JPH035607B2 - - Google Patents

Info

Publication number
JPH035607B2
JPH035607B2 JP58090176A JP9017683A JPH035607B2 JP H035607 B2 JPH035607 B2 JP H035607B2 JP 58090176 A JP58090176 A JP 58090176A JP 9017683 A JP9017683 A JP 9017683A JP H035607 B2 JPH035607 B2 JP H035607B2
Authority
JP
Japan
Prior art keywords
magnetic detection
polarity
guide
bogie
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58090176A
Other languages
Japanese (ja)
Other versions
JPS59214918A (en
Inventor
Masao Niki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP58090176A priority Critical patent/JPS59214918A/en
Publication of JPS59214918A publication Critical patent/JPS59214918A/en
Publication of JPH035607B2 publication Critical patent/JPH035607B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • G05D1/0265Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means using buried wires

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

【発明の詳細な説明】 本発明は誘導帯に沿い無人台車を走行させる際
に方向がずれたような場合に自動的に制御させる
ようにして誘導させる無人台車の誘導方法及び装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and device for guiding an unmanned trolley by automatically controlling the direction when the unmanned trolley moves along a guidance zone if the unmanned trolley deviates from its direction. .

無人台車とは、台車上に電源を持ち自動的に走
行できるようにした台車をいい、かかる無人で走
行できるようにした装置は、現在、自動倉庫の周
辺設備、生産ラインにおける物品搬送設備、自動
加工ラインにおける搬送設備等に数多く使用され
ており、その特長は、専用の軌条を持たせないこ
とにある。専用の軌条を持たないということは、
工場一般通路を走行できるためフオークリフトや
人間と共用のスペースが使えること、走行ルート
の変更が容易であること、等の点で有利である。
An unmanned trolley refers to a trolley that has a power source on it and is able to run automatically.Currently, devices that enable unmanned running are used in peripheral equipment of automated warehouses, goods transport equipment on production lines, and automated trolleys. It is widely used in conveyance equipment in processing lines, etc., and its feature is that it does not have dedicated rails. The fact that it does not have a dedicated rail means that
It is advantageous in that it can run on general factory corridors, allowing it to use space shared with forklifts and people, and that it is easy to change its travel route.

従来、無人台車の走行方式としては、電磁誘導
方式、光学式誘導方式が実用化されている。
Conventionally, electromagnetic induction methods and optical guidance methods have been put into practical use as driving methods for unmanned trolleys.

電磁誘導方式は、第1図に示す如く、走行面a
の床に埋め込んだ誘導線bに電流を流すことによ
つて生ずる誘導磁界を、台車cに取り付けた一対
の検出器d,dで検出し、その検出強度が同等と
なるように走行方向を制御することにより、誘導
線に沿い台車を走行させるようにするものであ
る。すなわち、走行面aに埋め込まれた誘導線b
に電流を流すと、誘導磁界eが発生し、この誘導
磁界eを一対の検出器d,dで検出しながら走行
する方式であり、検出器d,dの中心が誘導線b
よりいずれかの方向へずれると、検出器d,dの
検出する強度に差が生じるので、その差が零とな
るように台車の走行方向を制御することにより台
車を誘導線bに沿つて走行させることができるよ
うにしてある。
In the electromagnetic induction method, as shown in Fig. 1, the running surface a
A pair of detectors d and d attached to the trolley c detect the induced magnetic field generated by passing a current through the guiding wire b embedded in the floor of the trolley c, and the running direction is controlled so that the detected strength is the same. This allows the trolley to run along the guide line. That is, the guide line b embedded in the running surface a
When a current is passed through, an induced magnetic field e is generated, and the system runs while detecting this induced magnetic field e with a pair of detectors d and d, and the center of the detectors d and
If it deviates in either direction, there will be a difference in the intensity detected by the detectors d and d, so by controlling the running direction of the cart so that the difference becomes zero, the cart can be moved along the guide line b. It is designed so that you can do it.

又、この電磁誘導方式では、台車を複雑なルー
トに従つて分岐したり合流させたりする誘導を行
わせるに当り、誘導線bを流す電流をルート毎に
周波数の異なる交流とし、その交わる点において
次に走行するルートの周波数を台車に対して地上
から送信指令することにより台車を分岐したり合
流させたりする方式がある。すなわち、第2図に
示す如く、台車cをA点に移動する場合は、分岐
点fにおいて台車cに対し周波数F1の誘導線b1
沿い走行するように指令を与えることにより、台
車cは誘導線b1に従つてA点へ移動することがで
きるようにしてあり、又、誘導線b1を走行してい
る台車を分岐点gで移動させる場合は、分岐点g
で台車に対して周波数F2の誘導線に沿つて走行
するよう指令を与えれば、台車は誘導線b2に従い
B点へと分岐する。各分岐点における台車への指
令信号の伝送方法としては、地上より無線や光や
音波等で信号を送信する方式や走行路面下の1個
所に複数のコイルを埋め、各々のコイルの励磁、
非励磁により一定のパターンを表示し、台車がこ
のパターンを検出することにより走行指令とする
方式等がある。そのほか、誘導線の周波数はすべ
て同一とし、台車の進行にしたがつて順次径路を
切替えて台車を誘導する方式もある。
In addition, in this electromagnetic induction method, when guiding the trolleys to branch or merge along a complicated route, the current flowing through the guide wire b is made into an alternating current with a different frequency for each route, and at the point where they intersect, There is a system in which the frequency of the next route to be traveled is sent to the bogies from the ground, thereby causing the bogies to branch or merge. That is, as shown in FIG. 2, when moving the bogie c to point A, by giving a command to the bogie c at the branch point f to run along the guide line b1 of the frequency F1 , the bogie c can be moved to point A following guide line b 1 , and when moving a trolley traveling on guide line b 1 at branch point g,
If a command is given to the bogie to run along the guide line of frequency F2 , the bogie will branch to point B along the guide line b2 . Methods of transmitting command signals to the bogies at each branch point include transmitting signals from the ground using radio, light, or sound waves, or burying multiple coils in one place under the running road surface, excitation of each coil,
There is a method in which a certain pattern is displayed by de-energizing, and the truck detects this pattern and issues a travel command. In addition, there is a method in which the frequencies of the guide wires are all the same, and the route is sequentially switched as the cart advances to guide the cart.

しかしながら、かかる誘導方式では、次の如き
問題点がある。
However, this guidance method has the following problems.

誘導線bを走行路面下に埋め込む必要がある
ため、敷設工事が複雑となり、又、ルートの移
設や変更、誘導線bの断線の発見と修理、等が
困難である。
Since the guide wire b needs to be buried under the running road surface, the installation work is complicated, and it is also difficult to relocate or change the route, discover and repair breaks in the guide wire b, and so on.

周波数の異なる誘導用電源装置並に電気工事
等が必要で、台車の走行するルートの制御設備
が複雑である。
Induction power supplies with different frequencies and electrical work are required, and the control equipment for the route the bogie travels is complicated.

走行面aの沈下や急激な振動等により誘導線
が断線する。
The guide wire breaks due to subsidence of the running surface a, sudden vibration, etc.

誘導線近くの電導体により磁界が悪影響を受
けるため、走行路面の構造に制約が多い。たと
えば、鉄筋コンクリート床等では、鉄筋と誘導
線は、或る値以上離す必要があるため、走行面
と鉄筋の距離を必要以上に大きくとる必要があ
る。
Because the magnetic field is adversely affected by electrical conductors near the guide wire, there are many restrictions on the structure of the road surface. For example, on a reinforced concrete floor, etc., the reinforcing bars and guide wires need to be separated by a certain value or more, so the distance between the running surface and the reinforcing bars needs to be larger than necessary.

誘導磁界の強さには実用上限度があるため、
車体と誘導体の許容ずれ限度が小さい。
Since there is a practical upper limit to the strength of the induced magnetic field,
The allowable deviation limit between the car body and the induction body is small.

次に、光学式誘導方式は、走行面の床面に光反
射体を設置し、台車から発する光をこの光反射体
で反射させ、反射光と台車の相対位置を検出する
ことにより台車を誘導する方式である。
Next, in the optical guidance method, a light reflector is installed on the floor of the running surface, the light emitted from the bogie is reflected by this light reflector, and the bogie is guided by detecting the relative position of the reflected light and the bogie. This is a method to do so.

すなわち、第3図に示す如く、台車c側に設け
た光源hから発した光を走行面a上の反射体iに
より反射させ、その反射光を検出する受光部jの
位置により台車cと反射体iの相対関係を検出
し、そのずれ量に応じて台車の走行方向を制御さ
せる方式である。kは走行車輪である。
That is, as shown in FIG. 3, light emitted from a light source h provided on the side of the truck c is reflected by a reflector i on the running surface a, and the reflected light is reflected from the truck c depending on the position of the light receiving section j that detects the reflected light. This method detects the relative relationship of body i and controls the running direction of the truck according to the amount of deviation. k is a running wheel.

この方式では、第4図に示す如く、光源hから
発した光を受光部jの左側部分で検出した場合、
台車cは反射体iよりも右側へずれたことになる
ので、そのずれ量に応じた走行方向修正指令を台
車cに与えるようにし、台車cを左側へ寄せるよ
う軌道修正させる。
In this method, as shown in FIG. 4, when the light emitted from the light source h is detected at the left side of the light receiving section j,
Since the bogie c has shifted to the right side of the reflector i, a running direction correction command is given to the bogie c according to the amount of deviation, and the trajectory is corrected so that the bogie c moves to the left side.

その他の光学式としては、反射体からの反射量
を一対の受光部で検出し、その反射量が同一とな
るよう位置制御する方式もある。
Other optical methods include a method in which the amount of reflection from a reflector is detected by a pair of light receiving sections, and the positions are controlled so that the amounts of reflection are the same.

かかる光学式誘導方式により、台車cを複雑な
ルートに従つて分岐したり合流させたりする場合
には、左右分岐、直進走行にそれぞれ専用の受光
部を設ける、等種々の方式があり、又、各分岐点
における台車への指令信号としては、地上より無
線や光や音波等で信号を送信する方式や、誘導用
反射の付近に別の反射部を設けてその反射光を前
記受光部で受光し、そのパターンを検出すること
により走行指令とする方式等がある。
When using such an optical guidance method to branch or merge the trolley c along a complicated route, there are various methods such as providing a dedicated light receiving section for left and right branching and for straight running. As a command signal to the bogie at each branch point, there are methods of transmitting signals from the ground using radio, light, sound waves, etc., or a method of installing another reflecting part near the guiding reflection and receiving the reflected light with the light receiving part. However, there is a method in which a driving command is issued by detecting the pattern.

しかし、これらの光学式誘導方式では、次の如
き問題点がある。
However, these optical guidance systems have the following problems.

(1) 誘導体へのゴミ等の付着により光の反射が阻
害され易い。
(1) Light reflection is likely to be inhibited by dust etc. adhering to the derivative.

(2) 誘導体表面の損傷により光の反射が阻害され
易い。
(2) Light reflection is easily inhibited by damage to the dielectric surface.

(3) 走行面の凹凸が多い場合、反射体の設置が困
難で設置されたものでも剥れ易い。
(3) If the running surface is uneven, it is difficult to install reflectors and even those that are installed are likely to peel off.

以上のように従来の電磁誘導方式、光学式誘導
方式のいずれも多くの問題点を有しており、いず
れの方式も誘導体の耐久性、移設性及びその機能
の安定性に問題があると共に誘導体の設置方法が
複雑ある。
As mentioned above, both the conventional electromagnetic induction method and the optical induction method have many problems. The installation method is complicated.

本発明は、かかる従来の問題点を解消すると共
に、台車を誘導帯に沿い誘導させ、且つ、誘導帯
が分岐しているところでも任意の方向へ台車を走
行させたり、又は合流させることができるように
しようとしてなしたもので、台車に設けた磁気検
出センサーの磁気検出素子の極性をN極からS極
へ、又その逆へ切り換えるようにして極性をN
極、S極としてある誘導帯に沿い台車を誘導制御
し、更に台車の速度制御をも行うようにしたもの
である。
The present invention solves these conventional problems and allows the cart to be guided along the guide zone, and also allows the cart to run in any direction or merge in any direction even where the guide zone diverges. This was done in an attempt to change the polarity of the magnetic detection element of the magnetic detection sensor installed on the trolley from N to S and vice versa.
The system is designed to guide and control the bogie along guidance zones defined as poles and south poles, and also control the speed of the bogie.

以下、本発明の実施例を図面を参照して説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第5図乃至第9図は本発明の基本的構成を示す
もので、無人台車を走行させようとする方向へ延
びる磁気を帯びた誘導帯1を走行面2に敷設し、
一方、無人台車は、台車3の中央部に左右の走行
駆動輪4を、各々独立した走行駆動モータ5によ
り駆動されるように備え、且つ前後部の左右に従
動輪6を備えると共に、台車3の下面の前端部及
び後端部に、磁気検出センサー7及び7′を取り
付けた構成を有し、更に、上記磁気検出センサー
7,7′と接続してある演算装置9、該演算装置
9で算出された値に基づき走行駆動モータ5の回
転制御を行うよう指令を出す走行駆動制御装置1
0、その他バツテリー等を台車3に搭載し、誘導
帯1に沿い台車3を無人で誘導できるようにす
る。
5 to 9 show the basic configuration of the present invention, in which a magnetic guide band 1 extending in the direction in which the unmanned vehicle is to run is laid on the running surface 2,
On the other hand, the unmanned trolley is equipped with left and right running drive wheels 4 in the center of the trolley 3 so as to be driven by independent running drive motors 5, as well as left and right driven wheels 6 at the front and rear. It has a configuration in which magnetic detection sensors 7 and 7' are attached to the front and rear ends of the lower surface of the computer, and further includes a computing device 9 connected to the magnetic detection sensors 7 and 7'. A travel drive control device 1 that issues a command to control the rotation of the travel drive motor 5 based on the calculated value.
0, and other batteries are mounted on the trolley 3, so that the trolley 3 can be guided along the guide zone 1 unmanned.

上記磁気検出センサー7,7′は、多数の磁気
検出素子8より構成されており、各磁気検出素子
8は一定の磁力をもつ誘導帯1の磁界11(第7
図及び第8図参照)の強さに反応するような高さ
位置で且つ台車3の左右方向へ所定のピツチで配
設し、該各磁気検出素子8はそれぞれ演算装置9
に接続されて演算装置9内で番地として表示され
るようにしてあり、いずれかの磁気検出素子8が
磁気を検出すると当該素子8に対応する番地が表
示され、又同時に当該表示された番地と基準位置
の番地との間に距離が演算装置9で算出されるよ
うにする。
The magnetic detection sensors 7, 7' are composed of a large number of magnetic detection elements 8, and each magnetic detection element 8 has a magnetic field 11 (the seventh
8) and at a predetermined pitch in the left-right direction of the trolley 3, each magnetic detection element 8 is connected to an arithmetic unit 9.
When any magnetic detection element 8 detects magnetism, the address corresponding to that element 8 is displayed, and at the same time, the address corresponding to the displayed address is displayed. The distance between the reference position and the address is calculated by the arithmetic unit 9.

本発明の特徴は、上記した基本構成に下記の構
成を付加し、誘導帯1の分岐点で希望する方向へ
簡単に台車3を誘導できるようにすることであ
る。
The feature of the present invention is that the following configuration is added to the above-mentioned basic configuration, so that the cart 3 can be easily guided in a desired direction at a branch point of the guide zone 1.

すなわち、誘導帯1の途中より誘導帯1′を分
岐させ、該分岐した誘導帯1′の極性を誘導帯1
の極性とは異なるものとする。一方、台車3の前
端部には、誘導用の磁気検出センサー7,7′の
極性を切り換えるための極性切換用磁気センサー
12,12′を設け、該磁気センサー12,1
2′が、分岐点13の手前の走行面2に設置した
発磁体14,14′により作動するように制御す
れば、該磁気センサー12,12′からの信号で
磁気検出センサー7,7′の極性が切り換えられ
る。分岐の必要がない場合は磁気センサー12,
12′は作動しないように制御する。この磁気検
出センサー7,7′の極性の切換えは、磁気検出
素子8のコイル特性を逆にすることにより行う。
第11図は上記磁気検出センサー7,7′の極性
切換制御のブロツク図であり、磁気検出センサー
7,7′の磁気検出素子8に出力回路15を接続
し、該出力回路15に、前記磁気センサー12,
12′からの信号により切り換えられる極性切換
スイツチ16を接続し、該極性切換スイツチ16
の切り換えにより磁気検出素子8のコイル特性が
逆にされ、極性がN極からS極へ、又その逆に切
り換えられるようにする。17は出力増幅器、1
8は演算装置9へ通じる素子作動回路である。
That is, the induction band 1' is branched from the middle of the induction band 1, and the polarity of the branched induction band 1' is changed to the polarity of the induction band 1.
shall be different from the polarity of On the other hand, a polarity switching magnetic sensor 12, 12' for switching the polarity of the guiding magnetic detection sensor 7, 7' is provided at the front end of the truck 3.
2' is controlled to operate by the magnetic elements 14, 14' installed on the running surface 2 in front of the branch point 13, the signals from the magnetic sensors 12, 12' activate the magnetic detection sensors 7, 7'. Polarity can be switched. If there is no need for branching, use the magnetic sensor 12,
12' is controlled so as not to operate. The polarity of the magnetic detection sensors 7, 7' is switched by reversing the coil characteristics of the magnetic detection element 8.
FIG. 11 is a block diagram of the polarity switching control of the magnetic detection sensors 7, 7', in which an output circuit 15 is connected to the magnetic detection element 8 of the magnetic detection sensors 7, 7', and sensor 12,
12' is connected to the polarity changeover switch 16, which is changed over by a signal from the polarity changeover switch 16.
By switching, the coil characteristics of the magnetic detection element 8 are reversed, so that the polarity can be switched from N pole to S pole and vice versa. 17 is an output amplifier, 1
8 is an element operating circuit leading to the arithmetic unit 9.

又、第10図中、19,19′は誘導帯1に沿
つた走行面2上に設置した発磁体、20,20′
は誘導体1とは異なる極性をもつた発磁体で、誘
導帯1付近あるいは誘導体1に重ねて設置するも
のであり、これらは台車3の速度制御を行わせる
ためのものである。
In addition, in FIG. 10, 19 and 19' are magnetic generating bodies installed on the running surface 2 along the induction zone 1, and 20 and 20'
is a magnetizing body having a polarity different from that of the inductor 1, and is installed near the inductive band 1 or overlapping the inductor 1, and is used to control the speed of the bogie 3.

台車3を誘導帯1に沿い誘導させる場合は、自
動的に台車3の中央と誘導帯1の中心が一致して
いるような状態に制御しつつ誘導させることがで
きる。今、たとえば、磁気検出センサー7,7′
の中央部が誘導帯1の中心に一致している状態を
基準にするとすれば、各磁気検出素子8のうち、
磁気検出センサー7,7′の中央部にある数個の
磁気検出素子8が誘導帯1の磁気を検出し、これ
が演算装置9内で中央部の番地として表示される
限り、演算装置9では台車3のずれ量零として計
算されるため、検出センサー7,7′の中央Cと
誘導帯1の中心とが一致した状態で台車3は走行
させられる。
When guiding the trolley 3 along the guide zone 1, it can be guided while being controlled so that the center of the truck 3 and the center of the guide zone 1 are automatically aligned. Now, for example, magnetic detection sensor 7, 7'
Assuming that the center of the magnetic detection element 8 coincides with the center of the induction band 1,
As long as the several magnetic detection elements 8 in the center of the magnetic detection sensors 7, 7' detect the magnetism of the induction band 1, and this is displayed as the address in the center in the arithmetic unit 9, the arithmetic unit 9 recognizes the carriage. Since the deviation amount of 3 is calculated as zero, the trolley 3 is run in a state where the center C of the detection sensors 7, 7' and the center of the guide band 1 are aligned.

台車3が走行中に、たとえば、右側へずれたと
すると、第8図に示す如く台車3に設けた磁気検
出センサー7の中央Cにより左側に位置する複数
の磁気検出素子8が誘導帯1の磁気を検出するこ
とになる。今、磁気検出センサー7の中央Cと磁
気を感知している第n1番目の磁気検出素子8との
間の距離をl1、同じく中央Cと第n2番目の磁気検
出素子8との間の距離をl2とすると、磁気検出セ
ンサー7の中央Cから誘導帯1の中心線上までの
距離Lは、L=l1+l2/2で表わされ、この距離Lが 誘導帯1からのずれ量となる。
For example, if the truck 3 deviates to the right side while traveling, the center C of the magnetic detection sensor 7 provided on the truck 3 detects the magnetic field of the induction band 1. will be detected. Now, the distance between the center C of the magnetic detection sensor 7 and the n - th magnetic detection element 8 sensing magnetism is l 1 , and the distance between the center C and the n - th magnetic detection element 8 is also l 1 . The distance L from the center C of the magnetic detection sensor 7 to the center line of the induction zone 1 is expressed as L=l 1 +l 2 /2, and this distance L is the distance from the induction zone 1 . This is the amount of deviation.

上記第n1番目から第n2番目までの磁気検出素子
8が磁気を検出していることにより、演算装置9
では上記第n1番目から第n2番目の番地表示がなさ
れると共に上記L=l1+l2/2の計算が行われて磁気 検出センサー7の中央Cを基準としたときの右又
は左への実際のずれ量が求められる。ずれ量が求
められると、そのずれ量が零となるような制御指
令が走行駆動制御装置10から走行駆動モータ5
へ送られ、左右の駆動輪4の回転を制御して台車
の方向制御を行う。上記走行駆動モータ5からは
走行駆動制御装置10や演算装置9へ信号がフイ
ードバツクされ、ずれ量が零になるまで方向制御
が行われ、台車3の磁気検出センサー7の中央が
誘導帯1の中心と一致するよう台車3を自動的に
誘導することができる。
Since the magnetic detection elements 8 from the nth first to the nth second detect magnetism, the arithmetic unit 9
Then, the addresses from the nth 1st to the nth 2nd address are displayed, and the calculation of L=l 1 +l 2 /2 is performed to move to the right or left with respect to the center C of the magnetic detection sensor 7. The actual amount of deviation is determined. Once the amount of deviation is determined, a control command that makes the amount of deviation zero is sent from the travel drive control device 10 to the travel drive motor 5.
The rotation of the left and right drive wheels 4 is controlled to control the direction of the truck. Signals are fed back from the travel drive motor 5 to the travel drive control device 10 and the arithmetic unit 9, and direction control is performed until the amount of deviation becomes zero, so that the center of the magnetic detection sensor 7 of the bogie 3 is the center of the guide band 1. The trolley 3 can be automatically guided to match the .

上記台車3の無人誘導において、磁気検出セン
サー7,7′の検出極性を一方の極(たとえばN
極)に限定してしまうと、誘導帯1の極性もそれ
に伴い限定する必要がある。しかし、この場合は
台車3を分岐点13において分岐させるために
は、分岐のための種々の複雑な誘導機構(演算装
置における分岐専用誘導プログラム等を含む)が
必要となつて来る。
In the unmanned guidance of the trolley 3, the detection polarity of the magnetic detection sensors 7, 7' is set to one pole (for example, N
If the polarity of the induction band 1 is limited, the polarity of the induction band 1 must also be limited accordingly. However, in this case, in order to branch the trolley 3 at the branch point 13, various complicated guidance mechanisms for branching (including a branch-specific guidance program in an arithmetic unit, etc.) are required.

本発明では、分岐した誘導帯1′の極性を誘導
帯1の極性とは異にし、且つ磁気検出センサー
7,7′の極性を自在に切り換え得るようにして
あるので、分岐点13に台車が差しかかつても簡
単に台車3を分岐させることができる。すなわ
ち、台車3を分岐点13で分岐させる場合は、台
車3に設けた極性切換用磁気センサー12,1
2′が作動するよう予め制御しておくと、該極性
切換用磁気センサー12,12′が走行面2上に
設置した発磁体14,14′により作動し、この
信号で第11図の極性切換スイツチ16が切り換
つて磁気検出素子8の極性がN極からS極へ切り
換わり、誘導帯1の極性(N極)により誘導され
ていた台車3は、分岐点13で異なつた極性(S
極)をもつ誘導帯1′に沿い走行させられ、該誘
導帯1′に沿い前記誘導帯1の場合と同様に誘導
される。合流の場合も同様である。
In the present invention, the polarity of the branched induction band 1' is made different from the polarity of the induction band 1, and the polarity of the magnetic detection sensors 7, 7' can be freely switched. Even if there is only a difference, the trolley 3 can be easily branched. That is, when the truck 3 is branched at the branch point 13, the polarity switching magnetic sensors 12, 1 provided on the truck 3 are
2' is activated in advance, the magnetic sensors 12, 12' for polarity switching are activated by the magnetizing elements 14, 14' installed on the running surface 2, and this signal causes the polarity switching as shown in FIG. When the switch 16 is switched, the polarity of the magnetic detection element 8 is switched from the N pole to the S pole, and the bogie 3, which had been guided by the polarity (N pole) of the induction band 1, changes to a different polarity (S pole) at the branch point 13.
The vehicle is caused to run along a guide band 1' having a pole), and is guided along the guide band 1' in the same manner as in the case of the guide band 1 described above. The same applies to the case of merging.

このように磁気検出センサー7,7′の極性を
分岐点13でS極に切り換えれば、誘導帯1の方
向へ、又、N極に切り換えれば誘導帯1′の方向
へ台車を進行させることができる。
In this way, if the polarity of the magnetic detection sensors 7, 7' is switched to the south pole at the branch point 13, the cart will move in the direction of the guide band 1, and if it is switched to the north pole, the cart will move in the direction of the guide band 1'. be able to.

本発明では、上記のように台車3の磁気検出セ
ンサー7,7′の極性を変えられることから、次
のような制御をも行うことができる。
In the present invention, since the polarity of the magnetic detection sensors 7, 7' of the truck 3 can be changed as described above, the following control can also be performed.

すなわち、誘導帯1の極性とは異なる極性をも
つた発磁体20,20′を誘導帯1付近あるいは
誘導帯1に重ねて設置すると共に、発磁体20の
手前の走行面2上に発磁体19,19′を設置し
ておくと、上記発磁体19,19′で極性切換用
磁気センサー12,12′が作動すると、磁気検
出センサー7,7′の磁気検出素子8の極性が切
り換えられ、切り換えられた磁気検出素子8が発
磁体20,20′でON信号を発する数により誘
導帯1の極性に影響されることなく速度制御を行
うことができる。今、たとえば、長さyの発磁体
20′により磁気検出センサー7の素子8がON
している長さが、第12図に示すy′以上ならば、
加速、長さxの発磁体20により磁気検出センサ
ー7の素子8がONしている長さが、第13図に
示すx′以上y′以下であれば減速、というように決
めておけば、磁気検出センサー7が発磁体20,
20′に差しかかるときに、台車の速度を自在に
制御させることができる。
That is, magnetizing bodies 20 and 20' having a polarity different from that of the induction band 1 are installed near the induction band 1 or overlapping the induction band 1, and a magnetizing body 19 is placed on the running surface 2 in front of the magnetic generating body 20. , 19' are installed, and when the polarity switching magnetic sensors 12, 12' are activated by the magnetizing bodies 19, 19', the polarity of the magnetic detection element 8 of the magnetic detection sensor 7, 7' is switched, and the polarity is switched. Speed control can be performed without being influenced by the polarity of the induction band 1 by the number of magnetic detection elements 8 that emit ON signals at the magnets 20, 20'. Now, for example, the element 8 of the magnetic detection sensor 7 is turned on by the magnetizing body 20' of length y.
If the length of the
If acceleration is determined, deceleration occurs if the length during which the element 8 of the magnetic detection sensor 7 is ON due to the magnetizing body 20 of length x is greater than or equal to x' and less than or equal to y' as shown in FIG. The magnetic detection sensor 7 is a magnetic body 20,
When approaching 20', the speed of the truck can be freely controlled.

なお、誘導帯1,1′は走行面に直接設置する
方式のほかに、第14図に示す如く走行面2に凹
部を設け、該凹部の中に誘導帯1又は1′を設置
するようにしてもよく、又、第15図に示す如く
床材21と床22に薄い誘導帯23を設置するよ
うにしてもよく、誘導帯の外見や寿命等により種
種の設置方式を採用できること、その他本発明の
要旨を逸脱しない範囲内で種々変更を加え得るこ
とは勿論である。
In addition to the method of installing the guide strips 1 and 1' directly on the running surface, it is also possible to provide a recess in the running surface 2 and install the guide strip 1 or 1' in the recess as shown in Fig. 14. Alternatively, as shown in FIG. 15, a thin guide strip 23 may be installed on the floor material 21 and the floor 22, and various installation methods can be adopted depending on the appearance and lifespan of the guide strip. Of course, various changes can be made without departing from the gist of the invention.

以上述べた如く、本発明によれば、磁気を帯び
た誘導帯と、多数の磁気検出素子を有する磁気検
出センサーを組み合わせ、且つ磁気検出センサー
の極性をN極、S極に切り換えられるようにして
あるので、次の如き優れた効果を奏し得る。
As described above, according to the present invention, a magnetic induction band and a magnetic detection sensor having a large number of magnetic detection elements are combined, and the polarity of the magnetic detection sensor can be switched between N pole and S pole. Therefore, the following excellent effects can be achieved.

(i) 誘導帯が分岐していてもルートによつて極性
を異にしておくだけで単に台車の誘導用の磁気
検出センサーの極性を切り換えることにより台
車の分岐走行を簡単に行わせることができる。
(i) Even if the guidance band is branched, by simply changing the polarity depending on the route, it is possible to easily make the bogie run in a branched manner by simply switching the polarity of the magnetic detection sensor used to guide the bogie. .

(ii) 磁気検出センサーの極性を切り換えて使用で
きることから、誘導帯の極性とは異なる極性の
発磁体を設置しておくことにより誘導制御と速
度制御を行うことができる。
(ii) Since the polarity of the magnetic detection sensor can be switched and used, induction control and speed control can be performed by installing a magnet with a polarity different from that of the induction band.

(iii) 誘導帯の幅に関係なく誘導帯中心からのずれ
量を検出できる。
(iii) The amount of deviation from the center of the guide band can be detected regardless of the width of the guide band.

(iv) 誘導帯の設置、移設が簡単であり、又、誘導
帯は、設置面下に存在する磁性体の影響を受け
ることがないこと、誘導帯表面に損傷が生じて
も磁気が存在する限り誘導に悪影響を与えるこ
とがないこと、等の効果もある。
(iv) Installation and relocation of the induction strip is easy, and the induction strip is not affected by magnetic material existing under the installation surface, and magnetism remains even if the induction strip surface is damaged. It also has the advantage of not having a negative effect on guidance as long as possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第4図は従来の方式を示す概略図、
第5図は本発明の装置の基本構成を示す概略平面
図、第6図は第5図の側面図、第7図は台車に設
ける磁気検出センサーの正面図、第8図は誘導帯
中心からずれた状態を示す正面図、第9図は本発
明の装置のブロツク図、第10図は本発明の特徴
を示す平面図、第11図は台車に設けた磁気検出
センサーの極性を切換制御するためのブロツク
図、第12図及び第13図は本発明による別の制
御要領の例図、第14図及び第15図は誘導帯の
設置方式の他の例図である。 1,1′……誘導帯、3……台車、4……走行
駆動輪、7,7′……磁気検出センサー、8……
磁気検出素子、9……演算装置、10……走行駆
動制御装置、12,12′……極性切換用磁気セ
ンサー、14,14′……発磁体、15……出力
回路、16……極性切換スイツチ、19,19′,
20,20′……発磁体。
Figures 1 to 4 are schematic diagrams showing conventional systems;
FIG. 5 is a schematic plan view showing the basic configuration of the device of the present invention, FIG. 6 is a side view of FIG. 9 is a block diagram of the device of the present invention, FIG. 10 is a plan view showing the features of the present invention, and FIG. 11 is a control for switching the polarity of the magnetic detection sensor provided on the trolley. FIGS. 12 and 13 are block diagrams of other control procedures according to the present invention, and FIGS. 14 and 15 are other examples of guide band installation methods. 1, 1'...Guidance band, 3...Dolly, 4...Traveling drive wheel, 7,7'...Magnetic detection sensor, 8...
Magnetic detection element, 9... Arithmetic device, 10... Travel drive control device, 12, 12'... Magnetic sensor for polarity switching, 14, 14'... Magnetizing body, 15... Output circuit, 16... Polarity switching Switch, 19, 19',
20, 20'... Magnetizing body.

Claims (1)

【特許請求の範囲】 1 誘導帯に沿い台車を走行させる無人台車の誘
導方法において、誘導帯の磁気を検出しながら走
行している台車を、誘導帯の分岐点や合流点で磁
気検出センサーの極性を切り換え、分岐点や合流
点より極性の異なるルートへ台車を誘導すること
を特徴とする無人台車の誘導方法。 2 多数の磁気検出素子を配設させた磁気検出セ
ンサーを台車に取り付けると共に走行面上に設置
した発磁体により作動し上記磁気検出センサーの
極性を切り換える極性切換用磁気センサーを台車
に取り付け、且つ上記磁気検出素子からの信号に
より台車の走行駆動部を制御させる装置を台車に
備え、走行面に設置した誘導帯の分岐点や合流点
から分岐や合流する誘導帯の極性をルート毎に異
にしたことを特徴とする無人台車の誘導装置。
[Scope of Claims] 1. In a method for guiding an unmanned trolley in which the bogie runs along a guide zone, the bogie is moved while detecting the magnetism of the guide strip, and a magnetic detection sensor is activated at a branching point or a confluence point of the guide strip. A method for guiding an unmanned trolley characterized by switching the polarity and guiding the trolley to a route with a different polarity from a branching point or a confluence point. 2. A magnetic detection sensor having a large number of magnetic detection elements arranged thereon is attached to the cart, and a polarity switching magnetic sensor is attached to the cart, which is activated by a magnetic body installed on the running surface to switch the polarity of the magnetic detection sensor, and the above-mentioned The bogie is equipped with a device that controls the running drive part of the bogie using signals from magnetic detection elements, and the polarity of the guide strips installed on the running surface, which branch and merge from branching points and merging points, is different for each route. A guidance device for an unmanned trolley, which is characterized by:
JP58090176A 1983-05-23 1983-05-23 Method and apparatus for guiding unmanned track Granted JPS59214918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58090176A JPS59214918A (en) 1983-05-23 1983-05-23 Method and apparatus for guiding unmanned track

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58090176A JPS59214918A (en) 1983-05-23 1983-05-23 Method and apparatus for guiding unmanned track

Publications (2)

Publication Number Publication Date
JPS59214918A JPS59214918A (en) 1984-12-04
JPH035607B2 true JPH035607B2 (en) 1991-01-28

Family

ID=13991173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58090176A Granted JPS59214918A (en) 1983-05-23 1983-05-23 Method and apparatus for guiding unmanned track

Country Status (1)

Country Link
JP (1) JPS59214918A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123506A (en) * 1985-08-16 1987-06-04 Nec Corp Position marker and method of detecting same
JPS62245309A (en) * 1986-04-17 1987-10-26 Daifuku Co Ltd Control facility for travel of moving vehicle
JPS62266606A (en) * 1986-05-14 1987-11-19 Nec Corp Guide system for unattended carriage
JP2696866B2 (en) * 1987-12-09 1998-01-14 株式会社明電舎 Driving system for unmanned vehicles
DE3743016A1 (en) * 1987-12-18 1989-06-29 Jungheinrich Kg METHOD FOR GUIDING LANDING VEHICLES WITH AT LEAST ONE STEERING WHEEL AND SYSTEM FOR CARRYING OUT THE METHOD
JP2649534B2 (en) * 1988-04-05 1997-09-03 株式会社ダイフク Mobile vehicle guidance equipment
US9072219B2 (en) * 2013-06-20 2015-07-07 Deere & Company Robotic mower navigation system

Also Published As

Publication number Publication date
JPS59214918A (en) 1984-12-04

Similar Documents

Publication Publication Date Title
KR900008065B1 (en) Control device for nonhumanbeing vehicle
JPH036522B2 (en)
JPH035607B2 (en)
JPS59202514A (en) Method and device for guidance of unmanned truck
JPH056688B2 (en)
JPH036524B2 (en)
JPS59202513A (en) Method and device for guidance of unmanned truck
JPS60107113A (en) Guiding method of unmanned track
JPS59229625A (en) Method and apparatus for guiding unmanned truck
JPS62111306A (en) S-shaped traveling carrier car
JPH0340841B2 (en)
JPS59202512A (en) Method and device for guidance of unmanned truck
JPS59202516A (en) Method and device for guidance of unmanned truck
JPS63292309A (en) Guide equipment for moving vehicle
JPS61110210A (en) Guiding path and running system of unmanned carrier car
JPS63273112A (en) Running control information instructing device for automatic running truck
JPS60105016A (en) Method and device for guiding unmanned truck
JPS63115207A (en) Traveling guide device for unattended vehicle
JPS61244660A (en) Travelling control facility for transfer car
JPS63314613A (en) Drive controller for unmanned vehicle
JPS63111505A (en) Traveling guiding device for unmanned vehicle
JP2632045B2 (en) Mobile vehicle guidance equipment
JPH03233708A (en) Guiding equipment for mobile vehicle
JPS62185504A (en) Speed controller for moving body
JPH0481209B2 (en)