JPS63115207A - Traveling guide device for unattended vehicle - Google Patents

Traveling guide device for unattended vehicle

Info

Publication number
JPS63115207A
JPS63115207A JP61260491A JP26049186A JPS63115207A JP S63115207 A JPS63115207 A JP S63115207A JP 61260491 A JP61260491 A JP 61260491A JP 26049186 A JP26049186 A JP 26049186A JP S63115207 A JPS63115207 A JP S63115207A
Authority
JP
Japan
Prior art keywords
unmanned vehicle
guideline
detection
deviation
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61260491A
Other languages
Japanese (ja)
Inventor
Yoshihiro Saito
斉藤 善博
Minoru Kondou
近堂 実
Takenori Yanai
柳井 武則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Machinery Ltd
Original Assignee
Murata Machinery Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Machinery Ltd filed Critical Murata Machinery Ltd
Priority to JP61260491A priority Critical patent/JPS63115207A/en
Publication of JPS63115207A publication Critical patent/JPS63115207A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To simplify laying of guide lines and to eliminate failures in detection and guide due to dirt of guide lines by detecting relative positional deviation between an exciting coil on an unattended vehicle and the conductive guide line laid on the ground. CONSTITUTION:Inductive currents are induced in detecting coils 25 and 26 by magnetic fields M1 and M2 generated from an exciting coil 22 connected to an exciting oscillator 27 on the unattended vehicle; and if the traveling position of the unattended vehicle is deviated from the position of a guide line 11 laid on the ground, magnetic fields M1 and M2 from the exciting coil 22 are changed by relative positional deviation from the conductive guide line 11 like an aluminum tape, and inductive currents of detecting coils 25 and 26 are changed also. This change of inductive currents is detected by a phase detecting circuit 29 through a synthesizing circuit 28 and is inputted to a servo CPU30 to detect the deviation, and this deviation is corrected by the difference of rotative velocity between driving motors 4 and 5.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は倉庫内や各種工場内等において物品の搬送を
目的として利用される無人車に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an unmanned vehicle used for the purpose of transporting articles in warehouses, various factories, etc.

〔従来の技術〕[Conventional technology]

上記無人車の誘導方法としては、電磁誘導方法と光学式
誘導方法が従来より知られている。電磁誘導方法は走行
路の床面下に電線を埋設してその電線に電流を流すこと
により発生する磁界を無人車に搭載した磁気検出器によ
り検出して、該電線に沿って無人車が走行するようにし
たものである。また、光学式誘導方法は走行路の床面上
に反射テープを貼付して該テープを無人車に搭載した光
学式検出器で検出して、そのテープに沿って無人車が走
行するようにしたものである。
As methods for guiding the unmanned vehicle, electromagnetic induction methods and optical guidance methods are conventionally known. In the electromagnetic induction method, electric wires are buried under the floor of the driving path, and the magnetic field generated by passing current through the wires is detected by a magnetic detector mounted on the unmanned vehicle, and the unmanned vehicle runs along the wire. It was designed to do so. In addition, the optical guidance method involves pasting reflective tape on the floor of the driving path, detecting the tape with an optical detector mounted on the unmanned vehicle, and causing the unmanned vehicle to travel along the tape. It is something.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、上記電磁誘導方法においては、電線を埋設す
る工事に手数がかかり、いったん埋設した電線の変更が
困難であったり、また電線に電流を流すための制御が複
雑になりコスト高になる等の問題点があった。
However, with the electromagnetic induction method described above, it takes a lot of work to bury the wires, it is difficult to change the wires once they are buried, and the control for passing current through the wires becomes complicated, resulting in high costs. There was a problem.

一方、光学式誘導方法においては、反射テープが汚れる
と該テープと床面との反射光量の差を検出できなくなる
ので、工場内を常に清掃しなくてはならないとか、導入
不可能な工場があったりした。
On the other hand, with the optical guidance method, if the reflective tape gets dirty, it becomes impossible to detect the difference in the amount of reflected light between the tape and the floor surface, so the inside of the factory must be constantly cleaned, and some factories cannot implement it. It was.

さらに、上記した2つの誘導方法以外にも、数多くの誘
導方法が提案されているけれども、実用化されているも
のは少なく、それぞれに問題を抱えている。
Furthermore, although many other guidance methods have been proposed in addition to the two guidance methods described above, only a few have been put into practical use, and each of them has its own problems.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、地上側には無人車の走行経路に沿って導電
性の誘導ラインを敷設し、無人車側には、発振器に接続
されて磁界を発生する励磁用コイルと、該励磁用コイル
の磁界の変化を検出する検出用′コイルとを設けたもの
である。
In this invention, a conductive induction line is laid on the ground side along the traveling route of the unmanned vehicle, and on the unmanned vehicle side, there is an excitation coil connected to an oscillator to generate a magnetic field, and an excitation coil connected to an oscillator to generate a magnetic field. A detection coil is provided to detect changes in the magnetic field.

〔作用〕[Effect]

上記励磁用コイルから発せられた磁界により検出コイル
に誘導電流が誘起される。無人車の走行位置が誘導ライ
ン位置からずれた場合は、導電性の誘導ラインの相対的
な位置ずれにより上記励磁用コイルからの磁界が変化し
、検出用コイルの誘導電流にも変化が生じる。したがっ
て、逆に受信コイルの電流を検出することにより誘導ラ
インの相対的な位置ずれ、すなわち無人車の走行位置ず
れを検出することができ、該検出結果に基づいて無人車
の走行を誘導する。
An induced current is induced in the detection coil by the magnetic field emitted from the excitation coil. When the running position of the unmanned vehicle deviates from the guidance line position, the magnetic field from the excitation coil changes due to the relative positional deviation of the conductive guidance line, and the induced current in the detection coil also changes. Therefore, by conversely detecting the current of the receiving coil, it is possible to detect a relative positional deviation of the guiding line, that is, a deviation in the running position of the unmanned vehicle, and based on the detection result, the driving of the unmanned vehicle is guided.

〔実施例〕〔Example〕

第5図には本発明を適用した無人車の一実施例を概略的
に示す図であり、この無人車(1)には車体前後方向は
ぼ中央位置の左右に一対の駆動輪(2)(3)が設けら
れており該駆動輪(2)(3)には走行モータ(4)(
5)がそれぞれ直結している。この無人車(1)は、左
右の駆動輪(2)(3)を同一方向へ同回転数で回転さ
せることにより前方あるいは後方に直進し、同一方向へ
左右で回転数を異ならせることにより旋回し、左右の駆
動輪の回転方向を逆にして同回転数で回転させることに
より同一地点で自転して方向転換できるようになってい
る。(6)(7)はそれぞれ駆動輪(2)(3)減速あ
るいは停止用のブレーキを示し、(8)(9)はそれぞ
れ駆動輪(2)(3)の回転数を検出するパルスジェネ
レーターを示している。
FIG. 5 is a diagram schematically showing an embodiment of an unmanned vehicle to which the present invention is applied, and this unmanned vehicle (1) has a pair of drive wheels (2) on the left and right of the central position in the longitudinal direction of the vehicle body. (3) are provided, and the drive wheels (2) and (3) are provided with traveling motors (4) and (3).
5) are directly connected to each other. This unmanned vehicle (1) moves straight forward or backward by rotating the left and right drive wheels (2) and (3) in the same direction at the same speed, and turns by rotating the left and right drive wheels in the same direction at different speeds. However, by reversing the rotation direction of the left and right drive wheels and rotating them at the same rotation speed, it is possible to rotate and change direction at the same point. (6) and (7) respectively indicate brakes for decelerating or stopping the drive wheels (2) and (3), and (8) and (9) indicate pulse generators that detect the rotation speed of the drive wheels (2 and 3), respectively. It shows.

(10a) (10b)は、ガイドラインセンサーであ
り、床面(F)に貼付されているガイドライン(11)
位置を検出している。
(10a) (10b) are guideline sensors, and the guideline (11) is attached to the floor (F).
Detecting location.

該センサー(10a) (10b)は無人車(1)の進
行方向によりどちらか一方のみが作動するようになって
いる。(12)はキャスター状に車体に支持されている
従動輪を、(13)はバンパーをそれぞれ示している。
Only one of the sensors (10a) and (10b) is activated depending on the traveling direction of the unmanned vehicle (1). (12) indicates a driven wheel supported by the vehicle body in a caster shape, and (13) indicates a bumper.

なお、上記ガイドライン(11)は導電性の金属体、例
えばアルミナープを用いる。
Note that the above-mentioned guideline (11) uses a conductive metal body, for example, an aluminum plate.

第1図には、上記ガイドラインセンサー(10a)をブ
ロック図で示しており、このセンサー(10a)はE形
コア(20)の中央のコア(21)にコイルを巻付けた
励磁用コイル(22)と、両側のコア(23) (24
)にコイルを巻付けた検出用コイル(25) (26)
とにより構成されている。なお、もう一方のガイドライ
ンセンサー(10b)の構造も上記センサー(10a)
  と同様であり説明は省略する。
FIG. 1 shows a block diagram of the guideline sensor (10a), and this sensor (10a) consists of an excitation coil (22 ) and the cores on both sides (23) (24
) Detection coil (25) (26)
It is composed of. The structure of the other guideline sensor (10b) is also the same as the above sensor (10a).
This is the same as , so the explanation will be omitted.

上記励磁用コイル(22)は励磁用発振器(27)に接
続されている。また、上記検出用コイル(25) (2
6)は合成回路(2B) 、位相検出回路(29)を経
てサーボCP U (30) ニ接続されている。該サ
ーボCPU(30)の出力は左右の駆動輪(2)(3)
の走行モータ(4)(5)のモータドライバー(31)
 (32)に入力されている。上記合成回路(28)お
よび励磁用発振器(27)からガイド検出回路(33)
にも出力が出され、該ガイド検出回路(33)からの出
力は上記サーボCPU(30)に入力される。
The excitation coil (22) is connected to an excitation oscillator (27). In addition, the detection coil (25) (2
6) is connected to the servo CPU (30) via a synthesis circuit (2B) and a phase detection circuit (29). The output of the servo CPU (30) is sent to the left and right drive wheels (2) (3).
Motor driver (31) for the traveling motor (4) (5)
(32) is input. From the synthesis circuit (28) and excitation oscillator (27) to the guide detection circuit (33)
The output from the guide detection circuit (33) is input to the servo CPU (30).

なお、両側の2つの検出用コイル(25) (26)の
コイル巻数は同数になっている。
Note that the two detection coils (25) and (26) on both sides have the same number of coil turns.

次に、以上のような構成をした本実施例による無人車(
1)の誘導の動作を説明する。
Next, the unmanned vehicle (
The guidance operation of 1) will be explained.

励磁用発振器(27)を作動させて励磁用コイル(22
)から磁界(Ml) (Mx)を発生させる。該磁界は
励磁用コイル(22)周囲に均等に発生する。
The excitation oscillator (27) is activated to generate the excitation coil (22).
) generates a magnetic field (Ml) (Mx). The magnetic field is generated evenly around the excitation coil (22).

ガイドライン(11)が励磁用コイル(22)の直下に
位置する時、すなわち無人車(1)がガイドライン(1
1)位置からずれることなく走行している時は、左右の
磁界(M+)(Mz)は導電性のガイドライン(11)
の影響を等しく受け、かつ2つの検出用コイル(25)
 (26)には逆向きの誘導電流が流れ、該電流は互い
に打ち消し合い、合成回路(2B)からの出力は「0」
となる。
When the guideline (11) is located directly under the excitation coil (22), that is, when the unmanned vehicle (1)
1) When driving without shifting from the position, the left and right magnetic fields (M+) (Mz) are conductive guidelines (11)
and two detection coils (25)
Inductive currents in opposite directions flow through (26), and these currents cancel each other out, and the output from the composite circuit (2B) is "0".
becomes.

ところが、ガイドライン(11)に対する無人車(1)
の走行位置がずれていた場合、上記した合成回路(28
)の出力電圧は「0」とはならずに以下のようになる。
However, unmanned vehicles (1) against guideline (11)
If the traveling position of the
) does not become "0" but becomes as follows.

すなわち、第2図にはガイドライン(11)に対して無
人車(1)すなわちガイドラインセンサー(10a)が
右側にずれている様子を示しているけれども、この図の
ように無人車(1)の走行がずれていた場合、励磁用コ
イル(22)から図表側に発生する磁界(M、)のエネ
ルギーは直下のガイドライン(11)によるうず電流積
等により吸収され減少し、左側の検出コイル(26)に
流れる電流は右側の検出コイル(25)に流れる電流に
比べて少なくなる。同様に、第3図に示すようにガイド
ライン(11)に対して無人車(1)が左側にずれてい
る場合は、右側の検出コイル(25)に流れる電流は左
側の検出コイル(26)の電流に比べて少な(なる。
In other words, although Fig. 2 shows that the unmanned vehicle (1), that is, the guideline sensor (10a) is shifted to the right side with respect to the guideline (11), as shown in this figure, the unmanned vehicle (1) is traveling. If the excitation coil (22) is out of alignment, the energy of the magnetic field (M,) generated from the excitation coil (22) on the chart side is absorbed and reduced by the eddy current product caused by the guideline (11) directly below, and the left detection coil (26) The current flowing through the detection coil (25) on the right side is smaller than the current flowing through the detection coil (25) on the right side. Similarly, if the unmanned vehicle (1) deviates to the left with respect to the guideline (11) as shown in Figure 3, the current flowing to the right detection coil (25) will flow to the left detection coil (26). It is small compared to the current.

以上のような理由により、無人車(1)の走行位置ずれ
により合成回路(28)からの出力が異なってくる。第
4図には、その様子をグラフに示しており、横軸にはガ
イドラインセンサ(10a)に対するガイドライン(1
1)の相対的な位置を示し、縦軸には合成回路(28)
からの出力を示している。
For the above-mentioned reasons, the output from the combining circuit (28) differs depending on the deviation in the traveling position of the unmanned vehicle (1). Fig. 4 shows this situation in a graph, and the horizontal axis shows the guideline (10a) relative to the guideline sensor (10a).
1), and the vertical axis shows the composite circuit (28).
shows the output from

以上のような原理に基づいて、検出コイル(25) (
26)からの出力を合成回路(28)に入力し、該合成
回路(28)には、ガイドライン(11)が検出コイル
(25) (26)に接近したことによる該コイル(2
5) (26)のインダクタンスの変化を発振器(27
)出力との位相の変化として出力する。該位相変化を位
相検出回路(29)で検出することによりガイドライン
(11)からの偏位を検出し、該検出結果がサーボcp
U (30) t、=入力され、該CPU(30)より
上記偏位を補正するための駆動モータ(4)(5”)の
駆動速度を制御する。すなわち、右側のモータ(4)の
回転速度を左側のモータ(5)より大とすることで、無
人車(1)は左側に走行方向が転換され、さらに両モー
タ(4)(5)の回転速度差の大小により上記走行方向
の転換方向が決定される。また、無人車(1)の走行方
向を右側に転換させたい場合には、左側のモータ(5)
の回転速度を右側のモータ(4)より大とすればよい。
Based on the above principle, the detection coil (25) (
The output from the coil (26) is input to the synthesis circuit (28), and the output from the coil (26) is input to the synthesis circuit (28).
5) The change in inductance of (26) is expressed by the oscillator (27).
) is output as a change in phase with the output. By detecting the phase change with the phase detection circuit (29), the deviation from the guideline (11) is detected, and the detection result is used as the servo cp.
U (30) t, = is input, and the CPU (30) controls the drive speed of the drive motors (4) (5") for correcting the above deviation. In other words, the rotation of the right motor (4) By setting the speed to be higher than that of the left motor (5), the direction of travel of the unmanned vehicle (1) is changed to the left, and further, the direction of travel is changed depending on the difference in rotational speed between the two motors (4) and (5). The direction is determined.Also, if you want to change the running direction of the unmanned vehicle (1) to the right, the left motor (5)
The rotational speed of the motor (4) on the right side may be set higher than that of the right motor (4).

なお、上記偏位出力はガイドライン(11)がガイドラ
インセンサ(10a)の直下から大きく外れた場合と、
該センサ(10a) の中心にきた場合の出力が同じに
なってしまう為、ガイドライン(11)がある場合の励
磁用コイル(22)のインダクタンスの変化を検出する
ガイド検出回路(33)によりガイドラインセンサ(1
(la)の直下の検出範囲内にガイドライン(11)が
存在するかどうかの識別を行っている。すなわち、ガイ
ドライン検出回路(33)からガイドライン(11)が
存在するという信号がサーボCPU(30)に送られ、
かつ合成回路(2B)からの出力が「0」の場合に、ガ
イドライン(11)がガイドラインセンサ(10a)の
中心にあると判断し、また上記ガイドライン(11)が
存在するという信号がサーボCPU(30)に出力され
ない場合は該ガイドライン(11)から無人車(1)が
大きく偏位していると判断して、合成回路(2B)から
の出力に関係なく、無人車(1)は停車するか、あるい
は上記の大きな偏位を補正するように走行する。
Note that the above deviation output occurs when the guideline (11) deviates significantly from directly below the guideline sensor (10a);
Since the output will be the same when the sensor (10a) is at the center, the guide detection circuit (33) detects the change in inductance of the excitation coil (22) when the guideline (11) is present. (1
It is determined whether the guideline (11) exists within the detection range immediately below (la). That is, a signal indicating that the guideline (11) exists is sent from the guideline detection circuit (33) to the servo CPU (30),
When the output from the synthesis circuit (2B) is "0", it is determined that the guideline (11) is at the center of the guideline sensor (10a), and a signal indicating that the guideline (11) is present is sent to the servo CPU ( 30), it is determined that the unmanned vehicle (1) is significantly deviated from the guideline (11), and the unmanned vehicle (1) stops regardless of the output from the combining circuit (2B). Alternatively, the vehicle may run in such a way as to compensate for the large deviation mentioned above.

上記実施例においては、励磁用コア(21)と2つの検
出用コア(23) (24)とを一体内にE形コア(2
0)としているので、中央の励磁用コア(21)を中心
として2つの検出用コア(23) (24)を対称位置
に位置決めするための調整が必要でない。さらに全ての
コイル(22)(25) (26)が下方を解放として
下方に向けているので、床面上の金属体(ガイドライン
)に対する指向性が強く、センサ(10a)の上部を含
めた周囲の金属体の移動変化に影響されることがない安
定した検出ミスのないガイドライン検出が可能となって
いる。
In the above embodiment, an excitation core (21) and two detection cores (23) (24) are integrated into an E-shaped core (2
0), there is no need for adjustment to position the two detection cores (23) and (24) at symmetrical positions with respect to the central excitation core (21). Furthermore, since all the coils (22), (25), and (26) are oriented downward with the lower part open, the directivity toward the metal object (guideline) on the floor is strong, and the surrounding area including the upper part of the sensor (10a) is strong. This enables stable guideline detection without detection errors, which is unaffected by changes in the movement of the metal object.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、誘導線としては
導電性の金属体、例えばアルミテープを敷設するだけで
いいので、該誘導型の敷設あるいは敷設変更も簡単でし
かも該誘導線への通電制御等が必要でなくなり、かつ該
誘導線の汚れによる検出・誘導ミスを苦慮する必要がな
くなった。
As explained above, according to the present invention, it is only necessary to lay a conductive metal body, such as aluminum tape, as the guide wire, so it is easy to install or change the laying of the guide wire, and it is easy to install or change the guide wire. There is no longer a need for energization control, etc., and there is no need to worry about detection/guidance errors due to dirt on the guide wire.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるガイドラインセンサの一実施例を
示すブロック図、第2図はガイドラインに対してガイド
ラインセンサが右側にずれている様子を示す正面図、第
3図は同じく左側にずれている様子を示す正面図、第4
図は無人車の走行位置と検出用コイルに発生する電流の
関係を示すグラフ図、第5図は本発明を適用した無人車
の一例を示す概略平面図である。 ’(1)−・・無人車 (11)−・・誘導ライン (22)−・・励磁用コイル (25) (26>・・・検、出用コイル(27) −
・・発振器
Fig. 1 is a block diagram showing an embodiment of the guideline sensor according to the present invention, Fig. 2 is a front view showing how the guideline sensor is shifted to the right with respect to the guideline, and Fig. 3 is a front view showing how the guideline sensor is also shifted to the left. Front view showing the situation, No. 4
The figure is a graph showing the relationship between the running position of the unmanned vehicle and the current generated in the detection coil, and FIG. 5 is a schematic plan view showing an example of the unmanned vehicle to which the present invention is applied. '(1)--Unmanned vehicle (11)--Guidance line (22)--Excitation coil (25) (26>...Detection/output coil (27)-
・・Oscillator

Claims (1)

【特許請求の範囲】 地上側には無人車の走行経路に沿って導電 性の誘導ラインを敷設し、無人車側には発振器に接続さ
れて磁界を発生する励磁用コイルと、該励磁用コイルの
磁界の変化を検出する検出用コイルを設けたことを特徴
とする無人車の走行誘導装置。
[Claims] On the ground side, a conductive induction line is laid along the traveling route of the unmanned vehicle, and on the unmanned vehicle side, an excitation coil that is connected to an oscillator to generate a magnetic field, and the excitation coil are provided. A travel guidance device for an unmanned vehicle, characterized in that it is provided with a detection coil that detects changes in the magnetic field of the vehicle.
JP61260491A 1986-10-31 1986-10-31 Traveling guide device for unattended vehicle Pending JPS63115207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61260491A JPS63115207A (en) 1986-10-31 1986-10-31 Traveling guide device for unattended vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61260491A JPS63115207A (en) 1986-10-31 1986-10-31 Traveling guide device for unattended vehicle

Publications (1)

Publication Number Publication Date
JPS63115207A true JPS63115207A (en) 1988-05-19

Family

ID=17348701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61260491A Pending JPS63115207A (en) 1986-10-31 1986-10-31 Traveling guide device for unattended vehicle

Country Status (1)

Country Link
JP (1) JPS63115207A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03119207U (en) * 1990-03-16 1991-12-09
CN112425031A (en) * 2018-07-09 2021-02-26 动量动力学公司 Vehicle alignment prior to wireless charging

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5775318A (en) * 1980-10-27 1982-05-11 Mitsubishi Heavy Ind Ltd Measuring device for traveling locus shift of selftraveling car
JPS59117613A (en) * 1982-12-24 1984-07-07 Shin Kobe Electric Mach Co Ltd Guiding path of unattended wagon
JPS59135512A (en) * 1983-01-21 1984-08-03 Shin Kobe Electric Mach Co Ltd Unmanned guide carrying device
JPS6095616A (en) * 1983-10-28 1985-05-29 Komatsu Ltd Swerving detecting device of free-running vehicle
JPS60204100A (en) * 1984-03-28 1985-10-15 日本電気株式会社 Magnetic maker

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5775318A (en) * 1980-10-27 1982-05-11 Mitsubishi Heavy Ind Ltd Measuring device for traveling locus shift of selftraveling car
JPS59117613A (en) * 1982-12-24 1984-07-07 Shin Kobe Electric Mach Co Ltd Guiding path of unattended wagon
JPS59135512A (en) * 1983-01-21 1984-08-03 Shin Kobe Electric Mach Co Ltd Unmanned guide carrying device
JPS6095616A (en) * 1983-10-28 1985-05-29 Komatsu Ltd Swerving detecting device of free-running vehicle
JPS60204100A (en) * 1984-03-28 1985-10-15 日本電気株式会社 Magnetic maker

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03119207U (en) * 1990-03-16 1991-12-09
CN112425031A (en) * 2018-07-09 2021-02-26 动量动力学公司 Vehicle alignment prior to wireless charging
JP2021530950A (en) * 2018-07-09 2021-11-11 モーメンタム ダイナミックス コーポレーション Vehicle alignment before wireless charging

Similar Documents

Publication Publication Date Title
KR900008065B1 (en) Control device for nonhumanbeing vehicle
JPS63115207A (en) Traveling guide device for unattended vehicle
JPH035607B2 (en)
JPS63111505A (en) Traveling guiding device for unmanned vehicle
JPH05333928A (en) Back traveling control method for unmanned carrier
JPH0749522Y2 (en) Guidance signal detector for unmanned vehicles
JPH036521B2 (en)
JPH056688B2 (en)
JPS59202513A (en) Method and device for guidance of unmanned truck
JPH02116907A (en) Running guidance device for unmanned car
JPS59140520A (en) Running control system
JPH0334087B2 (en)
JPH0441370B2 (en)
JPH0313768Y2 (en)
JPH036524B2 (en)
JPH0421124Y2 (en)
JPH0340841B2 (en)
JP2841736B2 (en) How to control unmanned vehicles
JP2712524B2 (en) How to guide unmanned vehicles
JPS59157719A (en) Unattended car
JPH0527830A (en) Guiding/stopping method for unmanned carriage
JPH0420482B2 (en)
JPS60230211A (en) Automatic running car
JPH0840686A (en) Travel control method of non-track type carrying truck
JPS62182811A (en) Electromagnetically guided automatic traveling vehicle