JPH02231607A - Magnetic guidance system for vehicle - Google Patents

Magnetic guidance system for vehicle

Info

Publication number
JPH02231607A
JPH02231607A JP1052754A JP5275489A JPH02231607A JP H02231607 A JPH02231607 A JP H02231607A JP 1052754 A JP1052754 A JP 1052754A JP 5275489 A JP5275489 A JP 5275489A JP H02231607 A JPH02231607 A JP H02231607A
Authority
JP
Japan
Prior art keywords
magnetic
vehicle
magnetic flux
short
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1052754A
Other languages
Japanese (ja)
Inventor
Shun Sato
駿 佐藤
Kousuke Tanaka
恒輔 田中
Takashi Nakajima
隆 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1052754A priority Critical patent/JPH02231607A/en
Publication of JPH02231607A publication Critical patent/JPH02231607A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To easily miniaturize a magnetic sensor and to facilitate the assembling and control jobs by detecting the change of a short circuit space magnetic flux which varies in accordance with the position error of a vehicle to a magnetic mark and detecting the position error of the vehicle to the mark. CONSTITUTION:A part of a space magnetic flux produced by an exciting signal generating means 4 with an exciting signal via a magnetic field generating means 5 short-circuits the both ends of the means 5 with no intervention of a magnetic mark 2. Furthermore a short circuit space magnetic flux varies in accordance with the position error of a vehicle 1 to the mark 2 and has an electromagnetic interlinkage with a short circuit magnetic flux detection coil 6. Thus a short circuit magnetic flux detecting signal is induced to the coil 6. As a result, the position of the vehicle 1 is electrically detected to the mark 2 as the short circuit magnetic flux detection signal. Thus a magnetic sensor 3 is miniaturized and the assembling and control jobs are facilitated for the sensor 3.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、車両の走行路に敷設した磁気標識に沿って
車両を自動走行可能にする磁気誘導システムに関するも
のである. [従来の技術] 最近、工場、倉庫、病院やゴルフ場などにおいて、搬送
車、牽引車、あるいはパレットなど(以下、車両という
)の走行路に磁気標識を敷設し、車両に磁気センサを備
え、これにより、走行路に沿って車両を無人で自動走行
させる車両の磁気誘導システムの重要性が高まっている
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to a magnetic guidance system that enables vehicles to automatically travel along magnetic markings placed on vehicle travel routes. [Prior Art] Recently, in factories, warehouses, hospitals, golf courses, etc., magnetic signs are installed on the travel paths of transport vehicles, tractors, pallets, etc. (hereinafter referred to as vehicles), and vehicles are equipped with magnetic sensors. As a result, the importance of magnetic guidance systems for vehicles that allow vehicles to automatically travel unmanned along driving routes is increasing.

以下、かかる磁気標識を用いた磁気誘導システムの従来
の代表例について説明する。
Hereinafter, typical examples of conventional magnetic guidance systems using such magnetic labels will be explained.

走行路には、フエライトシ一トやアモルファス磁気シー
ト等の磁気標識を敷設し、車両には、磁気センサを搭載
する。磁気センサには、励磁コイルと、励磁コイルを中
心にして磁気標識の幅方向に対称配置された一対の位置
ずれ検出コイルを備え、励磁コイルは100KHz程度
の励磁信号により励磁されて空間磁束を生成する。この
空間磁束は、一対の位置ずれ検出コイルと各別に鎖交し
て磁気標識に集束する。そして、車両が磁気標識の中央
から位置ずれした場合には、対を成す各々の位置ずれ検
出コイルに鎖交する空間磁束の量がアンバランスになり
、一対の位置ずれ検出コイルの各別の検出信号間には、
大きな差異を生じる。こうして、一対の位置ずれ検出コ
イルの検出信号により、磁気標識に対する車両の左右へ
の位置ずれを検知して車両の走行方向を制御し、磁気標
識に沿って車両を自動走行させんとするものである。
Magnetic signs such as ferrite sheets and amorphous magnetic sheets will be installed on the driving route, and magnetic sensors will be installed in the vehicles. The magnetic sensor is equipped with an excitation coil and a pair of misalignment detection coils arranged symmetrically in the width direction of the magnetic label with the excitation coil at the center, and the excitation coil is excited by an excitation signal of about 100 KHz to generate a spatial magnetic flux. do. This spatial magnetic flux interlinks with the pair of misalignment detection coils and focuses on the magnetic label. When the vehicle deviates from the center of the magnetic sign, the amount of spatial magnetic flux that interlinks with each misalignment detection coil in the pair becomes unbalanced, causing each misalignment detection coil to detect Between the signals,
It makes a big difference. In this way, the detection signals from the pair of positional deviation detection coils are used to detect the positional deviation of the vehicle to the left and right with respect to the magnetic sign, thereby controlling the running direction of the vehicle and allowing the vehicle to automatically travel along the magnetic sign. be.

(特開昭62−49409号公報参照)。(Refer to Japanese Patent Application Laid-Open No. 62-49409).

[発明が解決しようとする課題] しかしながら、上記の従来技術によれば、磁気センサに
は、磁気標識を経由する空間磁束と各別に鎖交する一対
の位置ずれ検出コイルを備えなければならず、しかも、
車両は、位置ずれ検出コイルが対を成して個々各別に生
成する検出信号に基づいて走行制御されるために、次の
ような種々の未解決な課題があった。
[Problems to be Solved by the Invention] However, according to the above-mentioned conventional technology, the magnetic sensor must be equipped with a pair of positional deviation detection coils each individually interlinked with the spatial magnetic flux passing through the magnetic label. Moreover,
Since the running of a vehicle is controlled based on detection signals generated by each pair of misalignment detection coils, there have been various unresolved problems as described below.

即ち、一般に、一対各別の位置ずれ検出コイルの電磁気
特性を完全に揃えることは困難であり、しかも、これを
空間磁束や励磁コイルに対して電磁的に等しく結合させ
ることは至難である。また、磁気センサが大形化して構
造が複雑化するだけでなく、磁気センサの組立作業や調
整作業が極めて煩瑣である。
That is, in general, it is difficult to completely align the electromagnetic characteristics of each pair of misalignment detection coils, and furthermore, it is extremely difficult to make them electromagnetically equally coupled to the spatial magnetic flux and the excitation coil. Moreover, not only the magnetic sensor becomes larger and has a more complicated structure, but also the assembly and adjustment work of the magnetic sensor is extremely cumbersome.

また、一対の位置ずれ検出コイルは、通常、磁気標識の
幅方向に向けて車両に配置されるので、車両の横揺れ(
ローリング)や積載荷重の偏りにより車両の床面が傾斜
した場合に、車両の位置すれと誤認し、暴走させる恐れ
がある。
Additionally, since the pair of misalignment detection coils are usually placed on the vehicle in the width direction of the magnetic sign,
If the floor of the vehicle is tilted due to rolling or unbalanced loading, it may be mistaken as a misalignment of the vehicle and cause the vehicle to drive out of control.

しかも、車両が磁気標識の中央に位置して正常走行する
場合だけでなく、磁気標識から完全に逸脱した完全脱輪
の場合にも、位置ずれ検出コイルは一対で対等な検出信
号を生じるので、正常な走行状態と完全脱輪状態を峻別
するためには、特別な判断手段が必要であった。
Moreover, not only when the vehicle is located in the center of the magnetic sign and driving normally, but also when the vehicle completely deviates from the magnetic sign and goes off the rails, the pair of positional deviation detection coils generates an equal detection signal. In order to distinguish between a normal running condition and a completely derailed condition, a special judgment method was required.

[課題を解決するための手段] この発明は、上記の従来技術が有していた未解決の.J
題に鑑み、これらを解決せんとするもので、車両に付設
した磁気センサには、励磁信号Dを受けて空間磁束φを
生成する磁界発生手段と、該空間磁束φのうちで磁気標
識を経由せずに磁界発生手段の両端を結ぶ短絡空間磁束
φ′と鎖交して短絡磁束検出信号Eを生成する短絡磁束
検出コイルを備えるものである。
[Means for Solving the Problems] This invention solves the unsolved problems of the above-mentioned prior art. J
In order to solve these problems, the magnetic sensor attached to the vehicle includes a magnetic field generating means that receives an excitation signal D and generates a spatial magnetic flux φ, and a magnetic field generator that generates a spatial magnetic flux φ from the magnetic sensor. A short-circuit magnetic flux detection coil is provided which generates a short-circuit magnetic flux detection signal E by interlinking with the short-circuit space magnetic flux φ' connecting both ends of the magnetic field generating means.

また、この発明は、上記励磁信号Dと、短絡磁東検出コ
イルの短絡磁束検出信号Eに基づいて、磁気標識に対す
る車両の位置ずれに応じた車両位置制御信号Hを生成す
る車両位置制御手段を備えるものである。
The present invention also provides vehicle position control means for generating a vehicle position control signal H in accordance with the positional deviation of the vehicle with respect to the magnetic sign, based on the excitation signal D and the short-circuit magnetic flux detection signal E of the short-circuit magnetic east detection coil. It is something to be prepared for.

さらに、この発明は、上記磁気センサが、上記空間磁束
φのうちでも磁気標識を経由する空間磁束φ“と鎖交す
る位置ずれ方向検知コイルを備えるものである。
Furthermore, in the present invention, the magnetic sensor is provided with a displacement direction detection coil that interlinks with the spatial magnetic flux φ" of the spatial magnetic flux φ passing through the magnetic marker.

[作用] この発明の構成は、励磁信号発生手段が励磁信号Dによ
り磁界発生手段を介して生成された空間磁束φの一部は
、磁気標識を経由することなく磁界発生手段の両端を短
絡し、しかも、車両の磁気標識に対する位置ずれに対応
して変化する短絡空間磁束φ′を形成し、短絡磁束検出
コイルと電磁気的に鎖交して短絡磁束検出コイルに短絡
磁束検出信号Eを誘起させるように働き、結果として、
磁気標識に対する車両の位置は、短絡磁束検出信号Eと
して電気的に検出されるように作用する。
[Function] The structure of the present invention is such that the excitation signal generation means shorts both ends of the magnetic field generation means without passing through the magnetic label, so that a part of the spatial magnetic flux φ generated by the excitation signal D through the magnetic field generation means. , Moreover, a short-circuit space magnetic flux φ′ that changes in response to the positional deviation of the vehicle with respect to the magnetic sign is formed, and is electromagnetically linked with the short-circuit magnetic flux detection coil to induce a short-circuit magnetic flux detection signal E in the short-circuit magnetic flux detection coil. As a result,
The position of the vehicle relative to the magnetic sign serves to be electrically detected as a short-circuit magnetic flux detection signal E.

また、この発明の他の構成は、励磁信号発生手段の励磁
信号Dは、磁界発生手段を介して定常的な空間磁東φを
生成させるための電気信号であり、一方、短絡磁束検出
コイルの短絡磁束検出信号Eは、車両の磁気標識に対す
る位置により僅かには変化するものの変化率の少ない電
気信号であり、単独では車両の正確な位置ずれの検出は
困難であるところ、車両位置制御手段は、励磁信号Dと
短絡磁束検出信号Eに基づいて、車両の位置に応じて顕
著に変化する車両位置制御信号Hを生成し、これにより
、磁気標識に沿った車両の自動走行制御を可能とするよ
うに作用する。
Further, in another configuration of the present invention, the excitation signal D of the excitation signal generation means is an electric signal for generating a steady spatial magnetic east φ via the magnetic field generation means, and on the other hand, the excitation signal D of the excitation signal generation means is an electric signal for generating a steady spatial magnetic field The short-circuit magnetic flux detection signal E is an electrical signal that changes slightly depending on the position of the vehicle with respect to the magnetic sign, but has a low rate of change.It is difficult to detect accurate positional deviation of the vehicle by itself, but the vehicle position control means , based on the excitation signal D and the short-circuit magnetic flux detection signal E, generates a vehicle position control signal H that changes significantly depending on the position of the vehicle, thereby enabling automatic driving control of the vehicle along the magnetic sign. It works like this.

さらに,この発明の他の構成は、空間磁束φのうちで磁
気標識を経由する空間磁束φ″は、磁気標識に対する車
両の位置ずれに対応して変化し、しかも位置ずれ検出コ
イルに鎖交して位置ずれ検出コイルの電磁作用により、
車両の位置に対応した検出信号Gを生成させ,位置ずれ
信号Gと前記短絡磁束検出信号Eに基づいた車両の磁気
標識に沿った確実な自動走行を可能にするように作用す
る。
Furthermore, in another configuration of the present invention, of the spatial magnetic flux φ, the spatial magnetic flux φ'' that passes through the magnetic marker changes in response to the positional deviation of the vehicle with respect to the magnetic marker, and moreover, the spatial magnetic flux φ'' that passes through the magnetic marker changes in response to the positional deviation of the vehicle with respect to the magnetic marker, and is linked to the positional deviation detection coil. Due to the electromagnetic action of the misalignment detection coil,
It functions to generate a detection signal G corresponding to the position of the vehicle, and to enable the vehicle to reliably automatically travel along the magnetic marker based on the positional deviation signal G and the short-circuit magnetic flux detection signal E.

[実施例] 以下、この発明のいくつかの゜実施例の構成と動作を第
1図乃至第6図に基づいて説明する。
[Embodiments] Hereinafter, the configuration and operation of several embodiments of the present invention will be explained based on FIGS. 1 to 6.

なお、図において、空間磁束φ、φ′、φ“゜は、理解
の容易のために破線で示されている。
In the figure, the spatial magnetic fluxes φ, φ', and φ"° are shown by broken lines for ease of understanding.

第1図は、この発明の第1の実施例である無人車の磁気
誘導システムの全体の構成を示す斜視図である。
FIG. 1 is a perspective view showing the overall configuration of a magnetic guidance system for an unmanned vehicle, which is a first embodiment of the present invention.

車両である無人車1の走行路には、磁気標3J2が敷設
され、無人車1の磁気標識2上の所定の高さ位置には、
磁気センサ3が具設されている。
A magnetic marker 3J2 is laid on the travel path of the unmanned vehicle 1, and at a predetermined height position on the magnetic marker 2 of the unmanned vehicle 1.
A magnetic sensor 3 is provided.

磁気センサ3は、磁界発生手段としての励磁コイル5と
短絡磁束検出コイル6を備えている。励磁コイル5は、
磁気標識2に平行、かつ、磁気標識2の幅方向に向いた
直径12Ilm、長さ6 0a+mの棒状フエライトコ
アを有し、コアの中間部には、線径0 . 3 2m+
nの絶縁被覆銅線が130回巻回され、この巻線の両端
には励磁信号発生千段4が接続されている。
The magnetic sensor 3 includes an excitation coil 5 and a short-circuit magnetic flux detection coil 6 as magnetic field generating means. The excitation coil 5 is
It has a rod-shaped ferrite core with a diameter of 12Ilm and a length of 60a+m that is parallel to the magnetic label 2 and oriented in the width direction of the magnetic label 2, and a wire diameter of 0.2Im is provided in the middle of the core. 3 2m+
An insulated copper wire of n is wound 130 times, and excitation signal generating stages 4 are connected to both ends of the winding.

短絡磁束検出コイル6は、励磁コイル5の両端の中間、
かつ、その直上に約5llI1の空隔を残して配設され
ており.線径0.32mm+の絶縁被覆電線が壱回径2
20110で40回巻回された空芯のコイルで、その巻
線の両端には車両位置制御手段7が接続されている。
The short-circuit magnetic flux detection coil 6 is located between both ends of the excitation coil 5,
Moreover, it is arranged directly above it with a gap of about 5llI1 left. Insulated wire with a wire diameter of 0.32mm+ has a diameter of 2 times.
The coil is an air-core coil wound 40 times with the winding wire 20110, and the vehicle position control means 7 is connected to both ends of the winding.

励磁信号発生手段4は励磁コイル5に周波数100κH
zの正弦波の励磁信号Dを供給し、励磁コイル5は、そ
の両端から磁気標識2の幅方向に向いた空間磁束φを生
成する。
The excitation signal generating means 4 sends a frequency of 100κH to the excitation coil 5.
An excitation signal D having a sine wave of z is supplied, and the excitation coil 5 generates a spatial magnetic flux φ directed in the width direction of the magnetic label 2 from both ends thereof.

次に、第2図を参照して、上記構成の動作を説明する。Next, the operation of the above configuration will be explained with reference to FIG.

同図(A)は、磁気標識2に対する車両の位置に対応し
た磁気標識2、励磁コイル5、および、短絡磁束検出コ
イル6の各々の位置関係を示している。同図(8)は、
同図(A)に対応した励磁信号Dと短絡磁束検出信号E
の各々の波形を示している。なお、以下の図面の説明に
おいて、《イ》乃至(ネ)は、磁気標識の一端から他端
に車両が移動する間の位置関係を各々示している。
FIG. 2A shows the positional relationship among the magnetic sign 2, the excitation coil 5, and the short-circuit magnetic flux detection coil 6 corresponding to the position of the vehicle with respect to the magnetic sign 2. The figure (8) is
Excitation signal D and short circuit magnetic flux detection signal E corresponding to (A) in the same figure
The waveforms of each are shown. In the following description of the drawings, <<A>> to (N) each indicate the positional relationship during movement of the vehicle from one end of the magnetic sign to the other end.

先ず、車両が走行路を逸脱し、磁気センサが磁気標識2
の一端から完全に外れた完全脱輪の場合には、励磁コイ
ル5の空間磁束φは、周囲に磁性体が無い場合と略々同
様に分布し、磁気標識2を経由せずに励磁コイル5の両
端を結ぶ短絡空間磁束φ′が多くなり、短絡磁束検出コ
イル6に鎖交する磁束密度が高まって短絡磁束検出コイ
ル6からは、大きな短絡磁束検出信号Eが出力される(
第2図(イ)参照)。
First, the vehicle deviates from the road, and the magnetic sensor detects magnetic sign 2.
In the case of a complete derailment in which the wheel completely comes off from one end, the spatial magnetic flux φ of the excitation coil 5 is distributed almost in the same way as when there is no magnetic material around, and the excitation coil 5 does not pass through the magnetic marker 2. The short-circuit space magnetic flux φ′ connecting both ends of the short-circuit magnetic flux φ′ increases, the magnetic flux density interlinking with the short-circuit magnetic flux detection coil 6 increases, and the short-circuit magnetic flux detection coil 6 outputs a large short-circuit magnetic flux detection signal E (
(See Figure 2 (a)).

なお、以下の波形図において、第2図(イ)に示される
短絡磁束検出信号Eが破線で示され、理解の便宜が図ら
れている。
In the waveform diagrams below, the short-circuit magnetic flux detection signal E shown in FIG. 2(a) is shown by a broken line for ease of understanding.

次いで、車両が走行路に戻る過程では、磁気センサが磁
気標識2の一端に近づき、励磁コイル5の空間磁束φの
一部は磁気標識2に集められて磁気標識2経由の空間磁
束φ′が増える。一方、磁気標識2を経由しない短絡空
間磁束φ′が減り、短絡磁束検出信号Eも減少する(第
2図(0)参照)。
Next, in the process of the vehicle returning to the driving route, the magnetic sensor approaches one end of the magnetic sign 2, and a part of the spatial magnetic flux φ of the excitation coil 5 is collected on the magnetic sign 2, and the spatial magnetic flux φ' via the magnetic sign 2 is increase. On the other hand, the short-circuit space magnetic flux φ' that does not pass through the magnetic marker 2 decreases, and the short-circuit magnetic flux detection signal E also decreases (see FIG. 2 (0)).

車両が走行路に戻り、磁気センサが磁気標識2の中央直
上に位置する場合には、空間磁束φの多くが磁気標識2
に集められ、短絡磁束検出コイル6に鎖交する短絡空間
磁束φ′が最少になるので短絡磁束検出信号Eも最小に
なる(第2図(A)参照)。
When the vehicle returns to the driving path and the magnetic sensor is located directly above the center of the magnetic sign 2, most of the spatial magnetic flux φ is transferred to the magnetic sign 2.
Since the short-circuit space magnetic flux φ' linked to the short-circuit magnetic flux detection coil 6 becomes the minimum, the short-circuit magnetic flux detection signal E also becomes the minimum (see FIG. 2(A)).

その後、再び、磁気センサが磁気標識2の中央直上から
外れると、短絡空間磁束φ′が増えて短絡磁束検出信号
Eも大きくなる(第2図(二)参照).再度、車両が完
全脱輪に至ると、磁気センサが磁気標識2から外れて空
間磁束φの大部分が磁気標識2を経由せず、短絡磁束検
出コイル6に鎖交する短絡空間磁束φ′の磁束密度が最
大になり、短絡磁束検出信号Eも最高に至る(第2図(
ネ)参照)。
Thereafter, when the magnetic sensor is removed from directly above the center of the magnetic marker 2 again, the short-circuit space magnetic flux φ' increases and the short-circuit magnetic flux detection signal E also increases (see FIG. 2 (2)). When the vehicle completely derails again, the magnetic sensor comes off from the magnetic marker 2, and most of the spatial magnetic flux φ does not pass through the magnetic marker 2, but rather the short-circuit spatial magnetic flux φ′ interlinks with the short-circuit magnetic flux detection coil 6. The magnetic flux density reaches its maximum, and the short-circuit magnetic flux detection signal E also reaches its maximum (Fig. 2 (
(See ).

次に、この発明の第2の実施例の構成について、第3図
の回路図を参照して説明する。
Next, the configuration of a second embodiment of the present invention will be explained with reference to the circuit diagram of FIG. 3.

励磁信号発生手段4は、通常の正弦波発生回路とバッフ
ァアンプを有し、その出力端子は、励磁コイル5に接続
すると共に、車両位置制御千段7の可変抵抗器72とコ
ンデンサ73からなる積分回路経由で演寒増幅器74に
接続し、さらに、演算増幅器74経由で演算増幅器75
の非反転入力端子に至っている。短絡磁束検出コイル6
の端子は、車両位置制御手段7の増幅率が可変な演算増
幅器71軒由で演算増幅器75の反転入力端子に接続し
ている。
The excitation signal generation means 4 has a normal sine wave generation circuit and a buffer amplifier, and its output terminal is connected to the excitation coil 5, and an integral circuit consisting of a variable resistor 72 and a capacitor 73 of 1,000 stages for vehicle position control. It is connected to an operational amplifier 74 via a circuit, and further connected to an operational amplifier 75 via an operational amplifier 74.
It has reached the non-inverting input terminal of . Short circuit magnetic flux detection coil 6
is connected to an inverting input terminal of an operational amplifier 75 through an operational amplifier 71 of the vehicle position control means 7 whose amplification factor is variable.

そして、演算増幅器75の出力端子は、コンデンサ76
1!由で走行方向修正千段9と走行路逸脱識別手段lO
に共通接続している。
The output terminal of the operational amplifier 75 is connected to the capacitor 76.
1! 1,000 stages of driving direction correction and driving road deviation identification means 10
are commonly connected.

上記構成の動作を、第4図の各部波形図を参照して説明
すれば以下の通りである。なお、同図(イ)乃至(ネ》
は、第2図(イ)乃至(ネ)と同様に、磁気標識に対す
る車両の位置に対応している。
The operation of the above configuration will be described below with reference to the waveform diagram of each part in FIG. In addition, (A) to (N) in the same figure
2 correspond to the position of the vehicle with respect to the magnetic sign, as in FIGS. 2(a) to 2(n).

励磁信号発生手段4の励磁信号Dは、磁気標識に対する
車両の位置関係に係わらず正弦波振幅の定常的な電気信
号であり、励磁コイル5を介して空間磁束φを生成し、
併せて、車両位置制御手段7の可変抵抗器72、コンデ
ンサ73、および演算増幅器74により遅延されて後述
の短13磁束検出信号Eの位相と同相に調整され、遅延
した励磁信号D′として演算増幅器75の非反転入力端
子に人力する。一方、短絡空間磁束φ′は、磁気標識2
に対する車両の位置により磁束密度が変化し、短絡磁束
検出コイル6と鎖交して車両の位置に応じて高低に変化
する短絡磁束検出信号Eを生成する。短絡磁束検出信号
Eは、増幅率可変な演算増幅器7lにより、前記の遅延
した励磁信号D′の振幅にあわせて所定に増幅され、増
幅された短絡磁束検出信号E′として演算増幅器75の
反転入力端子に入力する。
The excitation signal D of the excitation signal generating means 4 is a steady electrical signal with a sinusoidal amplitude regardless of the positional relationship of the vehicle with respect to the magnetic sign, and generates a spatial magnetic flux φ via the excitation coil 5.
In addition, it is delayed by a variable resistor 72, a capacitor 73, and an operational amplifier 74 of the vehicle position control means 7, and is adjusted to be in phase with the phase of a short 13 magnetic flux detection signal E, which will be described later. 75 non-inverting input terminal. On the other hand, the short-circuit spatial magnetic flux φ′ is the magnetic label 2
The magnetic flux density changes depending on the position of the vehicle with respect to the short circuit magnetic flux detection coil 6, and generates a short circuit magnetic flux detection signal E that changes in height depending on the position of the vehicle. The short-circuit magnetic flux detection signal E is amplified to a predetermined value according to the amplitude of the delayed excitation signal D' by an operational amplifier 7l with a variable amplification factor, and is sent to the inverting input of the operational amplifier 75 as the amplified short-circuit magnetic flux detection signal E'. input to the terminal.

なお、以下の説明においては、理解の容易のため、車両
が磁気標識の中央直上に位置する場合に、短絡磁束検出
信号Eの振幅が励磁信号Dの掘幅と一致するように短絡
磁束検出信号Eの増幅率が設定されているものとする。
In the following explanation, for ease of understanding, when the vehicle is located directly above the center of the magnetic sign, the short-circuit magnetic flux detection signal is set such that the amplitude of the short-circuit magnetic flux detection signal E matches the width of the excitation signal D. It is assumed that an amplification factor of E is set.

演募増幅器75は、磁気標識に対する車両の位置に拘わ
らず定常的に変化する励磁信号D′を基準信号として人
力するとともに、励磁信号D′と同相ながらも正弦波振
幅が車両の位置関係により僅かに増減変化する短絡磁束
検出信号E′を入力し、これらの信号D’,E’を演算
増幅して両者の差分を増幅した車両位置制御信号Hとし
、出力端子から出力する。
The input amplifier 75 uses the excitation signal D', which constantly changes regardless of the position of the vehicle relative to the magnetic sign, as a reference signal, and uses the excitation signal D' as a reference signal. A short-circuit magnetic flux detection signal E' which increases and decreases is inputted, and these signals D' and E' are operationally amplified, and the difference between the two is made into an amplified vehicle position control signal H, which is output from the output terminal.

その結果、車両位置制御信号Hは、車両が磁気標識から
逸脱している場合には、大きな振幅を有し(第4図(イ
)、(ネ)参照)、車両が磁気標識の中央直上に位置し
ている場合には、小さな振幅を有するものになる(第4
図(八)参照)。即ち、車両位置制御信号Hの振幅は、
車両の磁気標識からの位置ずれ量に対応して変化する(
第4図(口)、(二)参照)。
As a result, the vehicle position control signal H has a large amplitude when the vehicle deviates from the magnetic sign (see Figure 4 (a) and (ne)), and the vehicle position control signal H has a large amplitude when the vehicle deviates from the magnetic sign. If the 4th
(See Figure (8)). That is, the amplitude of the vehicle position control signal H is
Changes according to the amount of positional deviation of the vehicle from the magnetic sign (
(See Figure 4 (mouth), (2)).

車両位置制御信号Hには、車両の磁気標識に対する位置
ずれ方向に関する方向情報も含まれるが、以下の説明で
は、位置ずれ量に関する位置ずれ量情報に着目するもの
とする。
Although the vehicle position control signal H also includes direction information regarding the direction of positional deviation of the vehicle with respect to the magnetic sign, the following description will focus on positional deviation amount information regarding the positional deviation amount.

車両位置制御信号Hは、第3図に示されるコンデンサ7
6により直流成分が除去されて、走行方向修正千段9と
走行路逸脱識別手段IOに分配供給される。走行方向修
正千段9は、車両位置制御信号Hをサンプリングするな
どして、例えば、その撮幅に応じて通常のステアリング
装置を作動させ、車両の走行方向を修正する。走行路逸
脱識別手段lOは、例えば、通常のウインドコンバレー
タに車両位置制御信号Hを人力して予め設定されたしき
い値と車両位置制御信号Hの振幅を比較し、車両位置制
御信号Hの振幅がしきい値を越える場合には、車両が磁
気標識から逸脱したものと見なして、車両の走行を停1
トさせて暴走を防止する。
Vehicle position control signal H is supplied to capacitor 7 shown in FIG.
6, the DC component is removed and distributed to the traveling direction correction stage 9 and the traveling road deviation identification means IO. The traveling direction correction step 9 corrects the traveling direction of the vehicle by sampling the vehicle position control signal H and, for example, operating a normal steering device according to the field of view. The road deviation identification means IO compares the amplitude of the vehicle position control signal H with a preset threshold value by manually applying the vehicle position control signal H to a normal window converter, for example. If the amplitude exceeds the threshold, it is assumed that the vehicle has deviated from the magnetic sign and the vehicle is stopped.
to prevent runaway behavior.

次に、この発明の第3の実施例について、その磁気セン
サの要部構造を示す第5図を参照して説明する。
Next, a third embodiment of the present invention will be described with reference to FIG. 5, which shows the main structure of the magnetic sensor.

磁気センサ3は、基板31上に励磁コイル5と短絡磁束
検出コイル6を備え、さらに、位置ずれ検出信号Gを生
成する単一の位置ずれ検出コイル8を有している。位置
ずれ検出コイル8は、同一平面で励磁コイル5を取り巻
く空芯コイルであり、励磁コイル5を内設するプラスチ
ック製の矩形ボビンには、0.I21′Ilmの絶縁被
覆電線が130回巻回され、その巻線の端子には、図示
さわぬ車両位置制御手段7が接続されている。
The magnetic sensor 3 includes an excitation coil 5 and a short-circuit magnetic flux detection coil 6 on a substrate 31, and further includes a single displacement detection coil 8 that generates a displacement detection signal G. The positional deviation detection coil 8 is an air-core coil that surrounds the excitation coil 5 on the same plane, and the plastic rectangular bobbin in which the excitation coil 5 is installed has a 0. The insulated wire I21'Ilm is wound 130 times, and the vehicle position control means 7 (not shown) is connected to the terminal of the winding.

以下に、第6図を参照して上記実施例の動作を説明する
。第6図(A)は、位置ずれ検出信号Gの出力特性を示
し、車両が磁気標識の左端から右端に移る際の位置ずわ
検出信号Gの変化を示している。同図(B)は、同様に
、短絡磁束検出コイル6の短絡磁束検出信号Eの出力特
性を示している。
The operation of the above embodiment will be explained below with reference to FIG. FIG. 6(A) shows the output characteristics of the positional deviation detection signal G, and shows the change in the positional deviation detection signal G when the vehicle moves from the left end to the right end of the magnetic sign. Similarly, FIG. 6B shows the output characteristics of the short-circuit magnetic flux detection signal E of the short-circuit magnetic flux detection coil 6.

なお,同図において、磁気センサ3と磁気標識2の間隔
(磁気センサの走行路上の高さ)hは、14mmおよび
2 0n+mに設定されている。
In the figure, the distance h between the magnetic sensor 3 and the magnetic sign 2 (the height of the magnetic sensor above the running road) is set to 14 mm and 20n+m.

位置ずれ検出コイル8は、励磁コイル5を取り巻いて励
磁コイル5が生成する空間磁束φと鎖交し、車両が磁気
標識2の直上、または、近傍に位置するときは、空間磁
束φのうちの磁気標識2を経由する空間磁束φ′とも鎖
交する。
The positional deviation detection coil 8 surrounds the excitation coil 5 and interlinks with the spatial magnetic flux φ generated by the excitation coil 5, and when the vehicle is located directly above or in the vicinity of the magnetic sign 2, it It also interlinks with the spatial magnetic flux φ' passing through the magnetic label 2.

磁気センサが磁気標識2の中央直上に位置する場合には
、上記空間磁束φ′は、位置ずれ検出コイル8の中心に
対して対称に鎖交する。その結果、位置ずれ検出コイル
8は、巻線での誘起電圧が周回毎に相殺され、位置ずわ
検出信号Gを生成しない。
When the magnetic sensor is located directly above the center of the magnetic marker 2, the spatial magnetic flux φ' interlinks symmetrically with respect to the center of the displacement detection coil 8. As a result, the induced voltage in the winding of the positional deviation detection coil 8 is canceled out every turn, and the positional deviation detection signal G is not generated.

然るに、磁気センサが磁気標識2の中央から位置ずれし
た場合には、上記空間磁束φ″は、位置ずれ検出コイル
8の中、心に対して非対称に鎖交し、位置ずれ検出コイ
ル8は、巻線の周回毎に相殺されない誘Jl!電圧を生
じて位置ずれ検出信号Gを生成する。しかも、位置ずれ
検出信号Gの振幅は、磁気標識に対する車両の一定範囲
内での位置ずれ量に対応し、しかも、その極性は、磁気
標識2に対する車両の位置ずれ方向に対応し、正負の何
れかになる(第6図(A)参照)。
However, when the magnetic sensor is displaced from the center of the magnetic marker 2, the spatial magnetic flux φ'' interlinks asymmetrically with respect to the center within the displacement detection coil 8, and the displacement detection coil 8 At each turn of the winding, an induced Jl! voltage that is not canceled out is generated to generate a positional deviation detection signal G.Moreover, the amplitude of the positional deviation detection signal G corresponds to the amount of positional deviation of the vehicle with respect to the magnetic sign within a certain range. Moreover, its polarity corresponds to the direction of displacement of the vehicle with respect to the magnetic sign 2, and is either positive or negative (see FIG. 6(A)).

その結果、位置ずれ検出コイル8の位置ずれ検出信号G
のみによっても、その極性と振幅の高低により、磁気標
識2に対する車両の位置ずれ方向と位置ずれ量を検出で
きるので、車両を自動走行させることが可能である。
As a result, the positional deviation detection signal G of the positional deviation detection coil 8
Even if the magnetic sign 2 is used alone, the direction and amount of positional deviation of the vehicle with respect to the magnetic sign 2 can be detected based on the polarity and the amplitude of the magnetic sign 2, so that the vehicle can be driven automatically.

しかしながら、上記によっても、一旦、車両が磁気標識
2に対して大幅に逸脱した場合には、もはや,位置ずれ
検出信号Gは生成されず、車両を安全、かつ、安定に自
動走行させることができない。これに対し、短絡磁束検
出コイル6の短絡磁束検出信号Eは、車両が走行路から
大きく逸脱して完全脱輪し、磁気センサが磁気標識から
遠のいた場合でも、消滅することなく大きな信号レベル
を維持する。
However, even with the above, once the vehicle deviates significantly from the magnetic sign 2, the positional deviation detection signal G is no longer generated, and the vehicle cannot run safely and stably automatically. . On the other hand, the short-circuit magnetic flux detection signal E of the short-circuit magnetic flux detection coil 6 does not disappear and maintains a large signal level even when the vehicle deviates significantly from the road and completely goes off the track, and the magnetic sensor moves away from the magnetic sign. maintain.

そこで、車両位置制御千段7は、短絡磁束検出コイルの
短絡磁束検出信号Eと位置ずれ検出コイル8の位置ずれ
検出信号Gを人力し、例えば、車両の位置ずれ量の検出
と、その修正量の設定は位置ずれ検出信号Gに基づいて
行い、車両の位置ずれ方向の検出と、その走行方向の修
正は短絡磁束検出信号Eに基づいて行う。そして、これ
らの信号E,Gを組合せることにより、車両の位置方向
と位置ずれ量を確実に検知し、その位置ずれ状況に応じ
て車両を最適、かつ安全に走行制御する。
Therefore, the vehicle position control stage 7 manually inputs the short-circuit magnetic flux detection signal E of the short-circuit magnetic flux detection coil and the position deviation detection signal G of the position deviation detection coil 8, and, for example, detects the amount of position deviation of the vehicle and the amount of correction thereof. The setting is performed based on the positional deviation detection signal G, and the detection of the direction of positional deviation of the vehicle and the correction of the traveling direction are performed based on the short circuit magnetic flux detection signal E. By combining these signals E and G, the direction and amount of positional deviation of the vehicle can be reliably detected, and the vehicle can be optimally and safely controlled in accordance with the positional deviation situation.

この実施例によれば、完全脱輪の場合にも車両の暴走を
防止でき、しかも、車両の位置ずれ検出は、短絡磁束検
出コイルと位置ずれ検出コイルとの各別な2つの検出手
段により行われるので、車両の自動走行をフェイルセー
フにできる。また、短絡磁束検出信号Eの振幅は、磁気
標識2の中央近傍では緩やかに増減し、中央から外れる
にしたがって急峻に変化するので(第6図(ロ)参照)
、車両の位置ずれの程度に応じて最適に車両を走行制御
することが可能になる。さらに、上記の単一の位置ずわ
検出コーrルは、従来の左右対称な一対の検出コイルに
比較して小型なので、磁気センサを小型化でき、磁気セ
ンサや周辺回路の構成を大幅にm純化できる。しかも、
車両の横揺れ(ローリング)や積載荷重の偏りによる床
面の傾斜を車両に位置すれと誤認することもない。
According to this embodiment, it is possible to prevent the vehicle from running out of control even in the case of complete derailment, and furthermore, the positional deviation of the vehicle is detected by two different detection means, the short-circuit magnetic flux detection coil and the positional deviation detection coil. This makes automatic vehicle driving fail-safe. In addition, the amplitude of the short-circuit magnetic flux detection signal E increases and decreases gradually near the center of the magnetic marker 2, and changes sharply as it moves away from the center (see Figure 6 (b)).
, it becomes possible to optimally control the running of the vehicle depending on the degree of positional deviation of the vehicle. Furthermore, since the single position detection coil described above is smaller than a conventional pair of symmetrical detection coils, the magnetic sensor can be made smaller, and the configuration of the magnetic sensor and peripheral circuitry can be significantly reduced. It can be purified. Moreover,
There is no possibility of mistaking the inclination of the floor surface due to the rolling of the vehicle or the unevenness of the load as being located on the vehicle.

また、上記短絡磁束検出信号Eにより、磁気センサ3と
磁気標識2の間隔hの変化を検知することも可能である
。これによれば、短絡磁束検出信号Eに基づいて励磁信
号発生千段4を介して通常の自動ゲイン調節手段(AG
C)等により励磁信号Dの振幅を調整し、励磁コイル5
に流入する励磁電流値を増減して、空間磁束φの磁束量
を増減調整し、車両の位置ずれ検出を上記間隔の変化に
よらず、常に、正確に行うようにすることもできる。
Furthermore, it is also possible to detect a change in the distance h between the magnetic sensor 3 and the magnetic label 2 using the short-circuit magnetic flux detection signal E. According to this, the normal automatic gain adjustment means (AG
C) etc. to adjust the amplitude of the excitation signal D, and the excitation coil 5
It is also possible to increase/decrease the amount of magnetic flux of the spatial magnetic flux φ by increasing/decreasing the value of the excitation current flowing into the magnetic flux φ, so that the positional deviation of the vehicle can always be detected accurately regardless of the change in the above-mentioned interval.

以一F、この発明のいくつかの実施例について説明した
が、この発明は、上記実施例の説明に限定されず、励磁
コイル5や短絡磁束検出コイル6、あるいは、位置ずれ
検出コイル8等の形状や取り付け位置を変更し,あるい
は、これらを複数併用することもできる。
Although several embodiments of the present invention have been described above, the present invention is not limited to the explanation of the above embodiments, and the present invention is not limited to the explanation of the above embodiments, but can be applied to the excitation coil 5, the short-circuit magnetic flux detection coil 6, the positional deviation detection coil 8, etc. It is also possible to change the shape and mounting position, or to use multiple of these in combination.

[発明の効果] 上記のように、この発明によれば、車両に備えた励磁コ
イルに短絡磁束検出コイルを付設して励磁コイルが生成
する空間磁束φのうちの磁気標識を経由しない短絡空間
磁束φ′と鎖交させ、磁気標識に対する車両の位置ずれ
に対応して変化する短絡空間磁束φ′の変化を検知させ
ることにより、車両の磁気標識に対する位置ずれを検出
させるようにしたので,磁気センサを小型化して構造を
単純化できるばかりでなく、磁気センサの組立作業や調
整作業を極めて容易にするという顕著な効果を奏する。
[Effects of the Invention] As described above, according to the present invention, a short-circuit magnetic flux detection coil is attached to an excitation coil provided in a vehicle, and out of the spatial magnetic flux φ generated by the excitation coil, the short-circuit spatial magnetic flux that does not go through the magnetic marker is removed. By interlinking with φ' and detecting changes in the short-circuit space magnetic flux φ' that changes in response to the positional deviation of the vehicle with respect to the magnetic sign, the magnetic sensor detects the positional deviation of the vehicle with respect to the magnetic sign. This has the remarkable effect of not only making it possible to downsize and simplify the structure, but also making assembly and adjustment of the magnetic sensor extremely easy.

しかも、車両が磁気標識から完全に逸脱した場合にも、
こわを確実に検知でき、車両の暴走を未然に防止して車
両を安全に自動走行させることができる。
Moreover, even if the vehicle completely deviates from the magnetic sign,
It is possible to reliably detect stiffness, prevent the vehicle from running out of control, and allow the vehicle to travel safely and automatically.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の第1の実施例の全体の構成を示す
斜視図、第2図(A)、(B)は、第1の実施例の動作
を説明する説明図、第3図は、第2の実施例の構成を示
す回路図、第4図(^)、(B)は、第2の実施例の動
作を説明する波形図、第5図は、第3の実施例の構成を
示す斜視図、第6図(A)、(8)は、第3の実施例の
動作を説明する特性図である。 1−・車両,2−・・磁気標識、3−・磁気センサ、4
・・・励磁信号発生手段、5・・・磁界発生手段、6一
短緒磁束検出コイル、7・・・車両位置制御手段、8・
・・位置ずれ検出コイル。
FIG. 1 is a perspective view showing the overall configuration of a first embodiment of the present invention, FIGS. 2(A) and (B) are explanatory views explaining the operation of the first embodiment, and FIG. is a circuit diagram showing the configuration of the second embodiment, FIGS. 4(^) and (B) are waveform diagrams explaining the operation of the second embodiment, and FIG. 5 is a circuit diagram of the third embodiment. The perspective view showing the configuration and FIGS. 6(A) and 6(8) are characteristic diagrams illustrating the operation of the third embodiment. 1-・Vehicle, 2-・Magnetic sign, 3-・Magnetic sensor, 4
. . . Excitation signal generation means, 5. Magnetic field generation means, 6. Short magnetic flux detection coil, 7. Vehicle position control means, 8.
...Positional deviation detection coil.

Claims (1)

【特許請求の範囲】 1、車両(1)の走行路に沿って磁気標識(2)を敷設
し、車両(1)に付設した磁気センサ(3)により磁気
標識(2)に対する車両(1)の相対的な位置ずれを検
知して走行路に沿って車両(1)を自動走行可能にする
車両の磁気誘導システムにおいて、 磁気センサ(3)には、 励磁信号発生手段(4)からの励磁信号(D)を受けて
磁気標識(2)の幅方向に向いた空間磁束(φ)を生成
する磁界発生手段(5)と、 該空間磁束(φ)のうちで磁気標識(2)を経由せずに
磁界発生手段(5)の両端を結ぶ短絡空間磁束(φ′)
と鎖交し、短絡空間磁束(φ′)の磁束密度の変化に対
応した短絡磁束検出信号(E)を生成する短絡磁束検出
コイル(6)を備えたことを特徴とする車両の磁気誘導
システム。 2、前記短絡磁束検出コイル(6)は、磁界発生手段(
5)の両端の中間、かつ、所定に離隔されて磁界発生手
段(5)に付設されていることを特徴とする請求項1記
載の車両の磁気誘導システム。 3、車両(1)の走行路に沿って磁気標識(2)を敷設
し、車両(1)に付設した磁気センサ(3)により磁気
標識(2)に対する車両(1)の相対的な位置ずれを検
知して走行路に沿って車両(1)を自動走行可能にする
車両の磁気誘導システムにおいて、 磁気センサ(3)には、 励磁信号発生手段(4)からの励磁信号(D)を受けて
磁気標識(2)の幅方向に向いた空間磁束(φ)を生成
する磁界発生手段(5)と、 該空間磁束(φ)のうちで磁気標識(2)を経由せずに
磁界発生手段(5)の両端を結ぶ短絡空間磁束(φ′)
と鎖交し、短絡空間磁束(φ′)の磁束密度の変化に対
応した短絡磁束検出信号(E)を生成する短絡磁束検出
コイル(6)と、 励磁信号(D)と短絡磁束検出信号(E)に基づいて磁
気標識(2)に対する車両(1)の位置に対応した車両
位置制御信号(H)を生成する車両位置制御手段(7)
を備えた車両の磁気誘導システム。 4、前記磁気センサ(3)は、前記空間磁束(φ)のう
ちで磁気標識(2)を経由する空間磁束(φ″)と鎖交
し、磁気標識(2)に対する車両(1)の位置ずれに対
応した位置ずれ検出信号(G)を生成する位置ずれ検出
コイル(8)を備えたことを特徴とする前記請求項1、
2または3記載の車両の磁気誘導システム。
[Claims] 1. A magnetic sign (2) is laid along the travel path of the vehicle (1), and a magnetic sensor (3) attached to the vehicle (1) detects the magnetic sign (2) when the vehicle (1) In a magnetic induction system for a vehicle that enables a vehicle (1) to automatically travel along a running path by detecting a relative positional deviation of a magnetic field generating means (5) that receives the signal (D) and generates a spatial magnetic flux (φ) directed in the width direction of the magnetic sign (2); A short-circuit space magnetic flux (φ') connecting both ends of the magnetic field generating means (5) without
A magnetic induction system for a vehicle, comprising a short-circuit magnetic flux detection coil (6) that interlinks with the short-circuit magnetic flux (φ') and generates a short-circuit magnetic flux detection signal (E) corresponding to a change in the magnetic flux density of the short-circuit space magnetic flux (φ'). . 2. The short-circuit magnetic flux detection coil (6) includes a magnetic field generating means (
2. The magnetic induction system for a vehicle according to claim 1, wherein the magnetic induction system is attached to the magnetic field generating means (5) at a predetermined distance between both ends of the magnetic field generating means (5). 3. A magnetic sign (2) is laid along the route of the vehicle (1), and the relative positional deviation of the vehicle (1) with respect to the magnetic sign (2) is detected by the magnetic sensor (3) attached to the vehicle (1). In a magnetic induction system for a vehicle that enables a vehicle (1) to automatically travel along a running route by detecting magnetic field generating means (5) for generating a spatial magnetic flux (φ) directed in the width direction of the magnetic label (2); (5) Short-circuit space magnetic flux (φ′) connecting both ends of
a short-circuit magnetic flux detection coil (6) that interlinks with the short-circuit magnetic flux (φ') and generates a short-circuit magnetic flux detection signal (E) corresponding to a change in the magnetic flux density of the short-circuit spatial magnetic flux (φ'); vehicle position control means (7) for generating a vehicle position control signal (H) corresponding to the position of the vehicle (1) with respect to the magnetic sign (2) based on E);
Magnetic induction system for vehicles equipped with. 4. The magnetic sensor (3) interlinks with the spatial magnetic flux (φ'') passing through the magnetic sign (2) among the spatial magnetic flux (φ), and detects the position of the vehicle (1) with respect to the magnetic sign (2). Claim 1, further comprising a positional deviation detection coil (8) that generates a positional deviation detection signal (G) corresponding to the deviation.
Magnetic induction system for a vehicle according to 2 or 3.
JP1052754A 1989-03-06 1989-03-06 Magnetic guidance system for vehicle Pending JPH02231607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1052754A JPH02231607A (en) 1989-03-06 1989-03-06 Magnetic guidance system for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1052754A JPH02231607A (en) 1989-03-06 1989-03-06 Magnetic guidance system for vehicle

Publications (1)

Publication Number Publication Date
JPH02231607A true JPH02231607A (en) 1990-09-13

Family

ID=12923681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1052754A Pending JPH02231607A (en) 1989-03-06 1989-03-06 Magnetic guidance system for vehicle

Country Status (1)

Country Link
JP (1) JPH02231607A (en)

Similar Documents

Publication Publication Date Title
EP0268979A2 (en) Guidance system for inductively coupled electric vehicles
EP0242940B1 (en) Magnetic detector
JPS61254004A (en) Magnetism adjuster for long-sized stator magnetic levitationvehicle
JPH10122806A (en) Position detecting sensor, combined position detecting sensor, and unmanned conveying car guiding control system using the sensors
JPH02231607A (en) Magnetic guidance system for vehicle
JPH02231608A (en) Magnetic guidance system for vehicle
JPS61224009A (en) Automatic steering device of unmanned car
JPS61172077A (en) Multiple magnetic detection switch
JPS59117612A (en) Guiding path of wagon
JPH02242404A (en) Magnetic guidance system for vehicle
JP3281758B2 (en) Guidance control device for mobile vehicles
JP2823287B2 (en) Magnetic sensor and magnetic induction device
JPH0212409A (en) Magnetic induction system
JPH0640407Y2 (en) Magnetic levitation carrier
JPH0625641B2 (en) Magnetic detector
JP2897300B2 (en) Magnetic detector
JPH0778687B2 (en) Unmanned vehicle operation system
JP3200499B2 (en) Magnetic levitation transfer device
JP2770525B2 (en) Driverless vehicle guidance system
JPH0231211A (en) Magnetic label detector
JPS6249409A (en) Detecting device for ferrite mark body
JP2512951B2 (en) Automatic guided vehicle guidance device
JPH02120907A (en) Magnetic guiding system for vehicle
KR910009226B1 (en) Nonhuman vehicle sensor
JPH02120906A (en) Magnetic guiding system for vehicle