JPS6249524A - Unmanned carrier - Google Patents

Unmanned carrier

Info

Publication number
JPS6249524A
JPS6249524A JP60188445A JP18844585A JPS6249524A JP S6249524 A JPS6249524 A JP S6249524A JP 60188445 A JP60188445 A JP 60188445A JP 18844585 A JP18844585 A JP 18844585A JP S6249524 A JPS6249524 A JP S6249524A
Authority
JP
Japan
Prior art keywords
timer
magnetic field
carrier
coil
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60188445A
Other languages
Japanese (ja)
Inventor
Kenichi Toyoda
豊田 賢一
Tsuneo Kawagoe
川越 常生
Hitotsugu Ozaki
小崎 仁嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP60188445A priority Critical patent/JPS6249524A/en
Publication of JPS6249524A publication Critical patent/JPS6249524A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To discriminate quickly the deviated drive of an unmanned carrier even in case a guide line is cut at some area within a driving route of the carrier, by deciding that the carrier gets out of the driving route when the intensity of a detected magnetic field is less than a prescribed level over a set period of time. CONSTITUTION:When an unmanned carrier 1 reaches an area where a guide cable 2 is cut within the driving route of the carrier and crosses the cable 2, the intensity of a magnetic field received from a derailment detecting coil 18 is extremely reduced. Then the output of the coil 18 is less than a prescribed level and a line OFF monitor part 19 which receives the output of the coil 18 starts its built-in timer. The time of this timer is set in response to the length of the area where the cable 2 is cut. While the part 19 outputs the deviated drive deciding signal when the set timer time passed. Thus it is discriminated that the carrier 1 gets out of its driving route in case the output of the coil 18 is lower than a prescribed level over a set period of the timer.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、走行経路からの逸脱走行を判別するようにし
た無人搬送車(以下AGVという)に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an automatic guided vehicle (hereinafter referred to as AGV) which is configured to determine whether the vehicle deviates from a travel route.

従来の技術 加工セル、組立セル等のCNC設備群を備えた無人工場
においては、CNC設備群と加工面あるいは加工後のワ
ークの保管を行う自動倉庫との間でワークの運搬及び受
渡し、その他の作業音自動的に行う必要がある。そこで
、近来、CNC設備間及びCNC,4備と自e愈厘との
間のワークの運搬及び受渡し等の作業を制御プログラム
に従って行うことができるAGVが開発された。そして
、AGVの走行制御のため、走行経路に敷設した誘導線
に低周波電流を流してこの誘導線の回りに磁界を発生さ
せ、AGVの両側に設けた電磁ピックアップコイルにて
磁界を検出し、両コイルでの誘起電圧の差に応じてAG
Vの両部動輪を駆動制御して、AGVを誘導線に沿って
走行させることが知られている。一方、無人工場内に各
種軌道を敷設する必要が生じる場合があり、この軌道は
鋼鉄等よりなり、上述の電m誘導制御システムに対し、
外乱を与えるので、軌道と交差する場所においては誘導
線を除去している。
Conventional technology In an unmanned factory equipped with a group of CNC equipment such as processing cells and assembly cells, workpieces are transported and delivered, and other operations are carried out between the CNC equipment group and the processing surface or an automated warehouse that stores the processed workpieces. The working sound should be done automatically. Therefore, in recent years, AGVs have been developed that can perform tasks such as transporting and transferring workpieces between CNC facilities and between CNC machines and self-service machines according to control programs. Then, in order to control the running of the AGV, a low-frequency current is passed through a guide wire laid on the running route to generate a magnetic field around the guide wire, and the magnetic field is detected by electromagnetic pickup coils installed on both sides of the AGV. AG depending on the difference in induced voltage in both coils.
It is known to drive and control both driving wheels of a V to cause the AGV to travel along a guide line. On the other hand, there may be cases where it is necessary to lay various tracks within an unmanned factory, and these tracks are made of steel, etc., and in contrast to the above-mentioned electric m guidance control system,
To avoid disturbance, guide lines are removed at locations where they intersect with the orbit.

しかしながら、従来のAGVにあっては、走行経路内の
磁界を形成しない誘導線除去部分を走行中、各ピックア
ップコイル出力ひいては両出力の差が零となるら、結果
としてAGVの実際の走行経路の如何にかかわらず、A
GVが所定の走行経路に沿って走行していると判別する
こととなる。
However, in the case of a conventional AGV, if the output of each pickup coil, and even the difference between the two outputs, becomes zero while traveling in a part of the travel route where the guide wire is removed and does not form a magnetic field, the result is that the actual travel route of the AGV becomes zero. Regardless, A
It is determined that the GV is traveling along a predetermined travel route.

従って、誘導線を除去した経路部分を横断中に八〇Vが
所定経路から逸脱した場合は、横断後に行う制御動作で
は制御上遅れを生じ、逸脱の度合いがきわめて大きくな
ってしまう。このように、所定経路内に誘導線除去部の
あるレイアウトの工場内での電!!誘導方式による無人
運転には困難があった。
Therefore, if the 80V deviates from the predetermined route while traversing the route portion from which the guide wire has been removed, there will be a delay in the control operation performed after traversing, and the degree of deviation will become extremely large. In this way, power supply in a factory with a layout that includes a guide wire removal section within a predetermined route! ! There were difficulties in unmanned operation using the guidance method.

発明が解決しようとする問題点 本発明は、所定走行経路内に誘導線除去部がある場合に
も、該経路からの逸脱走行を迅速に判別可能な無人搬送
車を提供することにある。
Problems to be Solved by the Invention An object of the present invention is to provide an automatic guided vehicle that can quickly determine whether the vehicle has deviated from a predetermined travel route even if there is a guide line removal section within the route.

問題点を解決するための手段 本発明は、走行経路に配設された誘導線による発生磁界
を検出し、該誘導線に沿って走行するように設けた無人
搬送車において、誘導線からの無人搬送車の逸脱を検出
する検出手段と、該検出手段からの逸脱信号により作動
し該gilt脱信号の消滅によりリセットされるタイマ
ーと、該タイマのタイムアツプにより無人搬送車の逸脱
走行を判別するようにした。
Means for Solving the Problems The present invention detects the magnetic field generated by a guide wire arranged on a travel route, and in an automated guided vehicle set to travel along the guide wire, an unmanned guided vehicle from the guide wire is detected. A detection means for detecting deviation of the guided vehicle, a timer activated by a deviation signal from the detection means and reset when the gilt deviation signal disappears, and a timer for determining deviation of the automated guided vehicle based on the time-up of the timer. did.

作  用 AGVは誘導線による発生磁界を検出し誘導線に沿って
走行する。AGVの判別装置は、設定時間に亙り検出磁
界の強さが所定のレベルを下回ったときAGVが所定走
行経路から逸脱したことを判別する。AGVが所定経路
内の誘導線除去部に差しかかると逸脱監視を開始し、当
該部分を横断中に逸脱走行すると、該横断直後に逸脱走
行が判別される。
Operation The AGV detects the magnetic field generated by the guide wire and travels along the guide wire. The AGV discrimination device determines that the AGV has deviated from the predetermined travel route when the strength of the detected magnetic field falls below a predetermined level for a set time. When the AGV approaches a guide line removal section within a predetermined route, deviation monitoring is started, and if the AGV deviates while crossing the section, deviation is determined immediately after the crossing.

実施例 以下、添付図面を参照して本発明の一実施例を説明する
Embodiment Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.

第1図は本発明の一実施例によるAGVを示し、AGV
lの基本構成は従来公知のものである。2はAGVlの
所定走行経路に沿って埋設された誘導ケーブルで、該誘
導ケーブル2には図示しない電源から供給される低周波
電流が流れ、その回りに誘導磁界3(破線で図示)が発
生している。11.11’ はAGVlの中心線に関し
対称に配された電磁ピックアップコイルで、各コイル1
1゜11′は検出した磁界の強さに応じた誘導電流を差
動アンプ12に出力し、差動アンプ12で両ピックアッ
プコイル11.11’の出力の差分を増幅している。操
舵演算部13は、差動アンプ12出力を入力してこれを
A/D変換する一方、図示しない高速V1.中速V2ま
たは低速v3のAGV走行速度を選択的に設定するため
の指令信号とを入力し、AGVlを所定経路に沿い設定
走行速度で走行させるための両部動輪17,17’ に
対する速度指令信号を加減速指令部14.14’を介し
てサーボ回路15.15’に出力するように設けられて
いる。上記操舵演算部13.加減速指令部14.14’
及び後述のラインOFFモニタ部19は、例えば主にマ
イクロプロセッサにより構成されている。そして、八〇
V1の両側の駆動輪17.17’がサーボ回路15.1
5’ に接続されたサーボモータ16.16’により駆
動制御されるように設けられるが、以上の構成は従来公
知であるので、より詳細な説明を省略する。
FIG. 1 shows an AGV according to an embodiment of the present invention;
The basic configuration of 1 is conventionally known. Reference numeral 2 denotes an induction cable buried along a predetermined running route of the AGVl. A low-frequency current supplied from a power source (not shown) flows through the induction cable 2, and an induced magnetic field 3 (shown by a broken line) is generated around it. ing. 11.11' are electromagnetic pickup coils arranged symmetrically about the center line of AGVl, each coil 1
1° 11' outputs an induced current corresponding to the strength of the detected magnetic field to a differential amplifier 12, and the differential amplifier 12 amplifies the difference between the outputs of both pickup coils 11 and 11'. The steering calculation unit 13 inputs the output of the differential amplifier 12 and A/D converts it, while also inputting the high-speed V1. A command signal for selectively setting the AGV traveling speed of medium speed V2 or low speed V3 is input, and a speed command signal for both driving wheels 17, 17' for causing the AGVl to travel at the set traveling speed along a predetermined route. is provided to output to the servo circuit 15.15' via the acceleration/deceleration command section 14.14'. The above-mentioned steering calculation section 13. Acceleration/deceleration command section 14.14'
A line OFF monitor unit 19, which will be described later, is mainly composed of, for example, a microprocessor. The drive wheels 17.17' on both sides of 80V1 are connected to the servo circuit 15.1.
5' is provided to be driven and controlled by a servo motor 16, 16' connected to the servo motor 16, 16', but since the above configuration is conventionally known, a more detailed explanation will be omitted.

次に、18はAGVlの中心線上に配された脱線検出コ
イルで、該コイル18を横切る磁界3の強さに応動し、
後段のラインOFFモニタ部19と協動して逸脱走行判
別装置を構成している。すなわち、脱線検出コイル18
は、AGVlが誘導ケーブル2に対し所定の位置関係を
保って、つまり所定経路に沿って走行しているとき強い
磁界3を受けて所定レベル以上の検出出力を出力し、一
方、AGVlが所定経路を逸脱しもしくは誘導ケーブル
2除去部分を横断中は、弱い磁界3を受けもしくは磁界
3外にll1lt脱して所定レベル未満または零レベル
の検出出力を出力する構成になっている。
Next, 18 is a derailment detection coil arranged on the center line of the AGVl, which responds to the strength of the magnetic field 3 crossing the coil 18,
It cooperates with the line OFF monitor section 19 at the subsequent stage to constitute a deviation traveling determination device. That is, the derailment detection coil 18
When the AGVl maintains a predetermined positional relationship with respect to the induction cable 2, that is, when traveling along a predetermined route, it receives a strong magnetic field 3 and outputs a detection output of a predetermined level or higher; When the probe deviates from the magnetic field 3 or crosses the part where the induction cable 2 is removed, it is configured to receive a weak magnetic field 3 or escape outside the magnetic field 3 and output a detection output below a predetermined level or at a zero level.

ラインOFFモニタ部19は、脱線検出コイル18出力
をA/D変換し、該コイル1Bから所定レベル未満の検
出出力を受けたとき内蔵のソフトタイマを起動し、設定
タイマ時間が経過すると逸脱走行判別出力を出力する一
方、所定レベル以上の検出コイル18出力を受けたとき
ソフトタイマをリセットするように設けられている。ま
た、該モニタ部1つは上記設定走行速度指令信号を入力
し、上記タイマ時間をAGVIの設定走行速度ひいては
所定走行経路内の誘導ケーブル2の除去部分の長さに応
じて設定するようになっている。
The line OFF monitor unit 19 A/D converts the output of the derailment detection coil 18, starts a built-in soft timer when it receives a detection output of less than a predetermined level from the coil 1B, and determines whether the derailment is running when the set timer period has elapsed. While outputting an output, the soft timer is also reset when receiving an output of the detection coil 18 of a predetermined level or higher. Further, the one monitor section inputs the set traveling speed command signal and sets the timer time according to the set traveling speed of the AGVI and also the length of the removed portion of the guide cable 2 within the predetermined traveling route. ing.

以下、上述のように構成される本実施例のAGvlの作
動を第1図、第2図を参照して説明する。
Hereinafter, the operation of AGvl of this embodiment configured as described above will be explained with reference to FIGS. 1 and 2.

従来公知のように、誘導ケーブル2による発生磁界3が
ピックアップコイル11.11’で検出されると、差動
アンプ12.操舵演算部13.加減速指令部14.14
’及びサーボ回路15゜15′が順次作動し、AGVl
が所定走行経路を設定走行速度で走行するようにサーボ
モータ16゜16′を介して各駆動輪17.17’ の
回転方向及び回転速度を制御する。
As is conventionally known, when the magnetic field 3 generated by the induction cable 2 is detected by the pickup coil 11.11', the differential amplifier 12. Steering calculation unit 13. Acceleration/deceleration command section 14.14
' and servo circuits 15° and 15' operate in sequence, and AGVl
The rotational direction and speed of each drive wheel 17, 17' is controlled via servo motors 16 and 16' so that the vehicle travels along a predetermined travel route at a set travel speed.

AGVlの走行中、ラインOFFモニタ部19は、所定
周期で第2図に示す逸脱走行判別プログラムを実行する
。まず、モニタ部19は脱、線検出の有無を一定周期で
脱線検出コイル18の出力レベルから判別する(ステッ
プ$1)。すなわち、AGVlが誘導ケーブル2に沿っ
て正常に走行していると、モニタ部19は強い磁界中に
あるコイル18からハイレベル出力を受けて脱線検出な
しと判別し、ステップS2に移り、内蔵のソフトタイマ
のカウント数Gを「0」にリセットし、プログラムの実
行を終える。
While the AGVl is running, the line OFF monitor unit 19 executes the deviation running determination program shown in FIG. 2 at predetermined intervals. First, the monitor section 19 determines whether derailment or derailment is detected based on the output level of the derailment detection coil 18 at a constant cycle (step $1). That is, when the AGVl is running normally along the induction cable 2, the monitor section 19 receives a high level output from the coil 18 in a strong magnetic field and determines that there is no derailment detected, and moves to step S2, where the built-in The count number G of the soft timer is reset to "0" and the program execution ends.

一方、AGVlが所定経路に沿って走行し、該経路内の
誘導ケーブル2を除去した部分に到達し、当該部分の横
断を開始すると、脱線検出コイル1日が受ける磁界の強
さは急減し、該コイル18の出力は所定レベル以下とな
る。従って、モニタ部1つは上記ステップS1で脱線検
出有りと判別し、逸脱監視を継続すべくカウント数Ce
G+1 (脱線検出直接は「1」)としくステップS3
)、次いで上記設定走行速度指令信号に基づき現在速度
Vが高速V1.中速V2または低速v3のいずれである
かを判別しくステップS4)、さらにカウント数Cが現
在速度Vに応じた設定値に1.に2またはに3に達した
か否かを判別しくステップS5、S6またはS7)、該
設定値に達していなければ、プログラムの実行を終了す
る。なお、AG■1が誘導ケーブル除去部分を横断中は
、コイル18は磁界3から離脱しその出力は低レベルの
ままであるので、本プログラム実行毎にステップ$3で
カウント数Cが「1」ずつ更新されていく。
On the other hand, when the AGVl travels along a predetermined route, reaches the part of the route from which the induction cable 2 has been removed, and starts crossing that part, the strength of the magnetic field received by the derailment detection coil 1 suddenly decreases. The output of the coil 18 is below a predetermined level. Therefore, one monitor unit determines that a derailment has been detected in step S1, and sets the count number Ce to continue monitoring the derailment.
G+1 (Derailment detection direct is "1") and step S3
), then the current speed V changes to high speed V1. based on the set travel speed command signal. It is determined whether the speed is medium speed V2 or low speed V3 (step S4), and the count number C is changed to a set value corresponding to the current speed V by 1. It is determined whether the set value has reached 2 or 3 (step S5, S6 or S7), and if the set value has not been reached, the execution of the program is ended. Note that while AG 1 crosses the part where the induction cable is removed, the coil 18 separates from the magnetic field 3 and its output remains at a low level, so the count number C is set to "1" at step $3 every time this program is executed. It will be updated one by one.

そして、AGVlが正常に走行したときはケーブル除去
部横断直後に脱線検出コイル18が再度強い磁界3内に
入り高レベル出力を出力し、ステップS1で脱線検出な
しと判別され、ステップS2でカウント数Cすなわちタ
イマがリセットされ、この結果、AGV1所定経路から
の逸脱がなかったものと判別され、すなわちプログラム
を終了し、通常の上記走行制御がそのまま継続される。
When the AGVl runs normally, immediately after crossing the cable removal section, the derailment detection coil 18 enters the strong magnetic field 3 again and outputs a high level output, and in step S1, it is determined that no derailment is detected, and in step S2, the derailment detection coil 18 is counted. C, the timer is reset, and as a result, it is determined that the AGV 1 has not deviated from the predetermined route, that is, the program is terminated and the normal traveling control described above continues as it is.

この理由は、上述のように、タイマ時間(設定値に1゜
K2.に3とプログラム実行周期との積)が設定走行速
度ひいてはケーブル除去部の長さに対応して設定されて
いるからで、より具体的には設定値に1.に2.に3は
、ケーブル除去長さを現在速度V1.V2または■3と
プログラム実行周期との積で除算した値より若干大きい
値に設定され、換言すれば、AGVlがケーブル除去部
を横断中も所定経路を逸脱せず、横断直後に誘導ケーブ
ル2の直上に来れば、カウント数Cが設定flK1゜K
2またはに3に達しないような値に設定されている。
The reason for this is, as mentioned above, that the timer time (the product of the set value of 1°K2.3 and the program execution cycle) is set in accordance with the set travel speed and, in turn, the length of the cable removal section. , more specifically, the setting value is 1. 2. 3 sets the cable removal length to the current speed V1. It is set to a value slightly larger than the value divided by the product of V2 or ■3 and the program execution period. If it comes directly above, the count number C is set flK1°K
It is set to a value that does not reach 2 or 3.

一方、AGVlがケーブル除去部を横断中にケーブル2
から離反方向に走行し、横断直後にも所定経路から逸脱
していると、脱線検出コイル18は強い磁界3内になく
出力は低レベルとなり、横断直後のステップS1実行毎
に脱線検出ありと判別され、カウント数Cは直ちに設定
値K1.に2またはに3に達する。この場合、AGVl
が所定経路から逸脱したと判別され、すなわちステップ
S8に移り、ラインOFF処理が実行され、例えば警報
動作またはAGVlの運転停止動作が行われる。
On the other hand, while AGVl was crossing the cable removal section, cable 2
If the derailment detection coil 18 is not within the strong magnetic field 3 and the output becomes a low level, it is determined that derailment has been detected every time step S1 is executed immediately after the derailment. The count number C immediately changes to the set value K1. reach 2 or 3. In this case, AGVl
It is determined that the line has deviated from the predetermined route, that is, the process moves to step S8, and a line OFF process is executed, for example, an alarm operation or an operation of stopping the operation of the AGVl is performed.

以上の説明ではタイマ時間をケーブル除去部の長さに応
じて設定し、当該部分横断直後にAGVlの所定経路か
らの逸脱を判別して逸脱時にラインOFF処理を行う場
合につき説明したが、本実施例または別のタイマ時間に
設定した変形例によれば、ケーブル埋設部に沿う走行中
にも、上記走行制御に異常を来たす等の理由でAGVI
が逸脱走行したとき脱線検出コイル18及びラインOF
Fモニタ部19が該逸脱走行を検出し、ラインOFF処
理を可能とすることはいうまでもない。
In the above explanation, the timer time is set according to the length of the cable removal section, and immediately after crossing the relevant part, it is determined whether the AGVl deviates from the predetermined route, and the line OFF process is performed when the deviation occurs. According to this example or a modified example in which the timer is set to another time, AGVI may
derailment detection coil 18 and line OF
Needless to say, the F monitor unit 19 detects the deviation and enables line-off processing.

発明の効果 上述のように、本発明によれば、AGVの走行速度に応
じた設定時間に亙り検出磁界の強さが所定のレベルを下
回ったときAGVが所定走行経路から逸脱したものと判
別するようにしたので、AGVの逸脱走行を迅速かつ確
実に検出でき、逸脱時に所要の緊急措置をとれる。そし
て、AGVの所定経路内の誘導線除去部に差しかかると
逸脱走行を監視し始め、当該部分を横断直後に逸脱の有
無を判別でき、従って、所定経路内の一部に誘導線を埋
設できないレイアウトの工場にあっても電磁誘導方式で
AGVを安全に運転制御できる。
Effects of the Invention As described above, according to the present invention, it is determined that the AGV has deviated from the predetermined travel route when the strength of the detected magnetic field falls below a predetermined level for a set time corresponding to the travel speed of the AGV. This makes it possible to quickly and reliably detect deviation of the AGV, and to take necessary emergency measures in the event of deviation. Then, when the AGV reaches a guide wire removal section within the predetermined route, it starts monitoring the deviation and can determine whether there is a deviation immediately after crossing the section, and therefore, guide wires cannot be buried in a part of the predetermined route. Even in factories with different layouts, AGVs can be operated and controlled safely using electromagnetic induction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の無人搬送車を示す全体構成
図、及び第2図は第1図のラインOFFモニタ部で実行
される制御プログラムのフローチャートである。 1・・・無人搬送車、2・・・誘導ケーブル、3・・・
磁界、18・・・脱線検出コイル、19・・・ラインO
FFモニタ部。 (ほか1名) 第1図
FIG. 1 is an overall configuration diagram showing an automatic guided vehicle according to an embodiment of the present invention, and FIG. 2 is a flowchart of a control program executed by the line-off monitor section of FIG. 1. 1...Automated guided vehicle, 2...Guidance cable, 3...
Magnetic field, 18... Derailment detection coil, 19... Line O
FF monitor section. (1 other person) Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)走行経路に配設された誘導線による発生磁界を検
出し、該誘導線に沿って走行するように設けた無人搬送
車において、誘導線からの無人搬送車の逸脱を検出する
検出手段と、該検出手段からの逸脱信号により作動し該
離脱信号の消滅によりリセットされるタイマーと、該タ
イマのタイムアップにより無人搬送車の逸脱走行を判別
する無人搬送車。
(1) Detection means for detecting the magnetic field generated by a guide wire arranged on a travel route and detecting deviation of the automated guided vehicle from the guide wire in an automated guided vehicle set to travel along the guide wire. a timer that is activated by a departure signal from the detection means and reset when the departure signal disappears; and an automatic guided vehicle that determines whether the automatic guided vehicle has departed from the automatic guided vehicle based on a time-up of the timer.
(2)上記タイマは無人搬送車の走行速度に応じて計時
時間が設定される特許請求の範囲第1項記載の無人搬送
車。
(2) The automatic guided vehicle according to claim 1, wherein the timer is set to measure time according to the traveling speed of the automatic guided vehicle.
JP60188445A 1985-08-29 1985-08-29 Unmanned carrier Pending JPS6249524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60188445A JPS6249524A (en) 1985-08-29 1985-08-29 Unmanned carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60188445A JPS6249524A (en) 1985-08-29 1985-08-29 Unmanned carrier

Publications (1)

Publication Number Publication Date
JPS6249524A true JPS6249524A (en) 1987-03-04

Family

ID=16223810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60188445A Pending JPS6249524A (en) 1985-08-29 1985-08-29 Unmanned carrier

Country Status (1)

Country Link
JP (1) JPS6249524A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01295311A (en) * 1988-05-24 1989-11-29 Nippon Sharyo Seizo Kaisha Ltd Control method and detecting device for guidance of unmanned carrier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01295311A (en) * 1988-05-24 1989-11-29 Nippon Sharyo Seizo Kaisha Ltd Control method and detecting device for guidance of unmanned carrier

Similar Documents

Publication Publication Date Title
US5036935A (en) Travel control device for unmanned vehicle
JPS6249524A (en) Unmanned carrier
JPS58168107A (en) Driving device of automatic running dolly
JPS62200407A (en) Control system for unmanned carrying car
KR100198023B1 (en) Steering angle control apparatus of a manless car
JPS61110210A (en) Guiding path and running system of unmanned carrier car
JPH01195512A (en) Drive control method for cart
JPS6247711A (en) Drive controller for unmanned carrier
JPH0749522Y2 (en) Guidance signal detector for unmanned vehicles
JPH06119036A (en) Electromagnetic guide system for unmanned carrier
JPH02236707A (en) Travel controller for unmanned vehicle
JPH0447411A (en) Control method for unmanned car
JPS60195621A (en) Running system of unmanned carrier car
JPS61217807A (en) Unmanned truck system
JPH07306716A (en) Method for controlling travel of moving body and device therefor
JPH0527830A (en) Guiding/stopping method for unmanned carriage
JPH0421124Y2 (en)
JPH044408A (en) Running controller for unmanned vehicle
JPS6353614A (en) Route exchanging method for unmanned vehicle
JP2566814Y2 (en) Automatic guided vehicle
JPS635412A (en) Traveling control device for unmanned carrying car
JPS6180310A (en) Control system of unmanned guide type carrier car
JPS61156411A (en) Unmanned truck
JPS62267808A (en) Drive controller for automatically guided vehicle
JPS62293902A (en) Running controller for unmanned carrier