JPH0778687B2 - Unmanned vehicle operation system - Google Patents
Unmanned vehicle operation systemInfo
- Publication number
- JPH0778687B2 JPH0778687B2 JP60023756A JP2375685A JPH0778687B2 JP H0778687 B2 JPH0778687 B2 JP H0778687B2 JP 60023756 A JP60023756 A JP 60023756A JP 2375685 A JP2375685 A JP 2375685A JP H0778687 B2 JPH0778687 B2 JP H0778687B2
- Authority
- JP
- Japan
- Prior art keywords
- current
- unmanned vehicle
- signal
- unit
- exciting current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001514 detection method Methods 0.000 claims description 15
- 230000006698 induction Effects 0.000 claims description 14
- 230000005284 excitation Effects 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0259—Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
- G05D1/0265—Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means using buried wires
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Electromagnetism (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Description
【発明の詳細な説明】 A.産業上の利用分野 本発明は誘導線に所定周波数の交流電流を流してその周
囲に磁界を発生させ、この磁界を検出しながら移動する
無人車の運行システムに関する。DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Use The present invention relates to an operation system for an unmanned vehicle that moves while detecting a magnetic field by causing an alternating current of a predetermined frequency to flow through an induction wire to generate a magnetic field around the induction current. .
B.発明の概要 本発明は、所定の軌条を形成するように布設した誘導線
に所定周波数の励磁電流を流して走行車を誘導制御する
システムにおいて、地上局からの指令信号により操舵用
信号レベルが変化しないよう励磁電流を変化させること
により、地上局から走行車への情報伝達を可能とし、走
行車受信センサを省くことにより制御装置を簡略化した
ものである。B. SUMMARY OF THE INVENTION The present invention is a system for guiding and controlling a traveling vehicle by passing an exciting current of a predetermined frequency through a guide wire laid so as to form a predetermined rail, and a steering signal level is generated by a command signal from a ground station. The information is transmitted from the ground station to the traveling vehicle by changing the exciting current so as not to change, and the control device is simplified by omitting the traveling vehicle reception sensor.
C.従来の技術 地上より無人車に通信する手段としては種々のものがあ
るが、代表的なものとしては、無人車に受信器あるいは
受光器を取付け、地上側より或る周波数にて送信する手
法や、その他種々の方法が採られている。C. Conventional technology There are various means for communicating from the ground to the unmanned vehicle, but a typical one is to install a receiver or a light receiver on the unmanned vehicle and transmit at a certain frequency from the ground side. Methods and various other methods are adopted.
D.発明が解決しようとする問題点 上記従来の種々な通信手段を用いた無人車運行システム
においては、無人車側にて地上局よりの情報を受信する
ためには、何れにしても情報を受信するための受信用コ
イルあるいは受光器を含む受信装置が必要となる。この
ため無人車側には誘導線よりの磁界を検出し、検出した
信号を処理するための装置の他に、上記情報受信用の受
信装置が必要となるため経済的に問題を有していた。D. Problems to be Solved by the Invention In the above-mentioned conventional unmanned vehicle operation system using various communication means, in order to receive the information from the ground station on the unmanned vehicle side, the information should be transmitted in any case. A receiving device including a receiving coil or a light receiver for receiving is required. Therefore, the unmanned vehicle side has a problem economically because a receiving device for receiving the above information is required in addition to a device for detecting the magnetic field from the guide wire and processing the detected signal. .
E.問題点を解決するための手段 本発明は、上述の問題点を解決したもので、励磁電流発
生部と軌条間に、該励磁電流発生部からの電流を地上局
からの指令信号に対応して増幅するとともに変化させる
手段を設け、無人車に、前記励磁電流にもとずく磁界を
検出する検出部と、該検出部の検出信号に対応して前記
無人車の所定動作を制御すべき制御信号を発生する制御
信号発生部を設けたものである。E. Means for Solving Problems The present invention solves the above-mentioned problems, and the current from the exciting current generator corresponds to the command signal from the ground station between the exciting current generator and the rail. A means for amplifying and changing the output of the unmanned vehicle should be provided in the unmanned vehicle, and a predetermined operation of the unmanned vehicle should be controlled in response to a detection signal of the magnetic field based on the excitation current. A control signal generator for generating a control signal is provided.
F.作用 本発明によれば、誘導線に流れる励磁電流は地上局から
の指令信号に応じて増幅されかつ制御される。また、誘
導線に沿って走行する無人車においては、前記電流の増
幅制御により、ステアリング制御の他に、種々の受信の
ための制御が遂行される。F. Function According to the present invention, the exciting current flowing through the induction wire is amplified and controlled according to the command signal from the ground station. In addition, in an unmanned vehicle traveling along a guide line, various reception controls are performed in addition to steering control by the current amplification control.
G.実施例 以下に本発明を図面に示した実施例によって具体的に説
明する。G. Examples The present invention will be specifically described below with reference to Examples shown in the drawings.
本発明による無人車運行システムは、基本的には、第1
図に示すように構成されている。すなわち、第1図にお
いて1は励磁電流発生部である発振器、2は発振器1の
電流信号I1と地上局からの指令信号S0を入力として電流
信号I1を制御する励磁電流制御部である。3は励磁電流
制御部2により制御された励磁電流I2に基づいて無人車
の走行方向を規定する誘導軌条部である。これらの発振
器1,励磁電流制御部2および誘導軌条部3は地上側に配
設されている。The unmanned vehicle operation system according to the present invention is basically the first
It is configured as shown in the figure. That is, in FIG. 1, 1 is an oscillator that is an exciting current generator, and 2 is an exciting current controller that controls the current signal I 1 by inputting the current signal I 1 of the oscillator 1 and a command signal S 0 from the ground station. . Reference numeral 3 denotes an induction rail portion that regulates the traveling direction of the unmanned vehicle based on the excitation current I 2 controlled by the excitation current control unit 2. These oscillator 1, exciting current control unit 2 and guide rail unit 3 are arranged on the ground side.
4は誘導軌条部3の電流I2によって発生する磁界を検出
する検出部である。5は検出部4の検出信号S1に基づい
て動作するステアリング制御ユニットで例えば、ステア
リング用のサーボモータを駆動するためのサーボ駆動回
路と、該サーボ駆動回路を制御するための駆動制御回路
等を有する。すなわち、ステアリング制御ユニットの制
御出力信号S2によって図示しないステアリングモータを
動作させる。Reference numeral 4 is a detector for detecting a magnetic field generated by the current I 2 of the guide rail portion 3. Reference numeral 5 denotes a steering control unit that operates based on the detection signal S 1 from the detection unit 4, and includes, for example, a servo drive circuit for driving a servo motor for steering, and a drive control circuit for controlling the servo drive circuit. Have. That is, a steering motor (not shown) is operated by the control output signal S 2 of the steering control unit.
6は検出部4の検出信号S1を入力とし、該検出信号S1に
基づいて無人車を制御するための制御信号S3を発生する
制御信号発生部でコンパレータよりなっている。7は制
御信号S3を入力とし、無人車が行なうべき動作を判定す
る判定部である。判定部7の判定出力信号S4に応じて種
々の無人車の動作が制御される。6 inputs the detection signals S 1 of the detection unit 4, which is from the comparator in the control signal generator for generating a control signal S 3 for controlling the unmanned vehicle on the basis of the detection signals S 1. Reference numeral 7 is a determination unit that receives the control signal S 3 and determines the operation to be performed by the unmanned vehicle. The operation of various unmanned vehicles is controlled according to the determination output signal S 4 of the determination unit 7.
なお、検出部4,ステアリング制御ユニット5,制御信号発
生部6および判定部7は無人車8に設けられている。The detection unit 4, the steering control unit 5, the control signal generation unit 6 and the determination unit 7 are provided in the unmanned vehicle 8.
第2図は地上側に設けた発振器1,励磁電流制御部2およ
び誘導軌条部3の具体的な構成を示すものである。第2
図に示すように、励磁電流制御部2は発振器1の発振電
流I1を増幅する増幅器9と、増幅器9を介して一次巻線
10aを発振器1に接続した変圧器10と、変圧器10の二次
巻線10bに電気的に接続された電流検出器11と、地上局
からの指令信号S0を変調する変調器12および電流検出器
11を介して変圧器10の二次巻線10bに接続されたスイッ
チ部13とにより構成されている。また誘導軌条部3は所
定数走行ループを形成するために布設された誘導線3a〜
3nからなり、これらの誘導線3a〜3nに沿って無人車8a〜
8nを走行させることができる。FIG. 2 shows a specific configuration of the oscillator 1, the exciting current controller 2 and the guide rail 3 provided on the ground side. Second
As shown in the figure, the excitation current control unit 2 includes an amplifier 9 for amplifying the oscillation current I 1 of the oscillator 1 and a primary winding via the amplifier 9.
A transformer 10 in which 10a is connected to an oscillator 1, a current detector 11 electrically connected to a secondary winding 10b of the transformer 10, a modulator 12 for modulating a command signal S 0 from the ground station, and a current. Detector
And a switch section 13 connected to the secondary winding 10b of the transformer 10 via 11. In addition, the guide rail portion 3 is a guide wire 3a, which is laid to form a predetermined number of running loops.
3n, and along these guide lines 3a-3n unmanned vehicles 8a-
Can run 8n.
第3図は検出部4の具体例を示したもので、無人車に搭
載されるこの検出部4はピックアップコイル14a,14b,ダ
イオード15a,15bおよびコンデンサ16a〜16dを有する。
ピックアップコイル14a,14bは誘導軌条部3である誘導
線を挟むように配設され、誘導線の周囲に形成される磁
界によって誘起電圧信号S1を発生する。FIG. 3 shows a specific example of the detection unit 4, which is mounted on an unmanned vehicle and has pickup coils 14a and 14b, diodes 15a and 15b, and capacitors 16a to 16d.
The pickup coils 14a and 14b are arranged so as to sandwich the guide wire which is the guide rail portion 3, and generate an induced voltage signal S 1 by a magnetic field formed around the guide wire.
次に、上記実施例に係る無人車運行システムの動作につ
いて説明する。Next, the operation of the unmanned vehicle operation system according to the above embodiment will be described.
第2図に示す地上側装置では、地上局からの指令信号に
応じて励磁電流の増幅作用とオンオフ作用が遂行され
る。すなわち、増幅器9は指令信号S0と電流検出器11の
検出信号S3によって制御されるとともに、変調器12は指
令信号S0に応じて動作し、その出力信号S0によってスイ
ッチ部13を動作させて誘導電流I2のオンオフ制御を行
う。すなわち誘導線には発振器1より所定の周波数の励
磁電流が供給されることによってその周囲に磁界を発生
する。無人車のピックアップコイル14a,14bにはこの磁
界により夫々電圧が誘起され、S1a,S1bとしてステアリ
ング制御ユニット5と制御信号発生部6に夫々出力され
る。このピックアップコイル14a,14bに誘起される信号S
1a,S1bは、誘導線に流れる励磁電流がオフ時には共に0
となり、励磁電流のオン,オフに対応し、且つコンパレ
ータ6は、信号S1a,S1bが共に0のように一定値以下時
にはその出力S2は同一レベルとなるよう構成されてい
る。したがって今、第4図に示す時刻t1時に、指令信号
S0が地上局より発せられると増幅器9はこの指令信号S0
値に応じてその増巾度が調整され、波形Aで示すように
誘導線3に流れていた励磁電流I2の波高レベルIaがIbに
増幅される。また、指令信号S0は変調器12にも印加され
るが、変調器には、通常はスイッチ部13をオン状態に維
持するための信号を発生しているが、信号S0が入力され
たことを条件にオン,オフの繰返し周波の信号に切換え
られ、しかも指令信号S0値に応じてそのオン,オフ比が
調節されてオン,オフ信号S0を発生し、スイッチ部13を
オン,オフ動作させ、これにより第4図のA波形に示す
如く電流I2をオン,オフさせる。In the ground-side device shown in FIG. 2, the exciting current is amplified and the on / off operation is performed according to the command signal from the ground station. That is, the amplifier 9 is controlled by the command signal S 0 and the detection signal S 3 of the current detector 11, and the modulator 12 operates according to the command signal S 0 , and the switch unit 13 operates by the output signal S 0 . Then, the induction current I 2 is turned on / off. That is, an exciting current of a predetermined frequency is supplied from the oscillator 1 to the induction wire to generate a magnetic field around it. Unmanned vehicle pickup coils 14a, 14b each voltage is induced by the magnetic field in, S 1a, are respectively outputted to the steering control unit 5 and the control signal generating section 6 as S 1b. The signal S induced in the pickup coils 14a and 14b
1a and S 1b are both 0 when the exciting current flowing through the induction wire is off.
In response to the excitation current turning on and off, the comparator 6 is configured so that its output S 2 is at the same level when the signals S 1a and S 1b are both below a certain value such as 0. Therefore, at the time t 1 shown in FIG.
When S 0 is issued from the ground station, the amplifier 9 sends this command signal S 0
The amplification degree is adjusted according to the value, and as shown by the waveform A, the peak level I a of the exciting current I 2 flowing through the induction wire 3 is amplified to I b . Although the command signal S 0 is also applied to the modulator 12, the modulator normally generates a signal for maintaining the switch unit 13 in the ON state, but the signal S 0 is input. On the condition that the ON / OFF signal is switched to a repetition frequency signal, and the ON / OFF ratio is adjusted according to the command signal S 0 value, the ON / OFF signal S 0 is generated and the switch unit 13 is turned on / off. It is turned off, and as a result, the current I 2 is turned on and off as shown by the waveform A in FIG.
無人車8に装備されたピックアップコイル14a,14bは誘
導線の電流I2のオン,オフを磁界の有,無として検出し
て検出信号S1a,S1bを出力する。検出信号S1a,S1bは相互
に逆位相となるようステアリング制御ユニット5に入力
され、その偏差信号がステアリング制御信号として使用
される。ここで励磁電流I2は、スイッチ部13のオン,オ
フの一周期毎にT時間だけオフとなり、誘導線3近辺の
磁界が消磁されるため、無人車が誘導線3の一方側に偏
位して各ピックアップコイル14a,14bに検出差が生じて
いた場合等にはステアリング制御性能に大きな影響を与
える可能性が生ずるが、本発明においては増巾器9によ
ってIaの大きさの電流値をIbにまで増巾し、平均値をIa
にしているためステアリング制御を行うのには充分であ
る。Pickup coil 14a that is provided on the unmanned vehicle 8, 14b is the on-guiding line of the current I 2, off field chromatic of, detected as free by the detection signal S 1a, and outputs the S 1b. The detection signals S 1a and S 1b are input to the steering control unit 5 so that they have mutually opposite phases, and the deviation signal thereof is used as the steering control signal. Here, the exciting current I 2 is turned off for T time every one cycle of turning on and off the switch unit 13, and the magnetic field near the guide wire 3 is demagnetized, so that the unmanned vehicle is displaced to one side of the guide wire 3. If there is a detection difference between the pickup coils 14a and 14b, the steering control performance may be greatly affected. In the present invention, however, the amplifier 9 is used to increase the current value of the magnitude of Ia. To I b and increase the average to I a
Therefore, the steering control is sufficient.
一方ピックアップコイル14a,14bにて検出された検出信
号S1aとS1bは制御信号発生部6にも印加されて比較処理
され、制御信号発生部6の出力信号S3は第4図の波形B
に示すように励磁電流I2のオン,オフに追従して「1」
又は「0」になる。したがって、信号S3は地上から無人
車えの通信制御信号として使うことができる。すなわ
ち、制御信号発生部6の出力信号S3は指令信号S0により
発生するパルス数、或いはオン,オフ比を任意に可変す
ることができるので、信号S3のパターンに意味付けし、
これを前もって判定部7に記憶させておき入力された信
号S3と比較判定処理して演算制御部(図示せず)に入力
し、演算処理部によって種々の制御を行うことが可能と
なる。On the other hand, the detection signals S 1a and S 1b detected by the pickup coils 14a and 14b are also applied to the control signal generator 6 for comparison processing, and the output signal S 3 of the control signal generator 6 is the waveform B in FIG.
As shown in the figure, "1" follows the on / off of the exciting current I 2.
Or it becomes "0". Therefore, the signal S 3 can be used from the ground as a communication control signal for an unmanned vehicle. That is, since the output signal S 3 of the control signal generator 6 can arbitrarily change the number of pulses generated by the command signal S 0 or the on / off ratio, the pattern of the signal S 3 is defined as
This can be stored in the determination unit 7 in advance and subjected to a comparison / determination process with the input signal S 3 and input to an arithmetic control unit (not shown) so that the arithmetic processing unit can perform various controls.
また制御信号発生部6の出力信号S3のオン,オフモード
は指令信号S0のモードに応じて第5図(A),(B),
(C)に示すように自由に設定できることにより、第2
図に示すように誘導軌条部3の誘導線3a〜3n上に位置す
る無人車が8a〜8nのように複数の場合に、それぞれ異種
の信号内容たとえば各車一斉の停止指令信号,走行指令
信号又は進行方向変更指令信号などとして認識させてお
けば、地上局からの指令信号S0のモードを変えることに
より、各車個有の伝達信号の他に各車一斉信号と種々の
制御信号として使用可能である。Further, the ON / OFF mode of the output signal S 3 of the control signal generator 6 depends on the mode of the command signal S 0 , as shown in FIGS.
By setting freely as shown in (C), the second
As shown in the figure, when there are a plurality of unmanned vehicles such as 8a to 8n located on the guide lines 3a to 3n of the guide rail section 3, different kinds of signal contents, for example, stop command signals for all cars and running command signals Or, if it is recognized as a traveling direction change command signal, etc., by changing the mode of the command signal S 0 from the ground station, it can be used as a simultaneous signal for each vehicle and various control signals in addition to the transmission signal unique to each vehicle. It is possible.
H.発明の効果 以上の如く、本発明によれば、励磁電流制御部において
指令信号に対応して励磁電流を増幅し、且つ、オン,オ
フ手段等により制御するとともに、無人車側においては
本来誘導線の位置のみを検出するために用いられるピッ
クアップコイルを利用して制御さえた励磁電流に対応し
た信号を得て、これを地上局側よりの情報伝達信号とし
たものであるから、無人車に搭載すべき地上局よりの情
報受信用の受信器などは不要となり、また、無人車が複
数台走行させるシステムにおいては、これを一斉に停
止、あるいは走行させる場合等にはその伝送手段が特に
有利となる。H. Effects of the Invention As described above, according to the present invention, the exciting current control unit amplifies the exciting current in response to the command signal and controls it by the on / off means and the like. The pickup coil used to detect only the position of the induction wire is used to obtain a signal corresponding to the excitation current that is even controlled, and this is used as the information transmission signal from the ground station side. A receiver for receiving information from the ground station that is to be installed in the vehicle is unnecessary, and in a system in which multiple unmanned vehicles are run, the transmission means is especially necessary when stopping or running all of them at once. Be advantageous.
第1図は本発明の実施例に係る無人車運行システムのブ
ロック線図、第2図は第1図の無人車運行システムにお
ける地上側の電気結線図、第3図は無人車側の制御装置
の電気結線図、第4図と第5図は本発明のシステムの動
作波形図である。 1……励磁電流発生部である発振器、2……励磁電流制
御部、3……誘導軌条部、3a〜3n……誘導線、8,8a〜8n
……無人車、4……検出部、5……ステアリング制御ユ
ニット、6……制御信号発生部、7……判別部。FIG. 1 is a block diagram of an unmanned vehicle operation system according to an embodiment of the present invention, FIG. 2 is an electrical connection diagram on the ground side in the unmanned vehicle operation system of FIG. 1, and FIG. 3 is a control device on the unmanned vehicle side. 4 and 5 are operation waveform diagrams of the system of the present invention. 1 ... Oscillator which is an exciting current generator, 2 ... Exciting current controller, 3 ... Induction rail, 3a-3n ... Induction wire, 8,8a-8n
...... Unmanned vehicle, 4 Detecting unit, 5 Steering control unit, 6 Control signal generating unit, 7 Discriminating unit.
Claims (1)
線を布設した誘導軌条部に励磁電流発生部から所定周波
数の電流を供給し、この電流によって生ずる磁界を検出
するピックアップコイルを有する無人車を誘導制御する
システムにおいて、 前記地上側に地上局からの指令信号を変調する変調器を
設け、前記誘導軌条部に、電流検出器と前記変調器の出
力信号によりオン,オフ制御されるスイッチ部を設け、 前記励磁電流発生部と前記軌条部間に、該励磁電流発生
部からの電流を地上局からの指令信号と前記電流検出信
号に対応して増幅し、且つ前記誘導軌条部に供給すべき
励磁電流を変化させる励磁電流制御部を設けると共に、 前記無人車側に、該無人車のピックアップコイルに接続
され、該コイルの検出信号を地上局よりの情報としてと
らえて前記無人車の所定動作を制御すべき制御信号を発
生する制御信号発生部とステアリング制御ユニットを設
けて構成したことを特徴とする無人走行車運行システ
ム。1. A pickup coil for supplying a current of a predetermined frequency from an exciting current generating portion to an induction rail portion having an induction wire laid on the ground side so as to form a predetermined rail and detecting a magnetic field generated by this current. In a system for guiding and controlling an unmanned vehicle, a modulator for modulating a command signal from a ground station is provided on the ground side, and on / off control is performed on the guiding rail section by an output signal of a current detector and the modulator. A switch unit is provided, the current from the exciting current generating unit is amplified between the exciting current generating unit and the rail unit in response to a command signal from the ground station and the current detection signal, and the induction rail unit is provided with the amplifying current. An exciting current control unit that changes the exciting current to be supplied is provided, and the unmanned vehicle side is connected to the pickup coil of the unmanned vehicle, and the detection signal of the coil is used as information from the ground station. Unmanned vehicle navigation system characterized by being configured to provide a control signal generating unit and a steering control unit for generating a control signal to control the predetermined operations of said unmanned vehicle captured.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60023756A JPH0778687B2 (en) | 1985-02-09 | 1985-02-09 | Unmanned vehicle operation system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60023756A JPH0778687B2 (en) | 1985-02-09 | 1985-02-09 | Unmanned vehicle operation system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61183717A JPS61183717A (en) | 1986-08-16 |
JPH0778687B2 true JPH0778687B2 (en) | 1995-08-23 |
Family
ID=12119169
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60023756A Expired - Lifetime JPH0778687B2 (en) | 1985-02-09 | 1985-02-09 | Unmanned vehicle operation system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0778687B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101364187B1 (en) * | 2013-02-26 | 2014-02-19 | 주식회사 하나메카텍 | Apparatus and control method for guide sensor of automatic guided vehicle by high frequency magnetic induction property |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02273808A (en) * | 1989-04-17 | 1990-11-08 | Toyota Motor Corp | Method and device for control of plural unmanned carriers |
SE0201740D0 (en) * | 2002-06-07 | 2002-06-07 | Electrolux Ab | Electronic routing system |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5417285A (en) * | 1977-06-29 | 1979-02-08 | Unitika Ltd | Remote control system of unmanned car |
-
1985
- 1985-02-09 JP JP60023756A patent/JPH0778687B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101364187B1 (en) * | 2013-02-26 | 2014-02-19 | 주식회사 하나메카텍 | Apparatus and control method for guide sensor of automatic guided vehicle by high frequency magnetic induction property |
Also Published As
Publication number | Publication date |
---|---|
JPS61183717A (en) | 1986-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3768586A (en) | Vehicle guidance system | |
US4855656A (en) | Driverless car travelling guide system | |
JPH0778687B2 (en) | Unmanned vehicle operation system | |
US5303154A (en) | Continuous on-line communications system for automatic guided vehicles | |
JPH0296206A (en) | Sensor unit for traffic control of unmanned cart | |
JPS59148909A (en) | Automatic guiding device of unmanned car | |
JPH03282802A (en) | Unattended running vehicle system | |
JPH0749522Y2 (en) | Guidance signal detector for unmanned vehicles | |
JPS62254211A (en) | Operation controller for unmanned vehicle | |
JP2580672Y2 (en) | Guideway device for electromagnetically guided vehicles | |
JP2823287B2 (en) | Magnetic sensor and magnetic induction device | |
JPH0527830A (en) | Guiding/stopping method for unmanned carriage | |
JP2702413B2 (en) | Road driving assistance system | |
JP2841736B2 (en) | How to control unmanned vehicles | |
JPS59121503A (en) | Communication method of unattended car | |
JP2590015Y2 (en) | Guideway device for electromagnetically guided vehicles | |
SU830493A1 (en) | Device for control of automatic transport movement | |
JP2566178Y2 (en) | Autonomous traveling control device for automatic guided vehicles | |
JPS63115207A (en) | Traveling guide device for unattended vehicle | |
JPS62287309A (en) | Optical guidance device for unmanned car | |
JPH041810A (en) | Detecting method for position of running unmanned carrier | |
JPS6231411A (en) | Controller for unmanned carrier | |
JPS60107113A (en) | Guiding method of unmanned track | |
JPS60230211A (en) | Automatic running car | |
JPS60193023A (en) | Guide device for unmanned truck |