JPS61110210A - Guiding path and running system of unmanned carrier car - Google Patents

Guiding path and running system of unmanned carrier car

Info

Publication number
JPS61110210A
JPS61110210A JP59233893A JP23389384A JPS61110210A JP S61110210 A JPS61110210 A JP S61110210A JP 59233893 A JP59233893 A JP 59233893A JP 23389384 A JP23389384 A JP 23389384A JP S61110210 A JPS61110210 A JP S61110210A
Authority
JP
Japan
Prior art keywords
car
section
guided vehicle
guidance
automatic guided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59233893A
Other languages
Japanese (ja)
Inventor
Shigeki Kamei
亀井 茂樹
Kyoichi Sekihara
関原 亨一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kiden Kogyo Ltd
Original Assignee
Hitachi Kiden Kogyo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kiden Kogyo Ltd filed Critical Hitachi Kiden Kogyo Ltd
Priority to JP59233893A priority Critical patent/JPS61110210A/en
Publication of JPS61110210A publication Critical patent/JPS61110210A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0272Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means comprising means for registering the travel distance, e.g. revolutions of wheels
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • G05D1/0265Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means using buried wires

Abstract

PURPOSE:To run an unmanned carrier car in a curved section entirely similarly to a straight section, by running the carrier car in such a way that the carrier car runs in a straight section of its guided route by detecting a buried guide line and in a section, such as crossing point, etc., where no guide line is available under autonominous control by means of a micro computer. CONSTITUTION:Running conditions of an unmanned carrier car are stored in a storage device 410 and a guide current is read as signals of two electromagnetic pickups 30. Steering of the car is operated so as to minimize the difference between the signals. When the signals become equal to each other, it is detected that the car enters a non-detecting section and the receiving times of a position detector 100 are counted, and then, it is discriminated by means of a program that at which non-detecting section the car must change its advancing direction. When the car reaches an advancing direction changing point, a set command is discriminated and the car advances in the direction set in the program. A driving wheel 111 is driven in a previously fixed rotating number by means of a controller 40 and a steering wheel 210 is driven to a fixed steering angle by a steering motor 220. By counting the rotating number of the driving wheel 111 by means of a rotary encoder 170, the running distance of the car is known. Therefore, the car can be run in a curved section entirely similarly to a straight section.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、床面に埋設された誘導線からの誘導磁界を検
知し誘導走行する無人搬送車の誘導路と、この誘導路を
用いた走行システムに関する。
Detailed Description of the Invention (a) Industrial Application Field The present invention provides a guideway for an automated guided vehicle that detects an induced magnetic field from a guide wire buried in the floor and guides the vehicle, and a device using this guideway. Regarding the driving system.

(ロ)従来技術 従来の電磁誘導方式による無人搬送車の誘導路とその走
行システムとして、走行全区間に亘り床面に電磁誘導線
を配設しているが、前記誘導径路が複雑になり、この径
路に複数個よりなる交差点、分岐点を有する場合には次
のような難点がある。
(B) Prior art As a conventional electromagnetic induction type automatic guided vehicle taxi path and its running system, electromagnetic guidance wires are arranged on the floor throughout the entire travel section, but the guidance path becomes complicated. When this route has a plurality of intersections and branch points, there are the following difficulties.

即ち、 ■交差点、分岐点に集る複数個の誘導線を無人搬送車の
走行ルート毎に切り離して独立したループを形成させ、
この各ループに各々異なる周波数の電流を流して、無人
搬送車が該交差点または分岐点に到達すると、ピックア
ップコイルの受信周波数を無人搬送車が進行しようとす
るルートの周波数に切り換えて、そのルート上を走行す
る方式が実用に供されているが、本方式においては交差
点、分岐点における誘導線の構造が複雑となり、また中
央制御装置も複雑となるという問題があった。
In other words, ■A plurality of guide lines that gather at intersections and branch points are separated for each route of the automatic guided vehicle to form independent loops;
A current with a different frequency is passed through each loop, and when the automatic guided vehicle reaches the intersection or branch point, the reception frequency of the pickup coil is switched to the frequency of the route the automatic guided vehicle is traveling on, and the automatic guided vehicle is on the route. A system in which the train travels along the road has been put into practical use, but this system has the problem that the structure of the guide lines at intersections and branch points is complicated, and the central control device is also complicated.

また、前記と別の方法として、中央制御盤で無人1般送
車が進むべき誘導線のみに通電する方法もあるが、複雑
さの点においては前記と大同小異である。
Another method is to use a central control panel to energize only the guide lines along which the unmanned general transportation vehicle should travel, but this is almost the same as the above method in terms of complexity.

■誘導径路のうち交差点、分岐点での誘導線埋設作業に
おいては、複数個の直線及び曲線が輻轢するため該作業
に手間どるという問題があった。
(2) There is a problem in the work of burying guide wires at intersections and branch points of the guide route that the work is time-consuming because a plurality of straight lines and curves intersect with each other.

さらに無人搬送車の進行計画変更に際しては、誘導線の
埋設作業等が容易に実施できないという問題があった。
Furthermore, when changing the travel plan of the automatic guided vehicle, there is a problem in that it is not easy to bury guide lines.

(ハ)目的 本発明は上記の点に艦みてなされたもので、一つは複雑
な径路においても無人搬送車を誘導する誘導線の埋設作
業を簡易に行うことができる誘導路を提供するものであ
り、池の一つは、誘導径路の直線区間は埋設された誘導
線を検知することによって無人搬送車を走行させ、径路
の交差点、分岐点、変進点の所定区間及び無人搬送車の
誘導に無関係な区間は、誘導線を検知することなく無人
搬送車に搭載したマイコンによって自律走行させること
により、前記区間は直線及び曲線径路区間と全く同様に
走行しうるようになした無人搬送車の走行システムを提
供することを目的としている。
(c) Purpose The present invention has been made with the above points in mind, and one is to provide a guideway that allows easy burying of guide wires for guiding automatic guided vehicles even on complex routes. One of the points is that the automatic guided vehicle travels in straight sections of the guidance route by detecting the buried guide wire, and in the designated sections of intersections, branching points, and transition points of the route, and in the designated sections of the automatic guided vehicle. An automated guided vehicle that autonomously travels in sections unrelated to guidance using a microcomputer mounted on the automated guided vehicle without detecting the guidance line, so that the automated guided vehicle can travel in exactly the same way as straight and curved route sections. The aim is to provide a driving system for

なお自律走行とは、外部情報によらず無人搬送車が自己
の情報のみに基づいて走行することをいう。
Note that autonomous driving refers to an automatic guided vehicle traveling based only on its own information, without relying on external information.

(ニ)構成 本発明は、制御装置と誘導検知器と駆動・操舵機構とを
具備した自走式無人搬送車と、径路床面に埋設した誘導
線のうち、交差点、分岐点、変進点及び無人搬送車の誘
導に無関係なそれぞれの所定区間を無誘導区間又は不検
知区間となし、該区間の進入口側に位置検知器を配設し
た走行径路とから構成されている。
(d) Configuration The present invention provides a self-propelled automatic guided vehicle equipped with a control device, a guidance detector, and a drive/steering mechanism, and a guide line buried in the route floor at intersections, branch points, and turning points. and a traveling route in which each predetermined section unrelated to the guidance of the automatic guided vehicle is defined as a non-guidance section or a non-detection section, and a position detector is disposed on the entrance side of the section.

(ホ)実施例 第1図は本実施例に使用した無人搬送車を示す斜視図で
あり、10は無人搬送車、100は駆動機構、111.
112は駆動輪、210は操舵輪、30は誘導検知器で
ある。該誘導検知器30は左右1組の電磁ピンクアンプ
により構成されている。
(E) Example FIG. 1 is a perspective view showing an automatic guided vehicle used in this example, where 10 is an automatic guided vehicle, 100 is a drive mechanism, 111.
112 is a driving wheel, 210 is a steering wheel, and 30 is a guidance detector. The induction detector 30 is composed of a pair of left and right electromagnetic pink amplifiers.

60は走行径路を形成する電気導体・よりなる電磁誘導
線で、走行床面下に埋設されている。なお無人搬送車I
Oには図示しない操舵機構、操舵モータ、制御装置、誘
導検知器及び電源が搭載されている。
Reference numeral 60 denotes an electromagnetic induction wire made of an electric conductor that forms a running path and is buried under the running floor surface. Furthermore, automatic guided vehicle I
O is equipped with a steering mechanism, a steering motor, a control device, a guidance detector, and a power source (not shown).

また、駆動機構100は、差動歯車、駆動モータ、ブレ
ーキ、インバータで構成されており、前後進及び両舷の
駆動輪111.112を逆回転させてスピンターンをも
行うように構成されている。さらに、操舵機構200は
、従動輪たる操舵輪210の向きを操舵モータによって
変更しうるように構成されている。
Further, the drive mechanism 100 is composed of a differential gear, a drive motor, a brake, and an inverter, and is configured to reversely rotate the forward and backward drive wheels 111 and 112 on both sides to perform a spin turn. . Furthermore, the steering mechanism 200 is configured to be able to change the direction of a steered wheel 210, which is a driven wheel, using a steering motor.

第2図は誘導径路を構成する誘導線の埋設状態を示す平
面図である。
FIG. 2 is a plan view showing the buried state of the guide wires constituting the guide path.

図中、610は交差点、620は分岐点、630は変進
点を示し、破線で図示した区間は無誘導区間又は不検知
区間である。前記区間においては、第3図に示すように
誘導線60に磁気遮蔽体61でシールドさせ、発生磁界
の外部への影響を遮断させるか、第4図に示すように、
前記区間の誘導線60を深く埋設するとかにより誘導検
知器30が検知しないように配設する。または、前記区
間に誘導線60が他の箇所と同様に埋設されていても、
無人搬送車10側において誘導検知器30が検知しない
ようにする。
In the figure, 610 is an intersection, 620 is a branch point, and 630 is a turning point, and the section indicated by a broken line is a non-guidance section or a non-detection section. In the section, as shown in FIG. 3, the guide wire 60 is shielded with a magnetic shield 61 to block the influence of the generated magnetic field on the outside, or as shown in FIG.
The guide wire 60 in the section is buried deeply or otherwise arranged so that the guide wire 60 is not detected by the guide detector 30. Or, even if the guide wire 60 is buried in the section like other places,
The guidance detector 30 is prevented from detecting it on the automatic guided vehicle 10 side.

70は位置検知器であり、前記無誘導区間または不検知
区間(以下単に不検知区間という)の進入口側で且つ誘
導線60の近傍に配設され、無人搬送車10の走行ルー
ト及び不検知区間を検知する。実施例では、該位置検知
器70は無人搬送車10に設けた制御装置を検知作動さ
せる鉄片等の磁性体であるが、これに限らず光電スイッ
チ等による近接スインチであってもよい。
Reference numeral 70 denotes a position detector, which is disposed on the entrance side of the non-guided section or non-detection section (hereinafter simply referred to as non-detection section) and near the guide line 60, and is arranged to detect the traveling route of the automatic guided vehicle 10 and the non-detection section. Detect the section. In the embodiment, the position detector 70 is a magnetic body such as a piece of iron that detects and activates a control device provided in the automatic guided vehicle 10, but is not limited thereto, and may be a proximity switch using a photoelectric switch or the like.

第5図は無人1般送車10の制御を説明するブロック図
であり、制御装置40に含まれる記憶装置410には位
置検知器70の場所における操舵輪210の操舵角及び
駆動輪111.112の回転数、停止位置等の走行条件
が記憶させてあり、中央演算装置400を介して制御さ
れる。
FIG. 5 is a block diagram illustrating the control of the unmanned general transportation vehicle 10, and the storage device 410 included in the control device 40 stores the steering angle of the steering wheel 210 at the location of the position sensor 70 and the driving wheels 111, 112. Running conditions such as the rotation speed and stop position are stored and controlled via the central processing unit 400.

即ぢ、左右に配した誘導検知器30(電磁ピックアップ
)が検知した誘導線60からの誘導検知信号は、加算回
路420 、 A/D変換器421を介して中央演算装
置400に入力され、処理されて操舵信号として出力さ
れ、同期化回路430 、 D/A変換器431、制御
回路433を介して操舵機構200を構成する操舵モー
タ220を駆動して操舵輪210を操舵する。 一方、
駆動機構100への駆動信号は中央演算装置400から
同期化回路440 、D/A変換器441、制御回路4
42、スイッチング回路443を介して駆動モータ14
0に印加され、無人搬送車10が走行を開始する。17
0.230はそれぞれにロータリエンコーダであり、こ
れらの出力信号はパルスカウンタ444.434を介し
てそれぞれの回転数を計測し中央演算装置400に入力
される。
Immediately, the induction detection signal from the induction wire 60 detected by the induction detectors 30 (electromagnetic pickups) arranged on the left and right sides is input to the central processing unit 400 via the addition circuit 420 and the A/D converter 421, and is processed. The signal is outputted as a steering signal, which drives the steering motor 220 that constitutes the steering mechanism 200 via a synchronization circuit 430, a D/A converter 431, and a control circuit 433 to steer the steering wheel 210. on the other hand,
A drive signal to the drive mechanism 100 is sent from the central processing unit 400 to a synchronization circuit 440, a D/A converter 441, and a control circuit 4.
42, the drive motor 14 via the switching circuit 443
0 is applied, and the automatic guided vehicle 10 starts traveling. 17
0.230 is a rotary encoder, and these output signals are inputted to the central processing unit 400 by measuring the respective rotational speeds via pulse counters 444 and 434.

50は前記位置検出器70の信号を検知するセンサであ
り、この出力は入力回路480を介して中央演算装置4
00に入力され、判断された後、スピンターン信号とし
て出力され、スイッチング回路443.450.460
及び470に印加され、駆動モータ140の入力は断と
なり、ブレーキ150が付勢されブレーキ円板142を
介して駆動モータ140、ピニオン141、リングギヤ
131、ケーシング130がロックされる。
50 is a sensor that detects the signal from the position detector 70, and this output is sent to the central processing unit 4 via an input circuit 480.
00, and after being judged, it is output as a spin turn signal and sent to the switching circuit 443.450.460.
and 470, the input to the drive motor 140 is cut off, the brake 150 is energized, and the drive motor 140, pinion 141, ring gear 131, and casing 130 are locked via the brake disc 142.

更にソレノイド180が付勢されロンド181、ベルク
ランク182を介してクラッチギア183がクラッチブ
ーIJ163に噛合う。
Furthermore, the solenoid 180 is energized, and the clutch gear 183 engages with the clutch boob IJ 163 via the iron 181 and the bell crank 182.

またスピンターンモータ160が駆動し、プーリー16
1 、ベルト162を介してクラッチプーリ163を回
転させるので、該クラッチ、駆動輪111 、駆動軸1
21を回転させる。
Also, the spin turn motor 160 is driven, and the pulley 16
1. Since the clutch pulley 163 is rotated via the belt 162, the clutch, drive wheel 111, and drive shaft 1
Rotate 21.

しかし、駆動軸121はリングギヤ132によって差動
歯車に結合しており、前述の通りケーシングがロックさ
れているので公知の差動歯車理論によりリングギヤ13
3は前記と逆方向に回転し、駆動軸122を介して駆動
輪112は駆動輪111とは逆方向に回転し、無人搬送
車10をスピンターンさせる。
However, the drive shaft 121 is connected to the differential gear by the ring gear 132, and since the casing is locked as described above, the ring gear 13 is connected to the differential gear by the known differential gear theory.
3 rotates in the opposite direction to the above, and the drive wheel 112 rotates in the opposite direction to the drive wheel 111 via the drive shaft 122, causing the automatic guided vehicle 10 to spin turn.

次に本発明の動作につき説明する。Next, the operation of the present invention will be explained.

まず、前述の如く記憶装置410に走行条件を記憶させ
、発進の指示があれば走行を開始し、誘導線60からの
誘導電流を誘導検知30(電磁ピックアップ)の信号S
L、SRとして読みこみ、両者を比較してSL#SRで
あれば径路に沿って走行しているので、そのまま走行を
続けSL≠SRであれば信号の小さい方に5L=SRと
なるように操舵して走行する。
First, as described above, the running conditions are stored in the storage device 410, and if there is an instruction to start, the running is started, and the induced current from the guiding wire 60 is detected as the signal S of the induction detection 30 (electromagnetic pickup).
Read it as L and SR, compare the two, and if it is SL#SR, it is traveling along the route, so continue traveling as it is, and if SL≠SR, go to the smaller signal so that 5L=SR. Drive by steering.

次に不検知区間に入ると5L=O1SR=0となるが、
前記不検知区間の無人搬送車10の進行方向入口側に設
けられた位置検知器7oの信号を受信すれば、不検知区
間に入ったことが検知され誘導検知器30はその機能を
停止するとともに、走行径路の位置検知器70の受信回
数をカウントし、何回目の不検知区間で変進するかを予
め定められたプログラムによって判断し、変進場所であ
れば、カウント回数毎に設定された指令を判別し、プロ
グラムで設定された方向に進行する。
Next, when entering the non-detection zone, 5L=O1SR=0,
If the signal from the position detector 7o installed on the entrance side of the automatic guided vehicle 10 in the direction of movement of the undetected zone is received, it is detected that the automatic guided vehicle 10 has entered the undetected zone, and the guidance detector 30 stops its function. , the number of receptions received by the position detector 70 on the travel route is counted, and the number of non-detection intervals in which the vehicle is to be shifted is determined by a predetermined program. It recognizes commands and moves in the direction set by the program.

変進場所が曲線分岐である場合につき述べると、位置検
知器70の信号を読みとると、前記制御装置40の作動
により、駆動輪111は予め定められた回転数にて駆動
されるとともに、操舵輪210の操舵角も予め定められ
た角度となるように操舵モータ220が駆動される。駆
動軸111の回転数をロークリエンコーダ170により
カウントすることにより走行距離りが定まるので、曲率
半径(駆動軸中心の旋回半径)をR1操舵角をαとする
とR=Lcotα となるので、前記駆動輪111の回転数と操舵輪21O
の操舵角をマイコンで制御することにより所定の旋回半
径と旋回角度を得ることができる。従って駆動輪111
の回転数と操舵角との組合せを変えることによって各種
の旋回半径と、旋回角度とを得ることができる。なお、
曲率半径及び角度の各種演算プログラムはサブ・ルーチ
ンとして記憶装置410に記憶させておくものである。
In the case where the shift location is a curved branch, when the signal from the position detector 70 is read, the drive wheel 111 is driven at a predetermined rotation speed by the operation of the control device 40, and the steering wheel The steering motor 220 is driven so that the steering angle 210 also becomes a predetermined angle. Since the traveling distance is determined by counting the number of revolutions of the drive shaft 111 using the rotary encoder 170, the radius of curvature (turning radius around the drive shaft) is R1, and if the steering angle is α, then R=Lcotα. Rotation speed of wheel 111 and steering wheel 21O
By controlling the steering angle with a microcomputer, a predetermined turning radius and turning angle can be obtained. Therefore, the driving wheel 111
Various turning radii and turning angles can be obtained by changing the combination of rotational speed and steering angle. In addition,
Various calculation programs for the radius of curvature and angle are stored in the storage device 410 as subroutines.

しかして、その後設定された距離だけ走行し、不検知区
間の終端に達すると、誘導線60を誘導検知器30が再
検知し走行を続け、前記同様停止の指示があるまで走行
を続ける。即ち不検知区間においては、無人搬送車10
の誘導機能を停止し、無人搬送車10が自己の走行距離
操舵角を計測演算し、予め記憶されているプログラムに
従うて走行する自立走行に切替えるものである。換言す
れば不検知区間に達すると誘導機能は停止し眠り運転し
、該区間を通過すると眠りから覚めるように作動させる
ものである。
After that, the vehicle travels a set distance, and when it reaches the end of the non-detection section, the guidance detector 30 detects the guide line 60 again and continues traveling, until it is instructed to stop as described above. That is, in the non-detection section, the automatic guided vehicle 10
The guidance function of the automatic guided vehicle 10 is stopped, the automatic guided vehicle 10 measures and calculates its own travel distance and steering angle, and switches to independent travel in which the automatic guided vehicle 10 travels according to a pre-stored program. In other words, when the vehicle reaches the non-detection zone, the guidance function is stopped and the vehicle sleeps while driving, and when the vehicle passes through the zone, it is activated so that the vehicle wakes up from its sleep.

前記説明は不検知区間の終端部における自律走行からプ
ログラムに基づいて自動的に誘導走行に切替る方法につ
き述べたが、該区間の終端部において入口側に配設した
のと同様に位置検出器70を設け、これの検知信号によ
って自律走行から誘導方式に切り替る方法であってもよ
い。なお、変進場所が直線分岐の場合も前記に準じ自律
走行するものである。
The above explanation has been about the method of automatically switching from autonomous driving to guided driving based on a program at the end of the non-detection section. 70 may be provided, and the autonomous running mode may be switched to the guidance mode based on a detection signal thereof. Note that even if the change location is a straight line branch, the vehicle will autonomously travel in the same manner as described above.

しかして、前記自律旋回の場合において、負荷の大小、
床条件等によって各モータの回転速度の変化による旋回
半径及び旋回角度の精度の問題が生じるが、各モータを
インバータで周波数制御することにより負荷変動による
回転速度変化を微少にすることができる。
Therefore, in the case of autonomous turning, the magnitude of the load,
Changes in the rotational speed of each motor due to floor conditions etc. may cause problems in accuracy of the turning radius and turning angle, but by controlling the frequency of each motor with an inverter, changes in rotational speed due to load fluctuations can be minimized.

上記説明は誘導径路のうち無誘導区間または不検知区間
の走行につき述べたが次に無人搬送車の誘導に無関係な
区間の誘導路を第6図に基づき説明する。
The above description has been made regarding the travel in the non-guidance section or the non-detection section of the guide route. Next, the guide route in the section unrelated to the guidance of the automatic guided vehicle will be explained based on FIG. 6.

無人搬送車10はA点を発し、不検知区間B、C1Dを
通過し、E点からF点を経由0点に至る径路において、
DE間は通常の埋設誘導線60が敷設されている。亘り
線EF間は次の径路となる誘導線FG端に通電させる必
要があるが、DE線(以下DE間の誘導線を略称する。
The automatic guided vehicle 10 starts from point A, passes through non-detection zones B and C1D, and on the route from point E to point F, reaches point 0.
A normal buried guide wire 60 is laid between the DEs. Between the crossover wire EF, it is necessary to energize the end of the guide wire FG, which is the next route, but the DE wire (hereinafter, the guide wire between DE is abbreviated as short).

その他の径路もこれに準する。)とEF線とを一緒に埋
設すると両誘導線の電流は逆方向となるので、発生磁界
は互いに打ち消し合うことになる。従ってこのEF線は
無人搬送車10の誘導につき無関係な区間となるので、
EF線は第3図のように誘導線60を磁気遮蔽体61で
シールドさせるとか、第4図のように誘導検知器30(
電磁ピックアップ)が感知できない深さまで埋設するか
、または無人搬送車10の誘導径路と関係のない位置に
敷設する等施工することによって、一本の誘導線60で
もって無人搬送車を誘導させることができる。
This applies to other routes as well. ) and the EF wire together, the currents in both induction wires will be in opposite directions, so the generated magnetic fields will cancel each other out. Therefore, this EF line is an irrelevant section for guiding the automatic guided vehicle 10.
The EF wire can be obtained by shielding the inductive wire 60 with a magnetic shield 61 as shown in FIG. 3, or by shielding the inductive detector 30 (
The automatic guided vehicle can be guided by a single guide wire 60 by burying the wire to a depth where it cannot be detected (electromagnetic pickup) or by laying it in a position unrelated to the guiding route of the automatic guided vehicle 10. can.

即ち、不検知区間りにおいて予め設定されたプログラム
がDE線経由FG線と定められている場合は、無人搬送
車10は前述の如く自律走行し不検知区間外に至ると誘
導線DE線によって誘導され、E点において旋回または
逆走し、再び不検知区間りに至ってFC線にて誘導され
る。説明の便宜と簡単な径路につき述べたが、これを組
合せた複雑な径路にも通用しうるちのである。
That is, if the preset program in the non-detection section is set to the DE line via the FG line, the automatic guided vehicle 10 will autonomously travel as described above, and when it reaches outside the non-detection section, it will be guided by the guide line DE line. The vehicle then turns or runs in the opposite direction at point E, reaches the non-detection zone again, and is guided along the FC line. Although the description has been made for convenience of explanation and a simple route, it is also applicable to complex routes that combine these.

なお、前述の説明より明らかな通り、前記不検知区間に
おける誘導線60の配設形状は通電のみできれば如何な
るものであってもよく、例えば曲線部におけるアールは
従来例の如く設ける必要もなくなるので埋設作業は極め
て容易となる。
As is clear from the above explanation, the guide wire 60 in the non-detection section may be arranged in any shape as long as it is energized. The work becomes extremely easy.

(へ)効果 本発明によると゛きは、無人搬送車の誘導径路の交差点
、分岐点、変進点に所定長の無誘導区間または不検知区
間区間を設け、誘導線によって電磁誘導走行される無人
搬送車が前記区間に至ると、誘導機能を停止させ自律走
行機能に切り換わり、予め記憶された所定のプログラム
に従って自律走行するようになし、前記区間通過後群び
電磁誘導するようにしたので、誘導線は単一周波数の1
本の線でよく、且つ無人搬送車の誘導装置は常に単一線
を検知する機能を具備すればよいので、多周波数にわた
る検知制御装置を必要とせず、また無誘導区間又は不検
知区間は自律走行するようになしたので、誘導線の埋設
が極めて容易となる等の利点を有する。
(f) Effects According to the present invention, unguided sections or non-detection sections of a predetermined length are provided at intersections, branch points, and transition points of the guided route of the automated guided vehicle, and the automated guided vehicle travels by electromagnetic guidance using the guide wire. When the vehicle reaches the above section, the guidance function is stopped and switched to the autonomous driving function, and the vehicle runs autonomously according to a predetermined program stored in advance. The line is a single frequency 1
A single line is sufficient, and the guidance device of the automatic guided vehicle only needs to have the function of always detecting a single line, so there is no need for a detection control device that covers multiple frequencies, and the unguided or undetected section is where autonomous driving is possible. This has the advantage that burying the guide wire is extremely easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は無人搬送車の外観説明図、第2図は本発明の実
施例を示す径路説明図、第3図は誘導線の埋設状態を説
明する断面図、第4図は誘導線の他の埋設状態を説明す
る断面図、第5図はプロッり図、第6図は誘導径路の説
明図である。 10・・・無人搬送車、30・・・誘導検知器、40・
・・制御装置、60・・・誘導線、70・・・位置検知
器、100  ・・・駆動機構、200  ・・・操舵
機構。
Fig. 1 is an explanatory diagram of the external appearance of the automatic guided vehicle, Fig. 2 is an explanatory diagram of the route showing an embodiment of the present invention, Fig. 3 is a cross-sectional view explaining the buried state of the guide wire, and Fig. 4 is an explanatory diagram of the guide wire and other parts. FIG. 5 is a plot diagram, and FIG. 6 is an explanatory diagram of the guide path. 10...Automated guided vehicle, 30...Guidance detector, 40...
...Control device, 60...Guide line, 70...Position detector, 100...Drive mechanism, 200...Steering mechanism.

Claims (2)

【特許請求の範囲】[Claims] (1)床面に埋設された誘導線を誘導径路として走行す
る無人搬送車の誘導路であって、前記誘導径路の交差点
、分岐点、無人搬送車の変進点及び無人搬送車の誘導に
無関係な区間の所定長さをそれぞれ無誘導となるように
1本の誘導線でもって無人搬送車を誘導させるようにし
たことを特徴とする無人搬送車の誘導路。
(1) A guideway for an automated guided vehicle that runs on a guide line buried in the floor as a guide route, which is used for intersections, branch points, turning points of the automated guided vehicle, and guidance of the automated guided vehicle on the guided route. A guideway for an automated guided vehicle, characterized in that the automated guided vehicle is guided by a single guide line so that predetermined lengths of unrelated sections are not guided.
(2)床面に埋設された誘導線を誘導径路として走行す
る無人搬送車の走行システムであって、前記誘導径路の
交差点、分岐点、無人搬送車の変進点及び無人搬送車の
誘導に無関係なそれぞれの区間の所定長さをそれぞれ無
誘導区間または不検知区間となし、前記区間の無人搬送
車の進入口に位置検知器を配設するとともに、前記無人
搬送車には誘導検知器と制御装置と駆動・操舵機構とを
具備させ、前記誘導径路のうち誘導検知する区間は前記
誘導検知器の信号に基づいて走行し、無誘導区間又は不
検知区間においては前記位置検知器からの信号に基づい
て自律走行に切り換え、且つ前記制御装置に予め記憶さ
せたプログラムに応じて前記無誘導区間又は不検知区間
において変進走行させるように構成したことを特徴とす
る無人搬送車の走行システム。
(2) A traveling system for an automatic guided vehicle that runs on a guide line buried in the floor as a guidance route, which is used for intersections, branch points, turning points of the automatic guided vehicle, and guidance of the automatic guided vehicle on the guidance route. A predetermined length of each unrelated section is defined as a non-guidance section or a non-detection section, and a position detector is provided at the entrance of the automatic guided vehicle in the section, and the automatic guided vehicle is equipped with a guidance detector and a non-detection section. It is equipped with a control device and a drive/steering mechanism, and in the section of the guidance route where guidance is detected, travel is based on the signal from the guidance detector, and in the non-guidance section or non-detection section, the travel is based on the signal from the position detector. What is claimed is: 1. A driving system for an automatic guided vehicle, characterized in that the automatic guided vehicle is configured to switch to autonomous driving based on the above information, and to change and travel in the non-guidance section or the non-detection section according to a program stored in advance in the control device.
JP59233893A 1984-11-05 1984-11-05 Guiding path and running system of unmanned carrier car Pending JPS61110210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59233893A JPS61110210A (en) 1984-11-05 1984-11-05 Guiding path and running system of unmanned carrier car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59233893A JPS61110210A (en) 1984-11-05 1984-11-05 Guiding path and running system of unmanned carrier car

Publications (1)

Publication Number Publication Date
JPS61110210A true JPS61110210A (en) 1986-05-28

Family

ID=16962214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59233893A Pending JPS61110210A (en) 1984-11-05 1984-11-05 Guiding path and running system of unmanned carrier car

Country Status (1)

Country Link
JP (1) JPS61110210A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01220007A (en) * 1988-02-29 1989-09-01 Komatsu Ltd Guided travel controller for moving body
JPH03174609A (en) * 1989-12-01 1991-07-29 Nippon Yusoki Co Ltd Turning drive control method for unmanned carrier
JPH03175505A (en) * 1989-12-04 1991-07-30 Nippon Yusoki Co Ltd Guidance method for unattended carriage
JPH0823471A (en) * 1994-07-29 1996-01-23 Hitachi Ltd Video camera

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5248319U (en) * 1975-10-02 1977-04-06
JPS5346588A (en) * 1976-10-08 1978-04-26 Omron Tateisi Electronics Co Conveying body induction method
JPS5431178A (en) * 1977-08-12 1979-03-07 Victor Company Of Japan Automatic rail following type transportation car

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5248319U (en) * 1975-10-02 1977-04-06
JPS5346588A (en) * 1976-10-08 1978-04-26 Omron Tateisi Electronics Co Conveying body induction method
JPS5431178A (en) * 1977-08-12 1979-03-07 Victor Company Of Japan Automatic rail following type transportation car

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01220007A (en) * 1988-02-29 1989-09-01 Komatsu Ltd Guided travel controller for moving body
JPH03174609A (en) * 1989-12-01 1991-07-29 Nippon Yusoki Co Ltd Turning drive control method for unmanned carrier
JPH03175505A (en) * 1989-12-04 1991-07-30 Nippon Yusoki Co Ltd Guidance method for unattended carriage
JPH0823471A (en) * 1994-07-29 1996-01-23 Hitachi Ltd Video camera

Similar Documents

Publication Publication Date Title
JPS6345609A (en) Drive guiding device for unmanned vehicle
JPS61110210A (en) Guiding path and running system of unmanned carrier car
JPH036522B2 (en)
JPH035607B2 (en)
JPH036521B2 (en)
JP3817775B2 (en) Vehicle intersection passage display device
JPS60195621A (en) Running system of unmanned carrier car
JPS63111505A (en) Traveling guiding device for unmanned vehicle
JPH036524B2 (en)
JPH056688B2 (en)
JPS59202513A (en) Method and device for guidance of unmanned truck
JP2580672Y2 (en) Guideway device for electromagnetically guided vehicles
JPS62200407A (en) Control system for unmanned carrying car
JPH0749522Y2 (en) Guidance signal detector for unmanned vehicles
JPS62211707A (en) Trackless carrying car system
JPH03174609A (en) Turning drive control method for unmanned carrier
JPS60230211A (en) Automatic running car
JPS62182811A (en) Electromagnetically guided automatic traveling vehicle
JPS6249524A (en) Unmanned carrier
JPS63115207A (en) Traveling guide device for unattended vehicle
JPS6230444B2 (en)
JPH0313768Y2 (en)
JPS62245309A (en) Control facility for travel of moving vehicle
JPS59229625A (en) Method and apparatus for guiding unmanned truck
JPH10111718A (en) Method and device for controlling travel of automated guided carrier