JPS59148909A - Automatic guiding device of unmanned car - Google Patents

Automatic guiding device of unmanned car

Info

Publication number
JPS59148909A
JPS59148909A JP58024485A JP2448583A JPS59148909A JP S59148909 A JPS59148909 A JP S59148909A JP 58024485 A JP58024485 A JP 58024485A JP 2448583 A JP2448583 A JP 2448583A JP S59148909 A JPS59148909 A JP S59148909A
Authority
JP
Japan
Prior art keywords
line
unmanned car
control
electromagnetic
guiding line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58024485A
Other languages
Japanese (ja)
Inventor
Motoo Shinozuka
篠塚 元雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daifuku Co Ltd
Daifuku Machinery Works Ltd
Original Assignee
Daifuku Co Ltd
Daifuku Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daifuku Co Ltd, Daifuku Machinery Works Ltd filed Critical Daifuku Co Ltd
Priority to JP58024485A priority Critical patent/JPS59148909A/en
Publication of JPS59148909A publication Critical patent/JPS59148909A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • G05D1/0265Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means using buried wires
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0244Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using reflecting strips

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To use a floor suface effectively and to economize equipment by dividing a guiding line of the floor surface, forming an electromagnetic guiding line and an optical guiding line and switching these lines on the unmanned car side to operate the unmanned car automatically. CONSTITUTION:The guiding line is laid on the floor surface and the unmanned car 3 is selected and controlled so as to be travelled along the guiding line 6 to guide the unmanned car 3 automatically. Fixed ranges of the line 6, i.e. a branch line 8, a combined line 9 and a station S, are formed by the electromagnetic guiding line 4 and the other range is formed by the optical guiding line 5 using a reflective tape 5a. The unmanned car 3 is provided with a projector 18, a detector 19 for reflected light and an amplifier 20 in addition to a pickup coil 15, a deviation detecting device 16 and a steering motor 17, connected to a deviation detector 16 and automatically switched to automatic operating state, an electromagnetic type or an optical type, by an operating direction controlling means 7 to to control the operating direction. In addition, the unmanned car 3 is provided with a communication controlling means 13 to transmit a control signal in both ways between the control means 13 and a ground side control device.

Description

【発明の詳細な説明】 本発明は、主として、工場内等において、工具、ワーク
等をステーションなど所望箇所にまで自動搬送するため
に用いられる無人車の複数個を、床面に敷設された一定
の誘導ラインに沿って自動操向制御させ乍ら走行させ、
分岐路における選択走行制御、合流路における相互の衝
突防止制御等を地上側との通信により行なう無人車の自
動誘導装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention mainly relates to a plurality of unmanned vehicles used for automatically transporting tools, workpieces, etc. to a desired location such as a station in a factory or the like. The vehicle is driven along the guidance line while being automatically steered.
The present invention relates to an automatic guidance system for unmanned vehicles that performs selective travel control on branching roads, mutual collision prevention control on merging roads, etc. through communication with the ground side.

この種の無人車の自動誘導装置で従来から一般的に知ら
れているものとしては、床面下に敷設したトウパスワイ
ヤー等の電磁誘導線による電磁誘導方式、及び、床面に
貼着した反射テープ等の光学誘導線による光学誘導方式
の二種類のものがあり、前記電磁誘導方式の場合には、
電磁誘導線に、操向制御用の信号の外に地上側との通信
による走行制御用の信号をも入力し、電磁誘導線のみで
、無人車の誘導線に沿やた追従走行制御を行なうと同時
に、その電磁誘導線を、無人車に内蔵されている通信用
制御機構と地上側制御装置との間に亘って制御信号を伝
送させるアンテナとして使用し、分岐路、合流路等にお
ける追突防止制御及び各ステーションにおける停発進制
御等の通信制御をも行なえるように構成されているので
あるが、これによる場合は、工場内における生産ライン
の変更等に対応して無人車の走行ラインを変更する際に
は、床面下に埋設されているトウパスワイヤー等の電磁
誘導ライン取出して他の場所に埋設し直すとゆう大損り
で煩雑な床工事を必要とする欠点がある。
Conventionally known automatic guidance devices for unmanned vehicles of this type include electromagnetic induction methods using electromagnetic induction wires such as towpath wires laid under the floor, and There are two types of optical guidance methods using optical guidance wires such as reflective tape, and in the case of the electromagnetic induction method,
In addition to signals for steering control, signals for driving control through communication with the ground side are also input to the electromagnetic guide line, and the unmanned vehicle is controlled to follow along the guide line using only the electromagnetic guide line. At the same time, the electromagnetic induction wire is used as an antenna to transmit control signals between the communication control mechanism built into the unmanned vehicle and the ground-side control device, thereby preventing rear-end collisions on branching roads, merging roads, etc. It is configured to perform communication control such as control and stop/start control at each station, but in this case, the driving line of the unmanned vehicle can be changed in response to changes in the production line in the factory. When doing so, there is a drawback that if the electromagnetic induction lines such as towpath wires buried under the floor surface are taken out and re-buried elsewhere, it would be a huge loss and would require complicated floor construction.

一方、前記光学誘導方式の場合には、走行ラインの変更
の際には、床面上に貼着されている反射テープ等の光学
誘導ラインを他の場所に貼り変えるだけで煩雑で大損シ
な床工事を行なうことなく容易に対地し得る反面、光学
誘導ラインを通信制御用のアンテナとして使用できない
ために、分岐路、合流路等に通信制御用のアンテナ線な
どを電磁銹導線横脇に別途に設けなければならず、設備
が複雑になると共に工場内等の床面の有効利用の観点か
らも不利である。
On the other hand, in the case of the above-mentioned optical guidance method, when changing the running line, it is only necessary to change the optical guidance line such as reflective tape pasted on the floor to another location, which is cumbersome and costly. Although it can be easily attached to the ground without floor construction, the optical guidance line cannot be used as an antenna for communication control, so antenna wires for communication control are installed separately next to the electromagnetic conductor at branching roads, merging roads, etc. This makes the equipment complicated and is disadvantageous from the standpoint of effective use of floor space in factories, etc.

本発明は、かかる実情にかんがみ、光学誘導方式が有す
る走行ライン変更等のラインレイアウトのフレキシビリ
ティ−を活し乍らも、分岐・合流部における的確な走行
制御のための特別な通信線等を設ける必要のない無人車
の自動誘導装置を提供する点に目的がある。
In view of these circumstances, the present invention takes advantage of the flexibility of the optical guidance system in terms of line layout, such as changing the travel line, while also providing special communication lines, etc. for accurate travel control at branching and merging sections. The purpose is to provide an automatic guidance device for an unmanned vehicle that does not require installation.

上記目的を達成するべくなされた本発明に係止行制御を
行なう区域力ゞ電磁誘導線々’rv sその他の区域が
゛光学誘導線力゛s゛lsl、・、k傘番傳細:6孟鷹
玉構成されている一方、前記無人車側には電磁誘導式自
動操縦状態と光学誘導式自動操縦状態とに自動切替可能
な操向用制御機構と、前記電磁誘導線を介して地上 制
制御装置との間に亘って制御信号を伝送可能な通信用制
御機構とが備えられている点にある。
In order to achieve the above object, the present invention has an area force for performing locking control, an electromagnetic induction line, and other areas, an optical induction line force. On the other hand, the unmanned vehicle side has a steering control mechanism that can automatically switch between an electromagnetic guidance autopilot state and an optical guidance autopilot state, and a ground control system via the electromagnetic guide wire. The present invention is provided with a communication control mechanism capable of transmitting control signals between the control device and the control device.

このような特徴構成を有する本発明の作用効果は、次の
通シである。
The effects of the present invention having such a characteristic configuration are as follows.

つまシ、分岐・合流など地上側との通信により無人車の
走行制御を行なう区域のみを電磁誘導線とし、それより
もはるかに長いその他の区域を光学誘導線で構成するこ
とにより、全体を電磁誘導線で構成しであるものに比べ
て、走行ライン変更等のラインレイアウトの自由性を十
分に高めることができ、しかも、地上側との通信により
走行制御を行なうことが望ましい区域では、前記電磁誘
導線で無人台車を操向制御させることはもちろんのこと
、電磁誘導線を’に〜貢鷺竜〜〜駕介し、地上側制御装
置と台車側の通信用制御機構との間に亘って走行制御側
号を伝送することができ、走行制御用の通信線を別途に
誘導ライン横脇に設ける必要がなく、工場等における床
面の有効利用及び全体の設備経済面で有利な無人車の自
動誘導装置を提供し得るに至ったのである。
By using electromagnetic guidance lines only in the areas where the driving of unmanned vehicles is controlled through communication with the ground side, such as pick-up, branching, and merging, and by using optical guidance lines in other areas that are much longer, the entire area is electromagnetic. Compared to a system consisting of guide lines, it is possible to sufficiently increase the freedom of line layout such as changing the travel line, and in areas where it is desirable to control travel through communication with the ground side, the electromagnetic Not only can the unmanned bogie be steered and controlled using the guide wire, but it can also run between the ground-side control device and the communication control mechanism on the bogie side by using electromagnetic guide wires. It is possible to transmit the control signal, and there is no need to install a separate communication line for driving control next to the guidance line. This made it possible to provide a guidance device.

次に、本発明構成の実施例を説明する。Next, an example of the configuration of the present invention will be described.

第1図に示すように、工場内における工具、ワーク等’
を移載すべき各ステーション(S)・・にまで搬送する
ための複数の無人車131・・を、床面播に敷設された
誘導ライン+61に沿って自動走行させ乍ら、分岐路t
illにおける選択走行制御、合流路(91における相
互衝突防止制御、各ステーション(Sl・・における停
止、発進制御等の地上側との通信によシ走行制御を行な
うに、以下のように構成しである。
As shown in Figure 1, tools, workpieces, etc. in the factory are
A plurality of unmanned vehicles 131 for transporting items to each station (S) where they are to be transferred are automatically run along a guidance line +61 laid out on the floor, and at the same time
The system is configured as follows to perform selective travel control at ill, mutual collision prevention control at merging road (91), stop and start control at each station (S1, etc.) through communication with the ground side. be.

つまり、分岐路181及び合流路(91並びに各ステー
ション(81−−の横脇の一定の区域の誘導ライン1創
をトウパスワイヤ(4&)からなる電磁誘導線延4)で
構成し、その他の区域を反射テープ(5a)からなる光
学誘導線151で構成し、前記電磁誘導線(4)に無人
車ta+−・を誘導ライン(釦に沿って走行させる操向
制御用の数 KHz程度の信号を入力し、更に、第2図
に示すように、無人車(81・・側には、操向制御用の
信号をトウパスワイヤー(4&)から入力するピックア
ップコイル061及ヒ、偏差検出装置O橢並びにステア
リング電動*0?lを設けると共に、前記反射テープ(
5L)に投光する投光器舖及び反射テープ(5&)から
の反射光を感知する検出器al並びに増幅器−を前記ピ
ックアップコイル06]に対して並列の状態で前記偏差
検出装置Q@に接続し、光学誘導線(61上を走行して
いる場合には、投光器am、検出器(l@、増幅器−の
系統を通って、又、電磁誘導線141上を走行している
場合にはピックアップコイル傾を通って夫々信号が前記
偏差検出装置a輸に入力され、光学誘導式自Ur操縦状
態と電磁誘導式自動操縦状態とに自動切替可能な操向用
制御機構(71が構成され、いずれの場合にも誘導ライ
ン161に対する無人車13)の横変位の検出に基づい
て無人車Ill ’1li−誘導ライン+61に沿って
追従走行させる操向制御が行なえるよう構成しである。
In other words, one guidance line in a certain area on the side of the branching path 181 and the confluence path (91 and each station (81--) is constructed with an electromagnetic induction line extension 4 made of towpath wire (4&)), and the other areas are It is composed of an optical guide line 151 made of a reflective tape (5a), and a signal of about a number of KHz is input to the electromagnetic guide line (4) for steering control that causes the unmanned vehicle ta+- to travel along the guide line (button). Furthermore, as shown in Fig. 2, the unmanned vehicle (81... side) includes a pickup coil 061 and 061 for inputting signals for steering control from the tow path wire (4&), a deviation detection device 061, and In addition to providing an electric steering wheel *0?l, the reflective tape (
5L) and a detector al and an amplifier for sensing the reflected light from the reflective tape (5&) are connected to the deviation detection device Q@ in parallel with the pickup coil 06; When traveling on the optical guide line (61), it passes through the system of the projector am, detector (l@, amplifier), and when traveling on the electromagnetic guide line 141, the pickup coil tilt A steering control mechanism (71 is configured) that can automatically switch between an optically guided self-steering state and an electromagnetically guided self-steering state, through which signals are input to the deviation detection device a, respectively. Also, based on the detection of the lateral displacement of the unmanned vehicle 13) with respect to the guiding line 161, steering control can be performed to cause the unmanned vehicle to follow along the guiding line +61.

 又、第3図に示すように、前記電磁誘導線(41には
、無人車(31との通信による走行制御用の地上側制御
装置+11が接続されてあり、その地上側制御装置(凰
)で発生した複数制御信号はサイクリック制御回路12
11で順次走査され、並列、直列変換回路ツから時分割
多重化され直列系列信号として出力され、FM変調回路
ので周波数flci’、)搬送波によってFM変調され
、電力増幅回路ff141で電力増幅されてラインカッ
プラGを通して数百KHz程度の信号として前記電磁誘
導線(41に送出される。 電磁誘導線(4)に送出さ
れた信号は、その電磁誘導線14)をアンテナとして無
人車13)側に設置されている通信用制御機構a![伝
送されるのでsb、まず、無人車Lllに設置されたア
ンテナカップラ弼でピックアップされ、高周波増幅回路
面を通って必要レベルまで増幅され、FM復調回路+1
01で復調され、直列、並列変換回路(11)で並列イ
日号に変換され、出力レジスタ自zの対応する出力ビッ
トに信号を出力し、無人車131側の通信用制御機構a
31を制御する。 又、前記無人車131側の通信用制
御機構a:4から地上側制御装置【1)への信号伝送も
同様にして行なわれ、各部はダッシュを付して示される
。 なおこの場合の搬送波周波数f島は地上側制御装置
(1)から移動台車側制御装置a31への信号伝送のと
きの搬送波周波数fxとは具なるものを用い、同時双方
向伝送を可能としている。
Further, as shown in FIG. 3, a ground-side control device +11 for driving control through communication with the unmanned vehicle (31) is connected to the electromagnetic induction wire (41), and the ground-side control device (凰) The multiple control signals generated in the cyclic control circuit 12
11, and is time-division multiplexed from the parallel/serial converter circuit 2 and output as a serial signal, which is then FM modulated by the frequency flci',) carrier wave in the FM modulation circuit, and power amplified by the power amplification circuit ff141. A signal of about several hundred KHz is sent to the electromagnetic induction wire (41) through the coupler G. The signal sent to the electromagnetic induction wire (4) is installed on the unmanned vehicle 13) side using the electromagnetic induction wire 14) as an antenna. Communication control mechanism a! [Since it is transmitted, sb is first picked up by the antenna coupler installed on the unmanned vehicle Lll, passed through the high frequency amplification circuit surface, amplified to the required level, and then sent to the FM demodulation circuit +1
01, converted into a parallel number by the serial/parallel conversion circuit (11), outputs a signal to the corresponding output bit of the output register z, and sends the signal to the communication control mechanism a on the unmanned vehicle 131 side.
31. Further, signal transmission from the communication control mechanism a:4 on the unmanned vehicle 131 side to the ground side control device [1] is performed in the same manner, and each part is indicated with a dash. Note that the carrier wave frequency f in this case is the same as the carrier wave frequency fx during signal transmission from the ground side control device (1) to the movable trolley side control device a31, making simultaneous bidirectional transmission possible.

このようにして、地上側と無人車側131とに亘って@
号を通信できるように構成し、第1図における分岐路1
81においては、両電磁誘導線(41゜14)の一方に
だけ信8を送り、信号が送られている方に無人車【31
が選択走行するように構成し、又、合流路(91におい
て2台の無人車131 、131が同時に進入して来た
場合には、それを感知して一方の電磁a導線(4)から
停止18号を発信して互いに衝突しないように制御し、
更に停止すべきステーション(S)に無人車(3)が米
た場合には、それをC&知して停止信号を発信して運行
制御を行なう。
In this way, @
branch road 1 in Figure 1.
81, the signal 8 is sent only to one side of both electromagnetic induction wires (41°14), and the unmanned vehicle [31
In addition, if two unmanned vehicles 131, 131 enter the convergence road (91) at the same time, it will be sensed and stopped from one of the electromagnetic a conductors (4). 18 and control them so that they do not collide with each other,
Furthermore, when the unmanned vehicle (3) reaches a station (S) where it should stop, the C& is informed of this and issues a stop signal to control the operation.

又、[111記’t41 m誘導線(4)の始端と終端
に夫々反射ミラー等の被検出体を設け、その被検出体が
らの反射光を無人車側で感知して、lD記操回用制御機
構(7)を光学誘導方式自11J操縦状惑と電磁誘導式
目IgIJ操縦状態とに自動的に切替わるように構成し
てもよい。
[111't41 A detected object such as a reflecting mirror is provided at the start and end of the m guide line (4), and the reflected light from the detected object is sensed by the unmanned vehicle and the ID rotation is performed. The control mechanism (7) may be configured to automatically switch between the optical guidance type self-11J control state and the electromagnetic guidance type IgIJ control state.

又、上記実施例では、通信による走行制御区域以外の区
域全てを光学誘導線(5)で構成したがその区域内に局
所的に電磁誘導線(4)を敷設してもよいっ 又、前記光学誘導線(6)としてレーザ光線による光学
誘導方式を採用してもよく、その場合には、直線走行区
域のみをレーザ光線を利用して誘導し、屈曲経路部分を
前記電磁誘導線(4)により誘導する。l 又、無人血
(3)が屈曲走行後にレーザ光線を見失ない正規の走行
ラインから逸脱する虞れが多々あり、その逸脱する虞れ
がある論断に前記電磁誘導線(4)を使用してもよい。
Further, in the above embodiment, all areas other than the travel control area by communication are constructed with optical guide wires (5), but electromagnetic guide wires (4) may be locally laid within the area. An optical guidance method using a laser beam may be adopted as the optical guidance line (6). In that case, only the straight traveling area is guided using the laser beam, and the curved route portion is guided by the electromagnetic guidance line (4). Guided by l In addition, there is a risk that the unmanned blood (3) will deviate from the normal running line without losing sight of the laser beam after traveling in a bending direction, and the electromagnetic induction wire (4) is used to make decisions that are likely to deviate. You can.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係る無人車の目#J誘導装置の実施例を
示し、第1図及び第2図は全体の概略平面図、第8図は
通信用制御機構の構成図である。 (3)・・・・・・無人車、(4)・・・・・・電磁誘
導線、(5)・・・・・・光学誘導線、(6)・・・・
・・誘導ライン、(7)甲・・操向用制御機構、+13
1・・・・・・通信用制御機構。
The drawings show an embodiment of the eye #J guidance device for an unmanned vehicle according to the present invention, and FIGS. 1 and 2 are overall schematic plan views, and FIG. 8 is a configuration diagram of a communication control mechanism. (3)...Unmanned vehicle, (4)...Electromagnetic induction wire, (5)...Optical guidance wire, (6)...
・・Guidance line, (7) ・・Steering control mechanism, +13
1...Communication control mechanism.

Claims (1)

【特許請求の範囲】[Claims] 床面柵に敷設された無人車@辱うイン16)のうち、分
岐・合流など地上側との通信によシ無人ている一方、前
記無人車181側には、電磁誘導式自動操縦状部と光学
誘導式自動操縦状態とに自動切替可能な操向用制御機構
(7)と、前記電磁誘導線(4)ヲ介し2て地上 側制
御装置との間に亘って制御信号を伝送可能な通信用制御
機構aJとが備えられている無人車の自動誘導装置。
Among the unmanned vehicles installed on the floor fences (16), the ones communicating with the ground side such as branching and merging are unmanned, while the unmanned vehicles 181 have an electromagnetic induction type autopilot section. A control signal can be transmitted between the steering control mechanism (7), which can automatically switch between the state and the optically guided autopilot state, and the ground-side control device via the electromagnetic guide line (4). An automatic guidance device for an unmanned vehicle, which is equipped with a communication control mechanism aJ.
JP58024485A 1983-02-15 1983-02-15 Automatic guiding device of unmanned car Pending JPS59148909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58024485A JPS59148909A (en) 1983-02-15 1983-02-15 Automatic guiding device of unmanned car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58024485A JPS59148909A (en) 1983-02-15 1983-02-15 Automatic guiding device of unmanned car

Publications (1)

Publication Number Publication Date
JPS59148909A true JPS59148909A (en) 1984-08-25

Family

ID=12139484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58024485A Pending JPS59148909A (en) 1983-02-15 1983-02-15 Automatic guiding device of unmanned car

Country Status (1)

Country Link
JP (1) JPS59148909A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62140108A (en) * 1985-12-16 1987-06-23 Toyoda Autom Loom Works Ltd Steering control device for unmanned carrier
EP0229669A2 (en) * 1986-01-17 1987-07-22 Litton Industrial Automation Systems, Inc. Integrated wire/surface guidance system
JPH01152512A (en) * 1987-12-09 1989-06-15 Meidensha Corp Traveling system for unmanned vehicle
JPH02115902A (en) * 1988-10-25 1990-04-27 Nec Corp Unmanned carrying system
US4955447A (en) * 1986-11-07 1990-09-11 Kabushiki Kaisha Komatsu Seisakusho Compound type guiding method and apparatus for guiding movement of a vehicle
JPH0353304A (en) * 1989-07-20 1991-03-07 Daifuku Co Ltd Guidance equipment for traveling vehicle
US5318143A (en) * 1992-06-22 1994-06-07 The Texas A & M University System Method and apparatus for lane sensing for automatic vehicle steering

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5169834A (en) * 1974-12-12 1976-06-16 Kokusai Electric Co Ltd

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5169834A (en) * 1974-12-12 1976-06-16 Kokusai Electric Co Ltd

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62140108A (en) * 1985-12-16 1987-06-23 Toyoda Autom Loom Works Ltd Steering control device for unmanned carrier
EP0229669A2 (en) * 1986-01-17 1987-07-22 Litton Industrial Automation Systems, Inc. Integrated wire/surface guidance system
EP0229669A3 (en) * 1986-01-17 1988-06-29 Litton Industrial Automation Systems, Inc. Integrated wire/surface guidance system
US4955447A (en) * 1986-11-07 1990-09-11 Kabushiki Kaisha Komatsu Seisakusho Compound type guiding method and apparatus for guiding movement of a vehicle
JPH01152512A (en) * 1987-12-09 1989-06-15 Meidensha Corp Traveling system for unmanned vehicle
JPH02115902A (en) * 1988-10-25 1990-04-27 Nec Corp Unmanned carrying system
JPH0353304A (en) * 1989-07-20 1991-03-07 Daifuku Co Ltd Guidance equipment for traveling vehicle
US5318143A (en) * 1992-06-22 1994-06-07 The Texas A & M University System Method and apparatus for lane sensing for automatic vehicle steering

Similar Documents

Publication Publication Date Title
US4215759A (en) Guidance control system for a traction vehicle
JPS59148909A (en) Automatic guiding device of unmanned car
JPH036522B2 (en)
JPS63196908A (en) Join controller for mobile vehicle guide equipment
JPS63225809A (en) Operation controller for unattended vehicle
JPS6373303A (en) Control system for autopilot vehicle at intersection
JP2849728B2 (en) Control method for multiple automatic guided vehicles
JP3206314B2 (en) Autonomous driving method for automatic guided vehicles
JP2009009440A (en) Unmanned carrier system
JP2639921B2 (en) Unmanned traveling system capable of detouring
JPH036521B2 (en)
JPH0276009A (en) Unmanned vehicle operating system
JP3030308B2 (en) Travel control system for automatic guided vehicles
JPS6293713A (en) Controller for unmanned carrying car
JPS62187911A (en) Travel control equipment for moving car
JPH056688B2 (en)
JPS62189511A (en) Travel control equipment for moving vehicle
JPH0457013B2 (en)
JPS63225810A (en) Running controller for unattended vehicle
JPS60209819A (en) Remote control system of unattended carriage
JPH0439686B2 (en)
JPH0550004B2 (en)
JPS62211707A (en) Trackless carrying car system
JPS62274407A (en) Running control equipment for moving car
JPS62254211A (en) Operation controller for unmanned vehicle