2つの検出コイル1,2で検出するとき、両コイルに得
られる電圧は第7図のようKなる。
When the magnetic field created by the current flowing through the cable 3 is detected by the two detection coils 1 and 2 as shown in FIG. 4, the voltage obtained across both coils becomes K as shown in FIG. 7.

この図かられかるように、検出コイル1.2の検出電圧
はケーブル3との高さhによって、その大きさが変化す
る、正規分布状の特性をもつ。同図中Mで示した範囲は
、ケーブルが2つの検出コイル1.2の間にある時の雨
検出コイル1,2の出力電圧の内、はぼ直線で近似でき
る範囲を意味する。このMの範囲では雨検出コイル1,
2の出力は、水平方向の位置ずれXに対して、傾斜の大
きさが等しく極性の異なる直線で近似できる。したがっ
て範囲M内では、両出力電圧の和は位置ずれXの値にか
かわらず一定となる。検出コイルの高さhの変化によシ
、出力電圧の水平位置ずれxK対する傾斜は変化するが
、両コイルの出力の和はこの場合もある一定値となる。
As can be seen from this figure, the detection voltage of the detection coil 1.2 has a normal distribution characteristic whose magnitude changes depending on the height h from the cable 3. The range indicated by M in the figure means a range that can be approximated by a straight line among the output voltages of the rain detection coils 1 and 2 when the cable is between the two detection coils 1 and 2. In this range of M, rain detection coil 1,
The output of No. 2 can be approximated by a straight line having the same slope and different polarity with respect to the horizontal positional deviation X. Therefore, within the range M, the sum of both output voltages is constant regardless of the value of the positional deviation X. As the height h of the detection coil changes, the slope of the output voltage with respect to the horizontal positional deviation xK changes, but the sum of the outputs of both coils remains a certain constant value in this case as well.

したがって、雨検出コイルにそれぞれ接続する2つの信
号処理系の中の2つの増幅部の利得を、その出力の和が
常に一定値を保つように等しい割合いで制御することに
よシ、ケーブルからの高さhの変動に対する検出コイル
の出力電圧の変化を補正することができる。
Therefore, by controlling the gains of the two amplifier sections in the two signal processing systems connected to the rain detection coils at equal rates so that the sum of their outputs always remains constant, it is possible to reduce the amount of noise from the cable. Changes in the output voltage of the detection coil due to changes in height h can be corrected.

以上は、ケーブルに流した電流の作る磁場を検出する場
合について述べたが、2つの検出コイルとは別に1両検
出コイルの中間の設けた励磁用コイルの発生する磁場の
分布の被検出体である金属や磁性体による変化を検出す
る場合にも、雨検出コイルの出力は第5図と同様の検出
特性を持ち、上記の方法で被検出体との高さによる出力
変動を補正することができる。
The above has described the case of detecting the magnetic field created by the current flowing through the cable, but in addition to the two detection coils, it is also possible to detect the distribution of the magnetic field generated by the excitation coil installed in the middle of one detection coil. Even when detecting changes caused by certain metals or magnetic materials, the output of the rain detection coil has the same detection characteristics as shown in Figure 5, and the above method can correct output fluctuations due to the height of the detected object. can.

(実施例) 第1図は、本発明の基本的な実施例を示すブロック図で
ある。検出コイル1.2の交流出力電圧al t al
は前置増幅回路AI、A2によって、整流可能な振幅ま
で増幅される。また、検出コイル1゜2の特性のちがい
によって、出力レベルに差がある場合には、該前置増幅
回路によって補正することもできる。
(Embodiment) FIG. 1 is a block diagram showing a basic embodiment of the present invention. AC output voltage of detection coil 1.2 al tal
is amplified by preamplifier circuits AI and A2 to an amplitude that can be rectified. Further, if there is a difference in output level due to a difference in the characteristics of the detection coil 1.degree.2, it can be corrected by the preamplifier circuit.

さらに、整流・平滑回路Bl、B2によって、前置増幅
回路AI、A2の出力b1 l b、を直流電圧els
C1に変換した後、外部から利得の制御が可能な増幅回
路(以下、AGC増幅回路: Auto Ga1nCo
ntrol増幅回路という。) C1,c、に入力され
る。
Furthermore, the rectifier/smoothing circuits Bl and B2 convert the outputs b1 l b of the preamplifier circuits AI and A2 into DC voltages els
After converting to C1, an amplifier circuit whose gain can be controlled externally (hereinafter referred to as AGC amplifier circuit: Auto Ga1nCo
This is called a ntrol amplifier circuit. ) is input to C1,c.

AGC増幅回路C,、C,の出力d1+Gは加算回路D
K大入力れ、その出力e (5=d1+ds)はAGC
増幅回路C,、C,へ利得制御用の信号としてフィード
バックされる。2つのAGC増幅回路C1,C,は、こ
のフィードバック信号eが基準値rと等しくなるようK
、その利得を2つ共等しい割合いで制御する。第5図で
示したように、フィードバックの信号eは、検出コイル
1.2と被検出体との高さに応じて変化するが、上記の
ようにフィードバック信号eを一定に保つようKAGC
増幅回路C1゜C1の利得を制御することKよシ、その
出力d1.dlの高さhKよる変動を補正することがで
きる。
The output d1+G of the AGC amplifier circuit C, , C, is the adder circuit D
K large input, its output e (5=d1+ds) is AGC
It is fed back to the amplifier circuits C, , C, as a gain control signal. The two AGC amplifier circuits C1, C, set K so that this feedback signal e becomes equal to the reference value r.
, the gains of both are controlled in equal proportions. As shown in FIG. 5, the feedback signal e changes depending on the height between the detection coil 1.2 and the detected object, but the KAGC is used to keep the feedback signal e constant as described above.
By controlling the gain of the amplifier circuit C1°C1, its output d1. The variation due to the height hK of dl can be corrected.

第2図は、本発明による検出信号(t41図中のAGC
増幅回路の出力電圧dt、ds)の差動値を示したもの
である。第6図と比較すれば明らかなように1本発明に
よって高さhKよる検出出力を補正し、この出力電圧か
ら水平位置ずれの値を精度よく検出することができる。
FIG. 2 shows the detection signal according to the present invention (AGC in diagram t41).
2 shows the differential value of the output voltages dt, ds) of the amplifier circuit. As is clear from a comparison with FIG. 6, according to the present invention, the detection output based on the height hK can be corrected, and the value of the horizontal position shift can be detected with high accuracy from this output voltage.

尚、第1図中の前置増幅回路AI、A2は、検出コイル
1.2の出力が十分大きい場合には省略することも可能
である。
Note that the preamplifier circuits AI and A2 in FIG. 1 can be omitted if the output of the detection coil 1.2 is sufficiently large.

また、前置増幅回路AI、A2をAGC増幅回路とし、
整流平滑回路の後のAGC増幅回路ci 、C2を省略
することもできる。
In addition, the preamplifier circuits AI and A2 are AGC amplifier circuits,
The AGC amplifier circuits ci and C2 after the rectifying and smoothing circuit can also be omitted.

また、検出コイル1.2とは別に、励磁用コイルを設け
る場合には被検出体が存在しない場合でも、励磁用コイ
ルから発生する磁場を検出コイル1.2が直接検出し、
これが本発明による補正方法での誤差の原因となる。こ
の場合には、第3図に示すように、整流・平滑回路Bl
、B2の後段(あるいは前段)Kバイアス調整回路El
、E2を接続し、被検出体がない場合の直流出力電圧C
1゜C1がゼロとなるように調整すればよい。
In addition, when an excitation coil is provided in addition to the detection coil 1.2, the detection coil 1.2 directly detects the magnetic field generated from the excitation coil even when there is no detected object.
This causes errors in the correction method according to the present invention. In this case, as shown in FIG.
, B2 rear stage (or front stage) K bias adjustment circuit El
, E2 is connected and there is no detected object, DC output voltage C
It is sufficient to adjust so that 1°C1 becomes zero.

以上の実施例では、加算回路およびAGC増幅回路を用
いて、2つの検出コイルの出力の和を一定に保つようK
したが、整流平滑回路の後の直流電圧をん0変換し、マ
イクロコンピュータ等を用いてソフトウェア上で同様の
効果を得ることも可能である。
In the above embodiment, an adder circuit and an AGC amplifier circuit are used to keep the sum of the outputs of the two detection coils constant.
However, it is also possible to zero-convert the DC voltage after the rectifying and smoothing circuit and obtain the same effect on software using a microcomputer or the like.

本発明による位置ずれ検出装置は、無人車のガイド検出
用のセンナとしてばかシでなく、たとえば埋設された金
属体が磁性体の位置検出などKも応用できることは当然
である。
The positional deviation detection device according to the present invention is not only useful as a sensor for detecting the guide of an unmanned vehicle, but also can be applied to, for example, detecting the position of a magnetic body as a buried metal body.

(発明の効果) 以上のように、本発明によれば位置ずれ検出装置と、被
検出体の間の高さの変動による検出出力の変動を補正し
、水平方向の位置ずれに対する検出出力電圧の再現性言
い換えれば、位置ずれの検出精度を高めることができる
(Effects of the Invention) As described above, according to the present invention, fluctuations in the detection output due to fluctuations in height between the positional deviation detection device and the detected object are corrected, and the detection output voltage with respect to horizontal positional deviation is corrected. In other words, the accuracy of detecting positional deviation can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の基本的な実施例を示すブロック図、
第2図は第1図の出方電圧の差動値の高さの変動による
変化を示した図、第3図は、バイアス調整回路を付加し
た場合の一実施例を示すブロック図、第4図は、従来の
位置ずれ検出方法を示す図、第5.6図はそれぞれ各検
出コイルの検出電圧および両電圧の差動値を示す図、第
7図は、検出コイルの検出電圧の高さによる変動を示す
図、図中、1.2は検出コイル、3はケーブルを示す。 −〜 第2 図 −〜 74図 3ケーブル V+a、b: 検出コ \I−−L− イルの高さh!のとき V2O口。 V2Ob : ただし #h2のとき 〃h3のとき h+<h2<h3
FIG. 1 is a block diagram showing a basic embodiment of the present invention;
FIG. 2 is a diagram showing changes in the height of the differential value of the output voltage shown in FIG. The figure shows the conventional positional deviation detection method, Figures 5 and 6 show the detection voltage of each detection coil and the differential value of both voltages, and Figure 7 shows the height of the detection voltage of the detection coil. In the figure, 1.2 indicates the detection coil, and 3 indicates the cable. -~ Fig. 2 -~ 74 Fig. 3 Cable V+a, b: Detection coil \I--L- Height h of the coil! When V2O mouth. V2Ob: However, when #h2, when h3, h+<h2<h3

Claims (3)

【特許請求の範囲】[Claims] (1)2個の検出コイルを用いて、被検出体との位置ず
れを磁気的に検出する方法において、2個の検出コイル
の出力電圧の振幅の和が常に一定になるように、各検出
コイルに接続する信号処理系の利得を制御することを特
徴とする位置ずれ検出方法。
(1) In a method of magnetically detecting positional deviation with the detected object using two detection coils, each detection A positional deviation detection method characterized by controlling the gain of a signal processing system connected to a coil.
(2)前記の被検出体は電線からなり、2個の検出コイ
ルは該電線に流した交流電流の作る磁場を検出すること
を特徴とする特許請求の範囲第1項に記載の位置ずれ検
出方法。
(2) Positional deviation detection according to claim 1, wherein the object to be detected is made of an electric wire, and the two detection coils detect a magnetic field created by an alternating current flowing through the electric wire. Method.
(3)前記の被検出体は、金属または磁性体からなり、
2個の検出コイルは、両コイルの中間に別に設けた励磁
用コイルの発生する交流磁場の分布の、被検出体による
変化を検出することを特徴とする特許請求の範囲第1項
に記載の位置ずれ検出方法。
(3) The object to be detected is made of metal or magnetic material,
The two detection coils detect changes in the distribution of the alternating current magnetic field generated by the excitation coil separately provided between the two coils, due to the object to be detected. Positional deviation detection method.
JP60011251A 1984-11-09 1985-01-24 Detecting method of positional shift Pending JPS61169910A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60011251A JPS61169910A (en) 1985-01-24 1985-01-24 Detecting method of positional shift
US06/796,209 US4800978A (en) 1984-11-09 1985-11-08 Magnetic object detecting system for automated guided vehicle system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60011251A JPS61169910A (en) 1985-01-24 1985-01-24 Detecting method of positional shift

Publications (1)

Publication Number Publication Date
JPS61169910A true JPS61169910A (en) 1986-07-31

Family

ID=11772719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60011251A Pending JPS61169910A (en) 1984-11-09 1985-01-24 Detecting method of positional shift

Country Status (1)

Country Link
JP (1) JPS61169910A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63204415A (en) * 1987-02-20 1988-08-24 Nec Corp Guiding method for unmanned vehicle
JPS6459510A (en) * 1987-08-31 1989-03-07 Shin Kobe Electric Machinery Detector for steering signal for unmanned carrier vehicle
JP2008180560A (en) * 2007-01-24 2008-08-07 Olympus Corp Position detection circuit and its application system
JP2010096540A (en) * 2008-10-14 2010-04-30 Asahi Kasei Electronics Co Ltd Position detection device, and electronic device using the same
JP2011208967A (en) * 2010-03-29 2011-10-20 Nippo Corp Positioning device
CN110498171A (en) * 2019-07-16 2019-11-26 苏州吉成智能科技有限公司 The automatic error correction method and electronic equipment of drug storage with manipulator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5685113A (en) * 1979-12-13 1981-07-11 Daifuku Co Ltd Automatic driving device for self-running car

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5685113A (en) * 1979-12-13 1981-07-11 Daifuku Co Ltd Automatic driving device for self-running car

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63204415A (en) * 1987-02-20 1988-08-24 Nec Corp Guiding method for unmanned vehicle
JPS6459510A (en) * 1987-08-31 1989-03-07 Shin Kobe Electric Machinery Detector for steering signal for unmanned carrier vehicle
JP2008180560A (en) * 2007-01-24 2008-08-07 Olympus Corp Position detection circuit and its application system
JP2010096540A (en) * 2008-10-14 2010-04-30 Asahi Kasei Electronics Co Ltd Position detection device, and electronic device using the same
JP2011208967A (en) * 2010-03-29 2011-10-20 Nippo Corp Positioning device
CN110498171A (en) * 2019-07-16 2019-11-26 苏州吉成智能科技有限公司 The automatic error correction method and electronic equipment of drug storage with manipulator

Similar Documents

Publication Publication Date Title
CN101417619B (en) Magnetic suspension device
US4524314A (en) Rear travel guidance system
JPS61169910A (en) Detecting method of positional shift
US4160488A (en) Extended width sensor
US6848308B2 (en) Circuit arrangement for evaluating an acceleration sensor using the Ferraris principle
US5931876A (en) Tracking control circuit for automatic guide vehicle
JP2529980Y2 (en) Magnetostrictive torque sensor
KR0129561B1 (en) Induction motor vector control
US5353241A (en) Shifting system and method for an electronic compass system
JPH0756628A (en) Shift extent detecting device for unmanned vehicle
JPH10333745A (en) Position detection sensor for automatic traveling device
JPH0739974B2 (en) Temperature compensation device for torque measuring device
JP3329673B2 (en) Induction motor control device
JPH0619534A (en) Travel guiding device for unmanned vehicle
JP2652196B2 (en) Guidance detection device and guidance control method for automatic guided vehicle
JPH0423285B2 (en)
JP2003503696A (en) Torque sensor with hole bar
US5351204A (en) Scaling system and method for an electronic compass
JPH04347707A (en) Detection device for magnetic marker
JP3262051B2 (en) Vehicle position detecting device and position detecting method
JPH08221121A (en) Unmanned carrying vehicle with electromagnetic sensor for guidance
JPS6327203Y2 (en)
JP3303680B2 (en) Automatic vehicle steering control system
JPH11125502A (en) Device and method for vehicle position detection
US4523386A (en) Heading detecting apparatus