JPS59157719A - Unattended car - Google Patents

Unattended car

Info

Publication number
JPS59157719A
JPS59157719A JP58031228A JP3122883A JPS59157719A JP S59157719 A JPS59157719 A JP S59157719A JP 58031228 A JP58031228 A JP 58031228A JP 3122883 A JP3122883 A JP 3122883A JP S59157719 A JPS59157719 A JP S59157719A
Authority
JP
Japan
Prior art keywords
vehicle
running wheels
motors
vehicle body
body frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58031228A
Other languages
Japanese (ja)
Other versions
JPH0340846B2 (en
Inventor
Koji Yamamoto
浩二 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daifuku Co Ltd
Daifuku Machinery Works Ltd
Original Assignee
Daifuku Co Ltd
Daifuku Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daifuku Co Ltd, Daifuku Machinery Works Ltd filed Critical Daifuku Co Ltd
Priority to JP58031228A priority Critical patent/JPS59157719A/en
Publication of JPS59157719A publication Critical patent/JPS59157719A/en
Publication of JPH0340846B2 publication Critical patent/JPH0340846B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • G05D1/0265Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means using buried wires

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To attain an unattended car which is capable of a small sharp turn by providing controllable driving wheels in the front, the rear, the left, and the right. CONSTITUTION:An induction line (a) is provided in parallel with the advance direction of a vehicle, and an induction line (b) is provided in the direction orthogonal to the advance direction. When the vehicle is moved forward, motors 3A and 3B of front running wheels 2A and 2B are driven and controlled on a basis of the first following-up sensor 6 in the front part; and when the vehicle is moved backward, motors 3A and 3B of rear running wheels 2A and 2B are driven and controlled on the basis of the first following-up sensor 6 in the rear part, and the relative speed difference between left and right motors 3A and 3B is utilized to perform steering control. When the vehicle is moved left, motors 3A and 3B of front running wheels 2A and 2B and motors 3A and 3B of rear running wheels 2A and 2B are driven and controlled on the basis of the second following-up sensor 7 in the left; and when the vehicle is moved right, motors 3A and 3B of front running wheels 2A and 2B and motors 3A and 3B of rear running wheels are driven and controlled on the basis of the second following- up sensor 7 in the right.

Description

【発明の詳細な説明】 本発明は、近年、自動車工業、機械工業、繊維・紡績業
、電気業界等の各種分野において搬送作業の無人化及び
省力化を指向して構成された電磁誘導式や光学誘導式な
どの無人車に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to electromagnetic induction type and Regarding unmanned vehicles such as optically guided vehicles.

この種の無人車としては従来から次の(イ)、(ロ)。Conventionally, this type of unmanned vehicle has the following (a) and (b).

ぐ9で示す構成を要旨とするものが存在する。There is one that has the gist of the structure shown in 9.

(イ) 第8図で示すように、車体フレームfi+の前
後両側部に夫々、横方向に適宜間隔を隔てて位置する一
対の操向並走行輪(2A)、(2B)の車軸に各別に連
動された正逆転駆動可能なモータ(8A)、(8Bンが
1、前記走行輪(2A)、(2B)を前後方向に向けた
状態で取付けられている。
(B) As shown in Fig. 8, the axles of a pair of parallel steering wheels (2A) and (2B) are located on both the front and rear sides of the vehicle body frame fi+, respectively, at an appropriate distance from each other in the lateral direction. Interlocked motors (8A) and (8B) which can be driven in forward and reverse directions are installed with the running wheels (2A) and (2B) oriented in the front-rear direction.

(ロ)車体フレーム(11の前後方向中央部又はほぼ中
央部に目出方向性の従&Il輸(5)が配設されている
(b) A directional control shaft (5) is disposed at or approximately at the center in the longitudinal direction of the vehicle body frame (11).

(ハ) 前記モータ(8A)、(8B)及び(3A)、
(8B)は、走行経路に沿って床面に交差状態で敷設さ
れた誘導線(a) 、 (bl k検出する追従用セン
サー(6)の検出結果に基づいて、機体が誘導線(a、
)又は(blに沿って追従走行するように駆動制御され
るべく構成されている。
(c) the motors (8A), (8B) and (3A);
(8B) shows that the aircraft moves to the guide lines (a,
) or (bl).

−この従来の無人車では、一方の誘導線(8L)に沿う
走行経路からこれに対して交差する他方の誘導線(bl
に沿う走行経路に移行させる場合でも、前記の自動操向
制御時と同様に左右のモータの相対速度差を利用して移
行させるから、前記両走行経路の接続経路部分を無人車
の旋回性能に応じた曲率の彎曲経路に構成しなければな
らず、しかも、この彎曲経路形式のために余分なスペー
スを確保する要があるため、無人車のライン設計に椋々
の制約を与える欠点があった。
- In this conventional unmanned vehicle, from the driving route along one guide line (8L) to the other guide line (bl
Even when shifting to a driving route along the above-mentioned automatic steering control, the relative speed difference between the left and right motors is used to make the transition, so the connecting route between the two driving routes can be adjusted to the turning performance of the unmanned vehicle. It is necessary to configure a curved route with a corresponding curvature, and additional space must be secured for this curved route format, which has the disadvantage of placing severe constraints on the line design of unmanned vehicles. .

本発明は、上述のようなライン設計面での欠点を合理的
に改善することができるようにする点に目的を有する。
An object of the present invention is to enable the above-mentioned drawbacks in line design to be rationally improved.

かかる目的を達成するためになされた本発明による無人
車の特東構成は、車体フレームの前後両側部に夫々、横
方向に適宜間隔を隔てて位置する一対の操向兼走行輪及
びこれら両走行輸の車軸に各別に連動された正逆転駆動
可能なモータを9#7えたフレームがAiJ記両走行走
行の中央部又はほぼ中央部の縦軸芯を支点として回動自
在に取付けられ、これら前後一対の可動フレーム間の中
央部又はほぼ中央部には自由方向性の従動輪が配設され
ているとともに、1g1J記モータは、走行経路に沿っ
て床面に交差状態で敷設された誘導線のうち、車体フレ
ームの前後方向に沿う誘導線を検出する第1追従用セン
サー又は車体フレームの左右方向に沿う誘導線を検出す
る第2追従用センサーの検出結果に基づいて、機体が誘
導線に沿って追従走行するように駆動制御されるべく構
成されており、更に、前記車体フレームと可動フレーム
との間には夫々、前記走行輪を前後方向に向く状態と左
右方向に向く状態とに位置保持可能で、かつ、前記走行
輪が前記の自動操向制御時における最大相対速度差よジ
も大なる相対速度差で駆動されたときのみ、前記可動フ
レームの縦軸芯層シでの向き反更を許容する機構が設け
られている点にある。
The Tokuto configuration of the unmanned vehicle according to the present invention, which has been made to achieve the above object, includes a pair of steering and running wheels located on both the front and rear sides of the vehicle body frame at an appropriate distance from each other in the lateral direction; A frame with 9 #7 motors capable of driving forward and reverse rotations that are individually linked to the AiJ axle is mounted rotatably around the vertical axis at the center or almost the center of the AiJ vehicle's travel. A freely directional driven wheel is disposed at the center or approximately at the center between the pair of movable frames, and the 1g1J motor is connected to guide wires laid across the floor along the travel route. Based on the detection results of the first tracking sensor that detects the guide line along the front-back direction of the vehicle body frame or the second follow-up sensor that detects the guide line that runs along the left-right direction of the vehicle body frame, the aircraft is guided along the guide line. The vehicle body frame is configured to be driven and controlled so as to follow the vehicle, and furthermore, between the vehicle body frame and the movable frame, the running wheels are held in position so as to face in the front-rear direction and in a state to face in the left-right direction. Only when possible and when the running wheels are driven with a relative speed difference that is larger than the maximum relative speed difference during the automatic steering control, the direction of the movable frame at the vertical axis core layer is changed. The point is that there is a mechanism that allows this.

上述特徴搗成による作用、効果は次の通シである。  
 ・ 〈作 用〉 つまり、無人車をそれの前後方向に沿う誘導線に沿って
移動させる場合には、11J記第1追従用センサーの検
出結果に基づいて少なくとも前後何れか一方の左右走行
車輪のモニタを駆動制御することにより、無人車を前後
方向の誘導線に沿って自動的に追従させることができる
The effects and effects of the above features are as follows.
・〈Operation〉 In other words, when an unmanned vehicle is moved along a guide line along its longitudinal direction, at least one of the front and rear left and right wheels is moved based on the detection result of the first tracking sensor described in 11J. By driving and controlling the monitor, the unmanned vehicle can automatically follow the guide line in the front and rear directions.

また、無人車を例えば、前後方向の誘導線に沿う走行経
路からこれに対して交差する左右方向の誘導線に沿う走
行経路に移行させる場合には、前後の各走行輪を夫々自
動操向制御時における最大相対速度差よりも大なる相対
速度差で駆動させることによシ、機体全体は前後方向の
誘導線に沿う姿勢に維持したまま、前後の両可動フレー
ムのみをそれらの各走行輪が左右方向の誘導線に沿う状
態に自由に向き変更させることができる。 更に、この
ような向き度更後においては、前記第2追従用センサー
の検出結果に基づいて機体SiJ後のモータを駆動制御
することにより、無人車を前記両誘導線の接続部で急激
に方向転換させたのち左右方向の誘導線に沿って自動的
に追従させることができる。
For example, when an unmanned vehicle is moved from a driving route along a front-rear guidance line to a driving route along a left-right guidance line that intersects with this, the front and rear driving wheels can be automatically steered. By driving the aircraft with a relative speed difference greater than the maximum relative speed difference at the time, only the front and rear movable frames are driven by their respective running wheels while maintaining the entire aircraft in an attitude along the longitudinal guidance line. The direction can be freely changed along the left and right guide lines. Furthermore, in such a direction change, by controlling the drive of the motor after the aircraft SiJ based on the detection result of the second tracking sensor, the direction of the unmanned vehicle is abruptly changed at the connection point between the two guide lines. After the vehicle is turned, it can automatically follow the guide line in the left and right direction.

〈効 果〉 従って、前記両鍔導線の接続部を従来の如く彎曲経路に
形成する要がなく、かつ、その彎曲経路形成のだめの特
別なスペースを不要にできるから、全体として無人車の
走行ラインをスペースや装置の配置といった各種条件に
応じて自由にかつ、可及的に占有スペースを小にした状
態に設計施工することができる。 しかも、この種の無
人車に本来装備されているモータを利用して前記両可動
フレームを向き変更させることができるから、この向き
変更のための特別な駆動装置が不要で、前述のライン設
計上の効果を台車自身の構造の簡素化を図り乍ら合理的
、経済的に達成し得るに至った。
<Effects> Therefore, there is no need to form the connecting portion of the two flange conductors into a curved route as in the past, and a special space for forming the curved route can be eliminated, so that the driving line of the unmanned vehicle as a whole can be improved. can be designed and constructed freely according to various conditions such as space and equipment arrangement, and in a manner that occupies as little space as possible. Moreover, since it is possible to change the orientation of both movable frames using the motor that is originally equipped in this type of unmanned vehicle, there is no need for a special drive device for changing the orientation. This effect can be achieved rationally and economically while simplifying the structure of the trolley itself.

以下、本発明構成の実施例を図面に基づいて説明する。Hereinafter, embodiments of the configuration of the present invention will be described based on the drawings.

電磁誘導式無人車を構成するに、第1図乃至第5図で示
すように、車体フレームfi+の前後両側部に夫々、横
方向に適宜間隔を隔てて位置する一対の操向兼走行輪(
2A)、(2B)・及びこれら両走行輸(2A)、(2
B)の車軸に各別に連動された正逆転駆動可能なモータ
(8A)、(8B)を備えたフレーム(4)を、前記両
走行輪(2A)、(2B)の車軸軸芯を結ぶ線上で、か
つ、これら両走行輸(2A) 、 (2B)間の中央部
の縦軸芯(P) k支点として回動自在に取付けるとと
もに、これら前後一対の可動フレーム(41、(41間
の中央部又はほぼ中央部には、縦軸芯層シで回動自在な
口出方向性の左右一対の従動輪+51 、 +51を配
設している。
To configure an electromagnetic induction type unmanned vehicle, as shown in FIGS. 1 to 5, a pair of steering/running wheels (
2A), (2B)・and these two traveling transports (2A), (2
A frame (4) equipped with motors (8A) and (8B) capable of driving in forward and reverse directions that are individually linked to the axle of B) is placed on a line connecting the axle axles of both running wheels (2A) and (2B). And, the vertical axis center (P) at the center between these two traveling transports (2A) and (2B) is rotatably installed as a fulcrum, and the pair of front and rear movable frames (41, (center between 41) A pair of left and right driven wheels +51, +51, which are rotatable around the vertical core layer and have an exit direction, are disposed at the center or approximately at the center.

前記車体フレームtl+の前後両側部で車幅方向の中央
部には夫々、走行経路に沿って床面に交差状態で埋設さ
れた高周波電流を流す電磁誘導線(al 、 (blの
うち、車体フレームil+の前後方向に沿う′電磁誘導
線(alに対する機体の一横父位量を左右の電圧差とし
て検出する一対のピックアップコイルからなる第1追従
用センサー(6)を設けるとともに、前記車体フレーム
(1)の左右両側部で車長方向の中央部には夫々、車体
フレームil+の左右方向に沿う電磁誘導線(blに対
する機体の横変位’t ITJ後の電圧差として検出す
る一対のピックアップコイルからなる第2追従用センサ
ー(7)を設けそいる。
At the front and rear sides of the vehicle body frame tl+, at the center in the vehicle width direction, there are electromagnetic induction wires (al, (in bl), which conduct high-frequency currents, which are buried in the floor surface in a crosswise manner along the driving route. A first tracking sensor (6) consisting of a pair of pickup coils that detects the amount of lateral orientation of the aircraft with respect to the longitudinal direction of the vehicle body frame (al) is provided along the longitudinal direction of the vehicle body frame ( 1) At the center of the left and right sides in the longitudinal direction of the vehicle, there are electromagnetic induction wires along the left and right direction of the vehicle body frame il+ (lateral displacement of the vehicle relative to bl). A second tracking sensor (7) is provided.

また、無人車の走行位置を検出する装@(8)と分岐位
置、合流位置、減速位置、停止位置等の行先データが入
力される受信器(9)ならびに、前記センサー+6+ 
、 +61、+71 、 +71及び走行位置検出装置
(8νの各検出信号と前記受信器(9)の入力データ信
号に基づいて、機体を電磁誘導線(al又は(blに沿
って自動的に追従移動させ乍らその走行経路の所望位置
で分岐、合流、減速、停止させるべく、前記モータ(8
A)、(8B)及び(8A)、(8B)の駆動回路(I
OA) 、 (IOB)及び(IOA)、(IOB)に
制御信号を出力するマイクロコンピュータ利用の制御演
算装置(!りを設けるとともに、前記車体フレーム+1
1と可動フレーム(4)との間には夫々、前記走行輪(
2A)、(2B) ft前後方向に向く状態と左右方向
に向く状態とに位置保持可能で、かつ、前記走行輪(2
A)、(2B)が相反する方向に前記の自動操向制御時
における最大相対速度差よシも大なる相対速度差で駆動
されたときのみ、前記各可動フレームni 、 +4+
の縦軸芯層シでの向き変更を許容する機構(l々を設け
ている。
Additionally, a device (8) for detecting the running position of the unmanned vehicle, a receiver (9) into which destination data such as branching position, merging position, deceleration position, and stop position are input, and the sensor +6+
, +61, +71, +71 and the travel position detection device (8ν), and the input data signal of the receiver (9), the aircraft automatically follows and moves along the electromagnetic induction line (al or (bl). In order to branch, merge, decelerate, and stop the travel route at a desired position, the motor
A), (8B) and (8A), (8B) drive circuit (I
OA), (IOB) and (IOA), (IOB), a control calculation device (!) using a microcomputer is provided, and the body frame
1 and the movable frame (4), the running wheels (
2A), (2B) ft. The running wheels (2
Only when A) and (2B) are driven in opposite directions with a relative speed difference that is larger than the maximum relative speed difference during automatic steering control, each movable frame ni, +4+
A mechanism (1) is provided to allow the direction to be changed on the vertical axis core layer.

前記機構021を構成するに、前記可動フレーム(4)
に、前記の縦軸芯(P) ’&中心とする円弧状で、か
つ、その周方向に?0度ずつ変位した41箇所に円弧状
の休止部(12a)・・を切欠形成しである円盤(12
A)を固着するとともに、Ail記車体フレームfil
側には、前記円盤(12A)の係止部(12a)・・の
うち、相対向する係上部(12a)、(12a)に弾性
的に飯保合することにより可動フレーム(4)全前記の
二状態で位置保持するポール(12B) 。
The mechanism 021 includes the movable frame (4)
, in the above-mentioned vertical axis (P)'& arc shape with the center, and in the circumferential direction? A disc (12
A) At the same time as fixing the vehicle body frame fil.
On the side, the entire movable frame (4) is elastically secured to the opposing locking portions (12a), (12a) of the locking portions (12a) of the disk (12A). A pole (12B) that holds the position in two states.

(12B)及びスプリング(12C)、(12C)を設
けている。
(12B) and springs (12C), (12C) are provided.

次に、前記制御演算装置N(Illによる操向及び運行
制御について説明する。
Next, the steering and operation control by the control calculation unit N (Ill) will be explained.

前記受信器(9)で受信された分岐位置、合流位置、減
速位置、停止位置等の行先データはI10ポートα4及
びCPU(141:介してメモリ(15)に記憶される
Destination data such as the branch position, merging position, deceleration position, and stop position received by the receiver (9) is stored in the memory (15) via the I10 port α4 and the CPU (141).

前記CPU−では、メモ’) (+5+に記憶されたデ
ータイ、1号に基づいて前記第1追従用センサー(6)
In the CPU-, the first tracking sensor (6)
.

(6)及び第2追従用センサー+71 、 +71のう
ちから無人車移動側に位置するセンサーを選定する。
(6) Select the sensor located on the unmanned vehicle movement side from among the second tracking sensors +71 and +71.

この選定されたセンサーの検出、信号がI10ボー11
131tl−介してCPU(14)に入力されると、そ
の検出信号をメモ’J (15+に記憶されたプログラ
ムに従って演算し、かつ、演算結果に基づいて機体が電
磁誘導線(8L)又はfl)lに沿って追従するように
、ml前記10ポートα場よりモータ(8AJ 、 (
8B)・・の駆動回路(IOA)、(IOB)・・に制
御信号を出力する。
Detection of this selected sensor, the signal is I10 baud 11
When the detection signal is input to the CPU (14) via the 131tl-, the detection signal is calculated according to the program stored in the Memo'J (15+), and based on the calculation result, the aircraft moves to the electromagnetic induction wire (8L) or fl). The motor (8AJ, (
Control signals are output to the drive circuits (IOA), (IOB), etc. of 8B).

つまシ、前進時には、前部の第1追従用センサー(6)
に基づいて前部走車輪(2A)、(2B)のモータ(8
A) 、(8B)を駆動制御し、後進時には、後部の第
1追従用センサー(6)に基づいて後部走行輪(2A)
、(2B)のモータ(8A)、(8BJを駆動制御し、
左右のモータ(8A)、(8BJの相対速度差を利用し
て操向制御する。 また、左側への横移動時には、左側
の第2追従用センサー(7)に基づいて前部走行輪(2
A)、(2B)のモータ(8A)、(8B)と後部走行
輪(2A)、(2B)のモータ(8A)、(833ンと
を駆動制御し、右側への横移動時には、右側の第2追従
用センサー(7)に基づいて前部走行4m (2A) 
、 (2Bンのモータ(8A)、(8B)と後部走行輪
(2A)、(2B)のモータ(8A)、(8B)とを駆
動制御し、これら前後のモータ(8A)、(8B)と(
8A) 、C3B)との相対速度差を利用して操向制御
する。
When moving forward, the first tracking sensor (6) on the front
Based on the front running wheels (2A), (2B) motors (8
A), (8B), and when going backwards, the rear running wheels (2A) are controlled based on the rear first tracking sensor (6).
, (2B) drive and control motors (8A) and (8BJ),
Steering is controlled using the relative speed difference between the left and right motors (8A) and (8BJ). Also, when moving laterally to the left, the front running wheels (2
A), (2B) motors (8A), (8B) and rear running wheels (2A), (2B) motors (8A), (833) are drive-controlled, and when moving laterally to the right side, the right side Front travel 4m (2A) based on second tracking sensor (7)
, (Drives and controls the motors (8A), (8B) of 2B and the motors (8A), (8B) of the rear running wheels (2A), (2B), and controls the motors (8A), (8B) before and after these. and(
Steering control is performed using the relative speed difference with 8A) and C3B).

このように機体を電磁誘導線(al又は(blに沿って
自動的に追従移動させ乍ら前記検出装置(8)にて走行
位置を検出し、その検出信号と前記メモリ0均に記憶さ
れたデータ信号とをCPU(141で演算する。 この
演算によシ機体がデータの分岐位置、合流位置、減速位
置、停止位置に到着したと判断したとき、それらに対応
した制御信号をr10ポート0場からモータ(8A)、
(8B)・・の駆動回路(IOA)、(IOB)に出力
する。
While the aircraft is automatically moved along the electromagnetic induction line (AL or BL), the traveling position is detected by the detection device (8), and the detection signal and the traveling position are stored in the memory. The data signal is calculated by the CPU (141). When it is determined by this calculation that the aircraft has arrived at the data branch position, merging position, deceleration position, or stop position, the corresponding control signals are sent to the r10 port 0 field. From motor (8A),
(8B)... is output to the drive circuits (IOA) and (IOB).

無人車を前後方向の電磁誘導Ha (alに沿う第1走
行経路から左右方向の電磁誘導線(blに沿う第2走行
経路に分岐させる、或いは、前記の第2走行経路から第
1走行経路に合流させる場合には、前部走行輪(2A)
、(2B)のモータ(8A) 、(8B)及び後部走行
輪C2k)、C2B)のモー タC3k)、C3B)を
夫々相反する方向に駆動制御し、走行車輪(2A)、(
2BJを前後向き姿勢から左右向き姿勢に又は左右向き
姿勢から前後向き姿勢に変更させる。
The unmanned vehicle is branched from a first traveling route along the longitudinal electromagnetic induction Ha (al) to a second traveling route along the left-right electromagnetic induction line (bl, or from the second traveling route to the first traveling route). When merging, use the front running wheels (2A)
, (2B) and the motors C3k), C3B) of the rear running wheels C2k), C2B) are controlled to drive in opposite directions, respectively.
2BJ is changed from a front-back posture to a left-right posture, or from a left-right posture to a front-back posture.

尚、上述のような走行輪(2A)、(2B)の向き変更
時における機体の不測のずれ動きを防止するべく、前後
面可動フレーム+41 、 f4)の回動に伴なって車
体フレーム(1)に働く力が相殺されるようにモータ(
8A)、(8B)を駆動制御す、る。
In addition, in order to prevent unexpected movement of the aircraft body when changing the direction of the running wheels (2A) and (2B) as described above, the vehicle body frame (1 ) so that the forces acting on the motor (
8A) and (8B).

また、前記走行位置検出装置としては、走行経路の特定
位置の絶対番地を検出するものや走行経路に沿って適宜
間隔を隔てて配置された表示−マークの数をスタート位
置からカウントして、そのカウント数から現在の走行位
置を検出するものがアシ、何れのものを使用しても良い
The traveling position detection device may be one that detects the absolute address of a specific position on the traveling route, or one that counts the number of display marks placed at appropriate intervals along the traveling route from the starting position. Any device that detects the current running position from the count number may be used.

上述実施例では、前記第1追従用センサー(6)及び第
2追従用センサー(7)として電磁式のものを使用した
が、これの代わシに光学式のものを使用しても良い。
In the above embodiment, electromagnetic sensors are used as the first tracking sensor (6) and the second tracking sensor (7), but optical sensors may be used instead.

第6図は前記機構α匂の別実施例を示し、これは、前記
円盤(12A)の、その周方向に4ts度ずつ変位した
g箇所に夫々円弧状の係止部(12a)・・を形成して
、前後方向の誘導線+alに対して41.5度及びり0
度の角度をもって夫々交差する三つの誘導線(1)1.
(b勺、(b勺の何れにも追従できるよう忙構成したも
のである。
FIG. 6 shows another embodiment of the mechanism α, in which arc-shaped locking portions (12a) are provided at positions g of the disc (12A) that are displaced by 4ts in the circumferential direction of the disc (12A). 41.5 degrees and 0 to the guide line +al in the front and back direction.
Three guide lines (1) that intersect each other at angles of 1.
It is structured so that it can follow both (b and (b)).

要するに、前記誘導線tal 、 (1)lの交差角度
はスペースや装置の配置などの各種条件に応じて自由に
設定すると良く、また、それに応じて機構贈の構造を改
造する、つまシ、走行輪(2AJ 、 C2B)の向き
を設定する。
In short, the intersection angle of the guide lines (1) can be freely set according to various conditions such as space and arrangement of equipment, and the structure of the mechanism can be modified accordingly. Set the direction of the ring (2AJ, C2B).

第7図は別の実施例を示し、これは、mJ記誘導線(a
l 、 (b)に対して415度の角度をもって傾斜す
る線上で、かつ、前記両鍔4線fat 、 (blの交
差点から等距離を隔てた箇所に一対のピックアップコイ
ル+16) 、 u力を設けて、前記の第1追従用セン
サー(6)及び第2追従用センサー(7)ヲ兼用構成し
たものである。
FIG. 7 shows another embodiment, in which the mJ lead line (a
A pair of pickup coils +16 is provided on a line inclined at an angle of 415 degrees with respect to (b), and at a location equidistant from the intersection of both tsuba 4 wires (fat, bl). Thus, the first follow-up sensor (6) and the second follow-up sensor (7) are configured to be used in combination.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第5図は無≠希囃本発明に係る無入車の実施
例を示し、第1図、第2−図は前後走行状態と左右走行
状態を示す全体平面図、第8図は全体側面図、第4図は
要部の拡大図、第5図は制御系統図である。 第6図、
第7図は夫々別の実施例を示す平面図、第8図は従来の
無人車を示す平面図である。 (1)・・・・・・車体フレーム、(2A)、(2B)
・・・・・・操向兼走行輪、(8A) 、C3B)・・
・・・・モーフ、(4)・・・・・・可動フレーム、(
6)・・・・・・従動輪、(6)・・・・・・第1追従
用センサー、(7)・・・・・・第2追従用センサー、
賭・・・・・・機構、(P)・・・・・・縦軸芯、(a
l 、 (bl・・・・・・誘導線。 第5図 第 7 図 第8図
1 to 5 show an embodiment of the non-vehicle according to the present invention, and FIG. 1 and FIG. 4 is an enlarged view of the main parts, and FIG. 5 is a control system diagram. Figure 6,
FIG. 7 is a plan view showing different embodiments, and FIG. 8 is a plan view showing a conventional unmanned vehicle. (1)...Vehicle frame, (2A), (2B)
...Steering and running wheels, (8A), C3B)...
...Morph, (4) ...Movable frame, (
6)... Driven wheel, (6)... First tracking sensor, (7)... Second tracking sensor,
Bet...Mechanism, (P)...Vertical axis, (a
l, (bl...Guiding line. Figure 5 Figure 7 Figure 8

Claims (1)

【特許請求の範囲】 ■ 車体フレーム+I+の前後両側部に夫々、横方向に
適宜間隔を隔てて位置する一対の操向兼走行輪(2A)
、(2B)及びこれら両走行輪(2A)。 (2B)の車軸に各別に連動された正逆転駆動可能なモ
ータ(8A)、(8B)を備えたフレーム(4)が前記
両走行輸(2A)、(2B)間の中央部又はほぼ中央部
の縦軸芯(Piを支点として回動自在に取付けられ、こ
れら前後一対の可動フレーム(4)。 (4)間の中央部又はほぼ中央部には自由方向性の従動
輪(5)が配設されているとともに、前記モータ(8A
)、(8B)及び(8A)、(8B)は、走行経路に沿
って床面に交差状態で敷設された誘導線+FL+ 、 
(b)のうち、車体フレーム(1)の前後方向に沿う誘
導線(alを検出する第1追従用センサー(6)又は車
体フレーム+11の左右方向に沿う誘導線(bl k検
出する第2追従用センサー(7)の検出結果に基づいて
、機体が誘導線(al又はfblに沿って追従走行する
ように駆動制御されるべく構成されており、更に、前記
車体フレーム(1)と可動フレーム+41 、 +41
との間には夫々、Ail記走行@ (2A)、(2B)
全前後方向に向く状態と左右方向に向く状態とに位置保
持可能で、かつ、前記走行輪(2A)、(2B)が6i
J記の自動操向制御時における最大相対速度差よりも大
なる相対4艮差で駆動されたときのみ、前記可動フレー
ム(4)の縦軸芯周りでの向き変更を許容する機構(順
が設けられている無人車。 ■ 前記第7追従用センサー(6)が…J後後−設けら
れておフ、かつ、iff記第2追従用センザー(7)及
び従動輪(5)が夫々左右一対設けられている特許請求
の範囲第0項記載の無人車。
[Claims] ■ A pair of steering and running wheels (2A) located at the front and rear sides of the vehicle body frame +I+, respectively, at an appropriate distance from each other in the lateral direction.
, (2B) and both of these running wheels (2A). A frame (4) equipped with motors (8A) and (8B) capable of driving in forward and reverse directions that are individually linked to the axle of (2B) is located in the center or approximately the center between the two traveling transports (2A) and (2B). A pair of front and rear movable frames (4) are mounted rotatably around the longitudinal axis (Pi) of the section. A freely directional driven wheel (5) is located in the center or approximately in the center between (4). The motor (8A
), (8B) and (8A), (8B) are guide wires +FL+ laid in a crossing state on the floor along the travel route,
Of (b), the first tracking sensor (6) that detects the guide line (al) along the front-rear direction of the vehicle body frame (1) or the second follow-up sensor (6) that detects the guide line (bl k) that runs along the left-right direction of the vehicle body frame +11. The vehicle body frame (1) and the movable frame +41 are configured to be driven and controlled so that the vehicle body follows the guide line (al or fbl) based on the detection result of the vehicle body frame (1) and the movable frame +41. , +41
There are Ail travel @ (2A) and (2B) respectively.
The running wheels (2A) and (2B) are 6i
A mechanism (in the order of The unmanned vehicle is equipped with: ■ The seventh tracking sensor (6) is installed at the rear of the vehicle, and the second tracking sensor (7) and driven wheels (5) are mounted on the left and right sides, respectively. An unmanned vehicle according to claim 0, wherein a pair of unmanned vehicles are provided.
JP58031228A 1983-02-26 1983-02-26 Unattended car Granted JPS59157719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58031228A JPS59157719A (en) 1983-02-26 1983-02-26 Unattended car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58031228A JPS59157719A (en) 1983-02-26 1983-02-26 Unattended car

Publications (2)

Publication Number Publication Date
JPS59157719A true JPS59157719A (en) 1984-09-07
JPH0340846B2 JPH0340846B2 (en) 1991-06-20

Family

ID=12325553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58031228A Granted JPS59157719A (en) 1983-02-26 1983-02-26 Unattended car

Country Status (1)

Country Link
JP (1) JPS59157719A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009113725A1 (en) * 2008-03-14 2009-09-17 日産自動車株式会社 Travel mode switching control system for automated guided vehicle and switching control method
JP2011039817A (en) * 2009-08-12 2011-02-24 Nissan Motor Co Ltd Apparatus and method for changing course of unmanned conveying truck
US11858573B2 (en) 2019-08-29 2024-01-02 Conceptual Innovations, L.L.C. Steerable drive wheel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009113725A1 (en) * 2008-03-14 2009-09-17 日産自動車株式会社 Travel mode switching control system for automated guided vehicle and switching control method
JP2011039817A (en) * 2009-08-12 2011-02-24 Nissan Motor Co Ltd Apparatus and method for changing course of unmanned conveying truck
US11858573B2 (en) 2019-08-29 2024-01-02 Conceptual Innovations, L.L.C. Steerable drive wheel

Also Published As

Publication number Publication date
JPH0340846B2 (en) 1991-06-20

Similar Documents

Publication Publication Date Title
JPS582005U (en) Unmanned vehicles and guidance devices
JPS59177611A (en) Unattended moving car and its steering method
JPS59157719A (en) Unattended car
JP2759134B2 (en) Automatic guidance method for guided vehicles
JP3370200B2 (en) How to determine the steering wheel steering angle of an automatic guided vehicle
JPH0313768Y2 (en)
JPH08272443A (en) Attitude control method for unmanned carrier using front and back wheels
JP2000099150A (en) Automatic guiding system and automatically guided vehicle
JPH0934546A (en) Movable mark plate sensor for automated guided vehicle
JPH05241658A (en) Traveling control method for unmanned truck and travel controlling device for realizing the device
JPH0115564Y2 (en)
JPH05143154A (en) Unmanned carrier
JPH0126537Y2 (en)
JP3301518B2 (en) Mobile vehicle guidance equipment
JPH0820901B2 (en) How to drive an automated guided vehicle
JPH05241657A (en) Turn steering system for trackless unmanned vehicle
JPH0233607A (en) Driving method for three-wheeled unmanned vehicle
JPH08179830A (en) Guiding device for unmanned vehicle
JPS60146306A (en) Carrying device using self-traveling truck capable of lateral movement
JP2021082121A (en) Unmanned carrier vehicle
JPS6273311A (en) Unmanned running vehicle
JP2004078715A (en) Vehicle speed controller
JPH0512803Y2 (en)
JP2004038813A (en) Travel guide line for automated guided vehicle
JPS63115207A (en) Traveling guide device for unattended vehicle