JPS60107113A - Guiding method of unmanned track - Google Patents

Guiding method of unmanned track

Info

Publication number
JPS60107113A
JPS60107113A JP58214678A JP21467883A JPS60107113A JP S60107113 A JPS60107113 A JP S60107113A JP 58214678 A JP58214678 A JP 58214678A JP 21467883 A JP21467883 A JP 21467883A JP S60107113 A JPS60107113 A JP S60107113A
Authority
JP
Japan
Prior art keywords
drive
information
running
trolley
truck
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58214678A
Other languages
Japanese (ja)
Inventor
Yoshiro Nakanishi
芳郎 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP58214678A priority Critical patent/JPS60107113A/en
Publication of JPS60107113A publication Critical patent/JPS60107113A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • G05D1/0263Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means using magnetic strips

Abstract

PURPOSE:To improve the reliability of the guiding method for an unmanned truck by storing previously the drive information to the truck and reading the stored information successively the conversion points of the drive information for drive control of the truck. CONSTITUTION:The drive direction information including the straight drive, etc., the drive speed information including a high speed, a low speed, etc. and the drive stop information are properly combined to obtain the drive information. This information is previously stored to a drive information memory part 8a of an unmanned truck 3. A magnetic sensor 7 is provided to the truck 3 to detect a guide belt 1 set at the ground side for drive control. In this case, the detection elements of th sensor 7 are all turned off when the sensor 7 detects a break 12, i.e., a drive information conversion point of the belt 1. Then the drive information is read out of the part 8a of a truck controller 8 by an arithmetic device 9. A speed command is sent to a drive controller 10 and at the same time the drive direction information is sent back to the device 9 to control the right and left drive motors 5.

Description

【発明の詳細な説明】 本発明は誘導帯に沿い無人台車を走行させる際に台車の
走行ルート制御、速度制御、停止制御等を予め記憶させ
た情報に基づき行うようにした無人台車の誘導方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for guiding an unmanned bogie in which, when the unmanned bogie runs along a guidance zone, the running route control, speed control, stop control, etc. of the bogie are performed based on pre-stored information. It is related to.

無人台車とは、台車上に電源を持ち自動的に走行できる
ようにした台車をいい、かかる無人で走行できるように
した装置は、現在、自動倉庫の周辺設備、生産ラインに
おける物品搬送設備、自動加工ラインにおける搬送設備
等に数多く使用されており、その特長は、専用の軌条を
持たないことにある。専用の軌条を持たないということ
は、工場一般通t′6を走行できるためフォークリフト
や人間と共用のスペースが使えること、走行ルートの変
更が容易であるとと、等の点で有利である。
An unmanned trolley refers to a trolley that has a power source on it and is able to run automatically.Currently, devices that enable unmanned running are used in peripheral equipment of automated warehouses, goods transport equipment on production lines, and automated trolleys. It is widely used in transportation equipment in processing lines, etc., and its feature is that it does not have dedicated rails. Not having a dedicated rail is advantageous in that it can run along the factory road t'6, allowing it to use a space shared with forklifts and people, and that it is easy to change the running route.

従来、無人台車の走行方式としては、電磁誘導方式、光
学式誘導方式が実用化されている。
Conventionally, electromagnetic induction methods and optical guidance methods have been put into practical use as driving methods for unmanned trolleys.

電磁誘導方式は、第1図に示す如く、走行面(a)の床
に埋め込んだ誘導線(b)に電流を流すことによって生
する誘導磁にを、台車(C)に取り付けた一対の検出器
(d)(d)で検出し、その検出強度が同等と々るよう
走行方向を制御することにより誘導線に沿い台車を走行
させるようにするものである。すなわち、走行面(α)
に埋め込まれた誘導線(b)に電流を流すと、誘導磁界
(e)が発生し、この誘導磁界(e)を一対の検出器(
d)(d)で検出しながら走行する方式であり、検出器
(d)(d)の中心が誘)θ&i (b)よりいずれか
の方向へずれると、検出器(d)(d)の検出する強度
に差が生じるので、その差が零となるよう台車の走行方
向を制御することにより台車を誘導線(+、)に沿って
走行させることができるようにしである。
As shown in Figure 1, the electromagnetic induction method uses a pair of sensors attached to a trolley (C) to detect the induced magnetism generated by passing current through an inductive wire (b) embedded in the floor of the running surface (a). The trolley is made to run along the guide line by detecting it with the detectors (d) and (d) and controlling the running direction so that the detection strength is the same. In other words, the running surface (α)
When a current is passed through the inductive wire (b) embedded in the
d) (d), and if the center of the detector (d) deviates in any direction from (b), Since there is a difference in detected intensities, the running direction of the trolley is controlled so that the difference becomes zero, so that the trolley can run along the guide line (+,).

又、この電磁誘導方式では、台車を複雑なルー l−に
従って分岐したり合流させたシする誘導を行わせるに当
り、誘導線(b)に流す電流をルート毎に周波数の異な
る交流と(ッ、その交わる点において次に走行するルー
トの周波数を台車に対して地」二から送信指令すること
により台車を分岐したり合流させたりする方式がある。
In addition, in this electromagnetic induction method, in order to guide the bogie by branching and merging according to a complicated rule, the current flowing through the guide wire (b) is divided into alternating current (AC) with a different frequency for each route. There is a method of branching or merging the bogies by transmitting the frequency of the next route to the bogies from the ground at the point where they intersect.

すなわち、第2図に示す如く、台車(c)をA点に移動
する場合に、分岐点U)においては台車(c)に対し周
波数F1の誘導線(bl)に沿い走行するように指令を
与えることにより、台車(c)は誘導線(bl)に従っ
てA点へ移動することができるようにしてあり、又、誘
導線(bl)を走行している台車を分岐点(g)でB点
へ移動させる場合は、分岐点((7)で台車に対して周
波数F2の誘導線に沿って走行するよう指令を与えれば
、台車は誘導線(b2)に従いB点へと分岐する。各分
岐点における台車への指令信号の伝送方法としては、地
上より無線や光や音波等で信号を送信する方式や走行路
面下の1個所に複数のコイルを埋め、各々のコイルの励
磁、非励磁により一定のパターンを表示し、台車がこの
パターンを検出することによQ走行指令とする方式等が
ある。そのほか、誘導線の周波数はすべて同一とし、台
車の進行する方向のルートの誘導線−(HONにして走
行して来た誘導線をOFFにしながら台車を誘導する方
式もある。
That is, as shown in Fig. 2, when moving the trolley (c) to point A, at the branch point U), a command is given to the trolley (c) to run along the guide line (bl) of frequency F1. By giving the following information, the bogie (c) can move to point A along the guide line (bl), and the bogie traveling on the guide line (bl) can be moved to point B at the branch point (g). When moving to point B, if a command is given to the bogie to run along the guide line of frequency F2 at the branch point ((7), the bogie will follow the guide line (b2) and branch to point B.Each branch Methods for transmitting command signals to the bogies at points include transmitting signals from the ground using radio, light, or sound waves, or burying multiple coils in one place under the running road surface and energizing and de-energizing each coil. There is a method in which a certain pattern is displayed and the bogie detects this pattern to issue a Q travel command.In addition, the frequency of the guide wires is all the same, and the guide line of the route in the direction in which the bogie is traveling - ( There is also a method in which the bogie is guided while turning off the guide wire that it has been traveling on with HON on.

しかしながら、かかる誘導方式では、次の如き問題点が
ある。
However, this guidance method has the following problems.

■ 誘導線(b)を走行路面下に埋め込む必要があるた
め、敷設工事が複雑となり、又、ルートの移設や変更、
誘導線(b)の1線の発見と修理等が困!lfである。
■ Because the guide wire (b) needs to be buried under the running road surface, the installation work is complicated, and the route may need to be relocated or changed.
It is difficult to find and repair the 1st guide wire (b)! It is lf.

■ 周波数をルート毎に変える方式では、周波数の異な
る感導用電源装置並に電気工事等が必要で、台車の走行
するルートの制御設備が畑雑であると共に、ルートの分
岐部で周波数の指定を通信する必要があり、又、周波数
を同じにしてON、 OFFする方式では、誘導線のO
N、 OFFをタイミングをとって切り替える必要があ
る。
■ The method of changing the frequency for each route requires electrical work as well as inductive power supplies with different frequencies, and the control equipment for the route the trolley travels is complicated, and it is difficult to specify the frequency at branch points of the route. In addition, in the method of turning on and off at the same frequency, the O
It is necessary to switch N and OFF at the appropriate timing.

■ 走行面(a)の沈下や急激な振動等により誘導線が
断線する。
■ The guide wire breaks due to subsidence of the running surface (a) or sudden vibration.

■ 1拘導腺近くの電導体により磁界が悪影響を受ける
ため、走行路面の構造に制約が多い。
■1 Because the magnetic field is adversely affected by conductors near the conductor, there are many restrictions on the structure of the road surface.

たとえば、鉄筋コンクリ−1・床等では、鉄筋と誘導線
は、成る値以上離す必要があるため、走行面と鉄筋との
距離を必要以上に大きくとる必要がある。
For example, in the case of a reinforced concrete floor, etc., the reinforcing bars and guide wires need to be separated by at least a certain value, so it is necessary to make the distance between the running surface and the reinforcing bars larger than necessary.

■ 、セa>M磁界の強さには実用上限界があるため、
車体と誘導線の許容ずれ限度が小さい。
■ Since there is a practical limit to the strength of the C a>M magnetic field,
The allowable deviation limit between the vehicle body and the guide wire is small.

次に、光学式誘導方式は、\礼N〜床N属感行面の床面
に光反射体を設置し、台車から発する光をこの光反射体
で反射させ、反射光と台車の相対位置を検出することに
より台車を誘導する。方式である。すなわち、第6図に
示す如く、台車(c)の側に設けた光源仏)から発した
光を走行面(a)上の反射体(i)により反射させ、そ
の反射光を検出する受光部(j)の位置により台車(C
)と反射体(j)の相対関係を検出し、そのすれ亀に応
じて台車の走行方向を制御させる方式である。(/、、
)は走行車輪である。
Next, in the optical guidance method, a light reflector is installed on the floor surface of the sensory surface, and the light emitted from the trolley is reflected by this light reflector, and the relative position of the reflected light and the trolley is The trolley is guided by detecting the It is a method. That is, as shown in FIG. 6, the light emitted from the light source provided on the side of the trolley (c) is reflected by the reflector (i) on the running surface (a), and the light receiving section detects the reflected light. Depending on the position of (j), the trolley (C)
) and the reflector (j), and the running direction of the truck is controlled according to the relative relationship between the reflector (j) and the reflector (j). (/,,
) are running wheels.

この方式では、たとえば、第4図に示す如く、光源(b
)から発した光を受光部(,7)の左側部分で検出した
場合、台車(c)は反射体($)よりも右側へすれたこ
とになるので、そのすれ量に応じた走行方向修正指令を
台車(c)に与えるようにし、台車(c)を左側へ寄せ
るよう軌道髄正させる。
In this method, for example, as shown in FIG.
) is detected by the left side of the light receiving part (, 7), the truck (c) has slipped to the right of the reflector ($), so the traveling direction must be corrected according to the amount of slippage. A command is given to the cart (c), and the trajectory is corrected so that the cart (c) moves to the left.

その他の光学式としては、反射体からの反射量を一対の
受光部で検出し、その反射量が同一となるよう位置制御
する方式もある。
Other optical methods include a method in which the amount of reflection from a reflector is detected by a pair of light receiving sections, and the positions are controlled so that the amounts of reflection are the same.

かかる光学式誘導方式により、台車(C)を複雑なルー
トに従って分岐したり合流させたりする場合には、左右
分岐、直進走行にそれぞれ専用の受光部を設ける、等種
々の方式があり、又、各分岐点における台車への指令信
号としては、拙走より無線や光や音波等で信号を送信す
る方式−や、誘導用反射の付近に別の反射部を設けてそ
の反射光を前記受光部で受光し、そのパターンを検出す
ることにより走行指令とする方式等がある。
When the trolley (C) is branched or merged along a complicated route using such an optical guidance method, there are various methods such as providing a dedicated light receiving section for left and right branching and for straight running. As a command signal to the bogie at each branch point, there is a method of transmitting the signal by radio, light, sound wave, etc. from the rough running point, or a method of installing another reflecting section near the guiding reflection and transmitting the reflected light to the light receiving section. There is a method of receiving light and detecting the pattern to issue a driving command.

しかしながら、これらの光学式誘導方式では、次の如き
問題がある。
However, these optical guidance methods have the following problems.

旬 分岐部で直進用、左右分岐用の指定を通信する必要
がある。
It is necessary to communicate the designation for going straight and turning left and right at the junction.

2)誘導体へのゴミ等の刺着により光の反射が阻害され
易い。
2) Reflection of light is likely to be inhibited by dirt etc. sticking to the derivative.

口)誘導体表面の損傷により光の反Q・1が阻害され易
い。
(1) Anti-Q・1 of light is easily inhibited by damage to the surface of the dielectric.

4)走行面の凹凸が多い場合、反射体の設置が困僅トで
設置されたものでも剥れ易い。
4) When the running surface has many irregularities, it is difficult to install the reflector, and even if it is installed poorly, it is likely to peel off.

以−1−のように従来の電磁誘導方式、光学式誘導方式
のいずれも多くの問題点を有しており、いずれの方式も
誘導体の耐久性、移設性及びその機能の安定性に問題が
あると共に誘導体の設置方法が複雑である。
As mentioned above, both the conventional electromagnetic induction method and the optical induction method have many problems, and both methods have problems with the durability of the inductor, ease of relocation, and stability of its function. However, the method for installing the dielectric is complicated.

本発明は、台車の走行方向の制御を簡単に行えるように
すると共に信頼性の向上が図れるようにすることを目的
とするもので、無人台車に、走行情報を記1怠させてお
き、走行ルートの制御、走行速度の制御、停+hの制御
を、台車側に記憶させた情報により行うようにし、無線
、光、音波等で信号を送受信する必要性をなくして信頼
性を向上させるようにしたものである。
An object of the present invention is to make it possible to easily control the running direction of a bogie and to improve reliability. Route control, running speed control, and stop + h control are performed using information stored on the trolley side, eliminating the need to send and receive signals by radio, light, sound waves, etc., improving reliability. This is what I did.

以下、本発明の実施例を図面を参照して説明する。Embodiments of the present invention will be described below with reference to the drawings.

第5図及び第6図に示す如く、無人台車を走行させよう
とする方向へ延ひる磁気を帯びた誘導帯(1)を走行面
(2)に敷設し、一方、無人台車は、台17. (31
の中央fXIsに左右の走行駆動@(4)を各々独立し
た走行駆動モータ(5)により駆動されるように備え、
且つ前後部の左右に従動@(6)を備え、又、台車(3
)の下面の前後両端部に、誘導センサーとしての磁気検
出センサー(7)を取り付けるとハに、走行情報(台車
の走行方向制御、速度制御、停止1・、制御等)を記憶
する走行情報記憶部(8a)を備える台車制御装置(8
)を台車(3)に備えた構成とし、更に、上記磁気検出
センサー(力と接続せる演算装置ri (9)、該演算
装置(9)で算出されたずれinと、速度情報に基づき
走行駆動モータ(5)の回転制御を行うよう指令を出す
走行駆動制御装置i’i (10)、その他バッテリー
等を台車(3)に搭載(7て、lv!i導帯(1)に沿
いフ(!(人で方向修正しながら走行できるようにする
As shown in FIGS. 5 and 6, a magnetic guidance band (1) that extends in the direction in which the unmanned trolley is intended to run is laid on the running surface (2), while the unmanned trolley .. (31
The left and right running drives @ (4) are provided at the center fXIs of the drive unit so as to be driven by independent running drive motors (5), respectively.
It also has front and rear left and right driven @ (6), and a trolley (3
) Attach magnetic detection sensors (7) as induction sensors to both the front and rear ends of the lower surface of ) to create a running information memory that stores running information (truck running direction control, speed control, stop 1, control, etc.) A bogie control device (8) comprising a part (8a)
) is provided on the cart (3), and further includes a calculation device ri (9) connected to the magnetic detection sensor (force), and a running drive system based on the deviation in calculated by the calculation device (9) and speed information. The travel drive control device i'i (10), which issues a command to control the rotation of the motor (5), and other batteries, etc. are mounted on the trolley (3) (7). !(Enables people to drive while correcting direction.)

上記磁気検出センサー(7)は、多数の磁気検出素子(
7a)より構成されており、各磁気検出素子(7a)は
一定の磁力をもつ誘導帯(1)の磁界(Ill (第7
図及び第8図参照)の強さに反応するような高さイ1’
f i〆Lで且つ台車(3)の左右方向へ所定のピソヂ
て配設し、該各磁気検出素子(7α)はそれぞれ演t”
仝装置゛(9)に接続されて演算装置(9)内で番地と
I〜で表示されるようにしてあり、いずれかの磁気検出
素子(7a)が(B気を検出すると当該素子(7a)に
対応して番地表示がなされると共に当該表示された番地
と基準位置との間の距離が演算装置(9)で台車(3)
のずれ量、とじて算出できるようにしである。す々わち
、今、磁気検出センサー(7)の中央部が誘導帯(1)
の中心に一致している状態を基準とすると、各磁気検出
素子(7a)のうち、磁気検出センサー(7)の中心部
にあるN個の磁気検出素子(7a)が磁気を検出し、こ
れが演算装置(9)内で中心部の番地と17で表示され
る限り、演算装置(9)ではずれ量が零として4算され
るため、検出子ンサー(7)の中央とル・り導帯(1)
の中心か一致した状態で台車(3)は走行さぜられるこ
とになり、又、台車(3)が走行中に、たとえば、右側
へずれたとすると、第8図に示す如く台車(3)に設け
た磁気検出センサー(力の中央(qより左側に位置する
観数の磁気検出素子(7rL)が誘導帯(1)の磁気を
検出することになるようにしである。したがって、磁気
検出センサー(7)の中央(Qから磁気を感知している
第n1番目の磁気検出素子(7α)寸での距離をtl、
同じく第n2布目の磁気検出素子(7a)丑での距離を
t2とすると、磁気検出センサー(7)の中央(qから
誘導帯(1)の中心線」二までの距離りは、L= 4 
+ a で表わされ、この距離りが誘導帯(1)からの
ずれ量となるようにしてあり、上記第n1番目から第n
2番目までの磁気検出素子(7a)が磁気を検出してい
ることにより、演算装置(9)では上記第n1番目から
第n2番目の番地表示がなされると共に上記り一−4−
±−4・の計算が行われで磁気検出センサー(力の中央
0を基準としたときの右又は左への実際のずれ量がめら
れ、走行駆動制御装置(10)からずれ情に応じて左右
各各の速度指令が走行駆動モータ(5)へ送られ、駆動
輪(4)の回転を制御して台車の方向制御が行われるよ
うにしである。たとえば、ずれ量が零のときは速度指令
値をその−1ま左右のモータ(5)へ出力し、又、右へ
ずれている場合には、そのずれ量りに応じて速度指令値
に右側は加初、左側は減算して、速度指令値を各々左右
のモータ(5)に出力する。上記走行駆動モータ(5)
からは走行駆動制御装@(10)へ速度信号がフィード
バックされ、連関指令値と、フィードバック値とが等し
くなるようサーボ制御が行われ、台車(3)の磁気検出
センサー(力の中央が誘導帯(1)の中心と一致するよ
う台車(3)が自動的に誘導できるようにしである。
The magnetic detection sensor (7) includes a large number of magnetic detection elements (
7a), and each magnetic detection element (7a) is composed of a magnetic field (Ill (7th
(see Fig. and Fig. 8).
f i〆L and at a predetermined pitch in the left and right direction of the trolley (3), and each magnetic detection element (7α) is
It is connected to the device (9) and displayed as an address and I in the arithmetic device (9), and when any magnetic detection element (7a) detects (B), the element (7a ), and the distance between the displayed address and the reference position is calculated by the calculating device (9) and the trolley (3).
This allows the amount of deviation to be calculated by closing. Well, now the center of the magnetic detection sensor (7) is the induction band (1).
Based on the state in which the center of the magnetic detection element (7a) coincides with the center of As long as the center address and 17 are displayed in the arithmetic device (9), the deviation amount is counted as zero in the arithmetic device (9), so the center of the detector sensor (7) and the lead band are (1)
The cart (3) will be moved while the centers of the cart (3) are aligned, and if the cart (3) shifts to the right side while it is moving, the cart (3) will move as shown in Fig. 8. The installed magnetic detection sensor (the magnetic detection element (7rL) located to the left of the force center (q) detects the magnetism of the induction band (1). Therefore, the magnetic detection sensor ( 7) center (the distance from Q to the n1th magnetic detection element (7α) sensing magnetism is tl,
Similarly, if the distance between the magnetic detection element (7a) of the n2th cloth is t2, the distance from the center (q to the center line of the induction band (1)) of the magnetic detection sensor (7) is L = 4.
+ a, and this distance is the amount of deviation from the induction zone (1), and from the n1th to the nth
Since the magnetic detection elements (7a) up to the second magnetic detection element (7a) are detecting magnetism, the arithmetic unit (9) displays the addresses from the n1th to the n2th, and also displays the above 1-4-
Calculations of ±-4. Each speed command is sent to the travel drive motor (5), and the rotation of the drive wheels (4) is controlled to control the direction of the truck.For example, when the amount of deviation is zero, the speed command Output the value by -1 to the left and right motors (5), and if it deviates to the right, the right side is added and the left side is subtracted from the speed command value according to the amount of deviation, and the speed command is The values are output to the left and right motors (5) respectively.The above travel drive motor (5)
The speed signal is fed back to the traveling drive control system @ (10), and servo control is performed so that the related command value and the feedback value are equal. This allows the trolley (3) to be automatically guided to match the center of (1).

本発明の特徴とするところは、前記走行情報記憶部(8
α)で記憶されている情報を、磁気検出センサー(7)
が地上側の走行情報変換点である誘導帯(+1の切目(
不連続部) (121に差しかかって磁気検出素子(7
α)のすべてがOIi”Fに々ることにより、演算装置
(9)からの脱嵌、切目情報を台車制御装置(8)が入
力して情報を分析し、切目の情報であると、高速、中速
、低速の速度指令を走行駆動制御装置(10)へ送り、
一方、前、後進、走行方向情報を演算装置(9)へ戻す
よう次々にシーケンス的に処理し、台車(3)の走行全
制御させることである。すなわち、走行情報として、走
行方向情報(右分岐、左分岐、直進)、走行速度情報(
高速、中速、低速)、走行停止情報を、適宜組み合わせ
て台車(3)の走行情報記憶部(8)に記憶させておく
ようにし、前記磁気検出センサー(7)が誘導帯(1)
の切目(1,2)に差しかかりその磁気検出素子(7c
L)のすべてがOFFになると、次の情報どして記憶さ
れている走行情報に自動的に切換えられるよう演算装@
(9)と台車制御装@(8)とを′Fii気的に接続す
ると共に・、該台車制御装置(8)と走行!11<動制
御装ft4:(圃とを接続し、台車制御装置(8)から
の速度指令(高、中、低)で走行駆動制御装置(10)
が制御され、左右の走行駆動モータ(5)を;]i制御
して台車(3)を走行情報に従い制御させるようにする
The feature of the present invention is that the traveling information storage section (8
The information stored in α) is transferred to the magnetic detection sensor (7).
is the guidance zone (+1 cut (
(Discontinuous part) (When approaching 121, the magnetic detection element (7
α) all meet OIi”F, the bogie control device (8) inputs the unfitting and cut information from the calculation device (9) and analyzes the information. , medium speed, and low speed speed commands to the traveling drive control device (10),
On the other hand, the forward, reverse, and running direction information is sequentially processed one after another so as to be returned to the arithmetic unit (9), thereby fully controlling the running of the bogie (3). In other words, as driving information, driving direction information (right branch, left turning, go straight), driving speed information (
(high speed, medium speed, low speed) and running stop information are appropriately combined and stored in the running information storage section (8) of the bogie (3), and the magnetic detection sensor (7) is connected to the guide belt (1).
The magnetic detection element (7c) approaches the notch (1, 2) of
When all of L) are turned off, the computing device @
(9) and the bogie control device @ (8) are electrically connected, and it runs with the bogie control device (8)! 11<Movement control device ft4: (Connected to the field, travel drive control device (10) based on speed commands (high, medium, low) from the bogie control device (8)
is controlled, and the left and right travel drive motors (5) are ;]i controlled to control the bogie (3) according to the travel information.

本発明の無人台車の誘導方法は、上記構成の装置を用い
て実施する。
The method for guiding an unmanned trolley according to the present invention is carried out using the device configured as described above.

直線状の誘導帯(1)ゴ〕の台車(3)を無人誘導する
場合、磁気を帯びた誘導帯(1)の磁気を台車(3)の
磁気検出センサー(7)の磁気検出素子(7a)が検出
し、との検出信号を第9図に示す演算装置(9)で処理
し、該演算装置(9)からのずれ量の信号により走行駆
動制御装置(10)を経て走行駆動モータ(5)へ走行
指令が与えられ、左右の駆動@(4)の回転を制御し、
台車(3)を走行き昼る。この場合、台車(3)の中央
が誘導帯(1)J:に位iM していれば、磁気検出セ
ンサー(7)の中央部が誘導帯(1)の中心に一致して
いるので、前記の如く磁気検出センサー(7)の中央部
にある磁気検出素子(7cL)が磁気を検出し、これが
演算装置(9)内で中心部の番地として表示される限り
、ずれ市が零として演算装置(9)で電算されるため、
左右の駆動輪(4)は記憶されている速度指令となるよ
うに回転させられる。一方、台車(3)が誘導帯(1)
K対して右又は左へずれているときは、磁気検出センサ
ー(7)の中央(qより左側又は右側に位置する磁気検
出素子(7+z)が磁気を検出するので、この磁気を検
出した磁気検出素子(7(L)の番地から演算装置(9
)にて実際のずれ(Nがめられるととにより、このずれ
量に応じて、走行駆動制御装rt(lo+から走行駆動
モータ(5)へ凍出制御指令が送られて左右の駆動輪(
4)の回転が制御され、台車(3)はずれたま捷走行す
る。
When unmanned guiding of a bogie (3) with a linear guide band (1), the magnetism of the magnetic guide band (1) is detected by the magnetic detection element (7a) of the magnetic detection sensor (7) of the bogie (3). ) is detected and the detection signal is processed by the arithmetic unit (9) shown in FIG. A running command is given to 5), which controls the rotation of the left and right drives @(4),
I drove around the trolley (3) and had lunch. In this case, if the center of the truck (3) is located at the guide band (1) J:, the center of the magnetic detection sensor (7) is aligned with the center of the guide band (1), so the As long as the magnetic detection element (7cL) in the center of the magnetic detection sensor (7) detects magnetism, and this is displayed as the central address in the arithmetic unit (9), the arithmetic unit will assume that the city is zero. Since it is calculated by (9),
The left and right drive wheels (4) are rotated to meet the stored speed command. On the other hand, the trolley (3) is in the guidance zone (1)
When it is shifted to the right or left with respect to K, the center of the magnetic detection sensor (7) (the magnetic detection element (7+z) located on the left or right side of q detects magnetism, so the magnetic detection that detected this magnetism From the address of the element (7 (L)) to the arithmetic unit (9
), a freezing control command is sent from the travel drive control system rt (lo+) to the travel drive motor (5) according to the amount of the difference, and the left and right drive wheels (
4) is controlled, and the cart (3) moves unsteadily.

上記において、今、たとえば、第10図に示す如く、交
差部で矢印X方向へ台車(3)を走行さ、1力たい場合
には、台車の走行情報記憶部(8α)に予めローf進、
低速」−「右分岐、低速」−「右分[岐、高速」と記憶
させておくと、スタートした台車(3)は、初め直進、
低速で走行する。台車(3)が交差部に差しかかり磁気
検出センサ−(力が誘導帯(1)の切目(12)を検出
すると、該切目(12)では磁気検出素子(7a)が磁
気を検出せずすべてOFFになるので、このOFFによ
り演算装置(9)から脱線、切目の情報が台車制御装置
(8)へ送られ、該制御装置(8)で切目と判断されて
いると、台車(3)の走行情報記憶部(8)に記憶され
ている次の情報である「右分岐、低速」に切換わり、そ
の情報が台車制御装置(8)から演算装置(9)へ送ら
れた後、走行駆動制御装置(10)により走行駆動モー
タ(5)がHi制御されて台車(3)は低速で右に分岐
させられる。
In the above, for example, if you want to run the trolley (3) in the direction of the arrow X at an intersection as shown in FIG. ,
If you memorize "low speed" - "right branch, low speed" - "right branch [branch, high speed]", the starting cart (3) will initially go straight, then
Drive at low speed. When the trolley (3) approaches the intersection and the magnetic detection sensor (force) detects the notch (12) of the induction band (1), the magnetic detection element (7a) does not detect magnetism at the notch (12) and turns off. Therefore, due to this OFF, information on derailment and cut is sent from the arithmetic unit (9) to the bogie control device (8), and if the control device (8) determines that it is a cut, the bogie (3) is stopped. After switching to the next information stored in the information storage unit (8), ``right branch, low speed,'' and sending that information from the bogie control device (8) to the arithmetic device (9), the traveling drive control is performed. The traveling drive motor (5) is controlled to Hi by the device (10), and the bogie (3) is branched to the right at low speed.

次に、台車(3)が切目(13)に差しかかり磁気検出
センサー(7)が当該切目(13)を検出すると、磁気
検出素子(7a)のすべてがOFFとなり、前記と同様
に処理されて次の情報である「右分岐、高速」で台車(
3)を誘導するよう処理され、台車(3)は走行方向が
右で旧つ走行速度が高速としてX方向へ誘導されて走行
させられることになる。
Next, when the cart (3) approaches the cut (13) and the magnetic detection sensor (7) detects the cut (13), all of the magnetic detection elements (7a) are turned OFF, and the next step is performed in the same manner as above. The information is "Right branch, high speed" and the trolley (
3), and the trolley (3) is guided and run in the X direction with the running direction to the right and the running speed being high.

このように、台車(3)の走行情報記憶部(8)に、予
め走行方向、走行速度等の情報を記憶させておくことに
より、誘導帯(1)の切目(不連続部)を磁気検出セン
サー(7)で検出することによって記憶している情報に
応じて任意の方向へ任意の速度で台車(3)を誘導する
ことができる。
In this way, by storing information such as the running direction and running speed in advance in the running information storage unit (8) of the bogie (3), the cut (discontinuous part) of the guide band (1) can be detected magnetically. The trolley (3) can be guided in any direction at any speed according to the stored information detected by the sensor (7).

なお、本発明は」−述した実施例のみに限定されるもの
ではなく、たとえば、磁気検出センサー(7)が誘導帯
(1)の切目(+ 2) (+31を検出して走行情報
を変換さぜるようにした場合を例示したが、磁気検出セ
ンサー(7)とは別に走行情報変換用のセンサー(14
)を第5図に示す如く台車(3)に設けると共に走行面
(2)にコート板(15+”を敷設し、センサー(14
)がコード板(15)を検出することにより、走行情報
記憶部(8)に記憶させた走行情報を次々に変換させる
ようにしてもよい。
It should be noted that the present invention is not limited to the embodiments described above; for example, the magnetic detection sensor (7) detects the cuts (+2) (+31) of the guide band (1) and converts the travel information. Although we have shown an example of a case in which the sensor is stirred, in addition to the magnetic detection sensor (7), there is also a sensor (14) for converting driving information.
) is installed on the trolley (3) as shown in Figure 5, and a coat plate (15+'' is laid on the running surface (2), and the sensor (14
) may sequentially convert the driving information stored in the driving information storage section (8) by detecting the code plate (15).

以」二述べた如く本発明の無人台車の誘導方法によれば
、台車の走行情報記憶部に走行方向、走行速度で、今の
’l’l!+報を予め記憶させておき、台車の走行途中
で走行情報を変換させて台車を誘導させるので、次の如
き優れた効果を奏し得る。
As described above, according to the unmanned trolley guidance method of the present invention, the current 'l'l! Since the travel information is stored in advance and the travel information is converted during the travel of the truck to guide the truck, the following excellent effects can be achieved.

(]) 左右への分岐の如き走行方向情報や高速、中速
、低速の如き走行速度情報等を通信手段(無線、光、音
波等)を介して無人台車が愛情する必要がなく、信頼性
の向上が図れる。
(]) There is no need for the unmanned trolley to transmit information such as running direction information such as branching to the left or right or running speed information such as high speed, medium speed, low speed, etc. via communication means (wireless, light, sound waves, etc.), and reliability is improved. can be improved.

(11)周波数の異なる誘導電源装置、誘導線の電源(
νJ咎え装;6が不必要で地上側制御装着が簡素になる
(11) Induction power supply equipment with different frequencies, power supply for induction wires (
νJ mounting device; 6 is unnecessary, simplifying ground side control installation.

(ii) 誘導帯の設置や移設が簡単である。(ii) Installation and relocation of the guide belt is easy.

(iv) ?s導It′1表面に損傷が生じても磁気が
存在する限り誘導に悪影響を与えない。
(iv)? Even if the surface of the s-conductor It'1 is damaged, it will not adversely affect the induction as long as magnetism exists.

【図面の簡単な説明】[Brief explanation of the drawing]

第1−乃至第4図は従来方式の概略図、第5図は本発明
における無人台車の平面図、第61¥J(/lj:第5
図の側面ト1、第7図は磁気検出センサーと誘導帯の組
み合わせ関係を示す正面lT!1、第8図は誘導帯に対
し磁気検出センサーの位置が横にずれた状態を示す正面
ト(1、第9図は本発明の方法を実施する装置のブロッ
ク図、第10図は本発明の方法の一実施例を示す平面図
である。 (1)は誘導帯、(3)は台車、(4)は走行駆動輪、
(5)は走行駆動モータ、(7)は磁気検出センサー、
(8)は台車制御装置、(8a)は走行情報記憶部、(
9)は演算装置、(10)は走行駆動制御装置、(1,
2) (131は切目を示す。 特許出願人 石川島播磨重工粟株式会社
Figures 1-4 are schematic diagrams of the conventional system, Figure 5 is a plan view of the unmanned trolley according to the present invention,
Side view 1 and Figure 7 are front view showing the combination relationship between the magnetic detection sensor and the induction band! 1. Fig. 8 is a front view showing a state in which the position of the magnetic detection sensor is shifted laterally with respect to the induction band (1. Fig. 9 is a block diagram of an apparatus for carrying out the method of the present invention, and Fig. 10 is a block diagram of a device implementing the method of the present invention. It is a plan view showing an example of the method. (1) is a guide band, (3) is a trolley, (4) is a running drive wheel,
(5) is a travel drive motor, (7) is a magnetic detection sensor,
(8) is a bogie control device, (8a) is a traveling information storage unit, (
9) is an arithmetic unit, (10) is a traveling drive control device, (1,
2) (131 indicates the cut. Patent applicant Ishikawajima Harima Heavy Industries Awa Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1)誘導帯に沿い台車を走行させる無人台車の誘導方法
において、誘導帯の磁気を検出する磁気検出センサーと
、台車の走行の情報を記1:□□□させておく走行情報
記憶部を、台車に備え、走行面側の走行情報変換点を上
記磁気検出センサーが検出する毎に上記走行情報記憶部
に記憶された走行情報を順次変換して台車の走行方向、
走行速度を制御することを特徴とする無人台車の誘導方
法。
1) In a method for guiding an unmanned trolley in which the trolley runs along a guide zone, a magnetic detection sensor that detects the magnetism of the guide strip and a traveling information storage section that records information on the traveling of the trolley are provided. In preparation for the bogie, each time the magnetic detection sensor detects a running information conversion point on the running surface side, the running information stored in the running information storage section is sequentially converted to determine the running direction of the bogie.
A method for guiding an unmanned trolley, characterized by controlling running speed.
JP58214678A 1983-11-15 1983-11-15 Guiding method of unmanned track Pending JPS60107113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58214678A JPS60107113A (en) 1983-11-15 1983-11-15 Guiding method of unmanned track

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58214678A JPS60107113A (en) 1983-11-15 1983-11-15 Guiding method of unmanned track

Publications (1)

Publication Number Publication Date
JPS60107113A true JPS60107113A (en) 1985-06-12

Family

ID=16659765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58214678A Pending JPS60107113A (en) 1983-11-15 1983-11-15 Guiding method of unmanned track

Country Status (1)

Country Link
JP (1) JPS60107113A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5000279A (en) * 1986-11-19 1991-03-19 Nec Corporation Unmanned vehicle guide system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4919295A (en) * 1972-06-14 1974-02-20
JPS52106578A (en) * 1976-03-03 1977-09-07 Hitachi Ltd Position detect apparatus of manless car
JPS5326395A (en) * 1976-08-25 1978-03-11 Hoffmann La Roche Novel antibiotic
JPS558004U (en) * 1978-06-30 1980-01-19

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4919295A (en) * 1972-06-14 1974-02-20
JPS52106578A (en) * 1976-03-03 1977-09-07 Hitachi Ltd Position detect apparatus of manless car
JPS5326395A (en) * 1976-08-25 1978-03-11 Hoffmann La Roche Novel antibiotic
JPS558004U (en) * 1978-06-30 1980-01-19

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5000279A (en) * 1986-11-19 1991-03-19 Nec Corporation Unmanned vehicle guide system

Similar Documents

Publication Publication Date Title
KR900008065B1 (en) Control device for nonhumanbeing vehicle
CN204241966U (en) A kind of visually oriented floor truck voluntarily
JPH036522B2 (en)
JPH035607B2 (en)
JPS60107113A (en) Guiding method of unmanned track
JPH036521B2 (en)
JPS59202515A (en) Method and device for guidance of unmanned truck
JPS59202513A (en) Method and device for guidance of unmanned truck
JPH056688B2 (en)
JPH0340841B2 (en)
JPS59202512A (en) Method and device for guidance of unmanned truck
JPS60105016A (en) Method and device for guiding unmanned truck
JPS59229625A (en) Method and apparatus for guiding unmanned truck
JPS63115207A (en) Traveling guide device for unattended vehicle
JPS62185504A (en) Speed controller for moving body
JPS59202516A (en) Method and device for guidance of unmanned truck
JPS63314613A (en) Drive controller for unmanned vehicle
JPS59112314A (en) Unmanned lift truck
JPS61110210A (en) Guiding path and running system of unmanned carrier car
JPS61244660A (en) Travelling control facility for transfer car
JPH0481209B2 (en)
JPS63111505A (en) Traveling guiding device for unmanned vehicle
JPS61217807A (en) Unmanned truck system
JPH0550004B2 (en)
JPH0420482B2 (en)