JPS59202512A - Method and device for guidance of unmanned truck - Google Patents

Method and device for guidance of unmanned truck

Info

Publication number
JPS59202512A
JPS59202512A JP58078012A JP7801283A JPS59202512A JP S59202512 A JPS59202512 A JP S59202512A JP 58078012 A JP58078012 A JP 58078012A JP 7801283 A JP7801283 A JP 7801283A JP S59202512 A JPS59202512 A JP S59202512A
Authority
JP
Japan
Prior art keywords
trolley
guide
magnetic detection
bogie
truck
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58078012A
Other languages
Japanese (ja)
Inventor
Osamu Suzuki
修 鈴木
Masao Niki
仁木 将雄
Mitsugi Abe
阿部 貢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP58078012A priority Critical patent/JPS59202512A/en
Publication of JPS59202512A publication Critical patent/JPS59202512A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • G05D1/0265Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means using buried wires
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • G05D1/0261Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means using magnetic plots

Abstract

PURPOSE:To attain the diversification of functions as well as the labor saving by attaching a sensor containing many magnetic detectors to a truck so that the truck can run along a magnetic guide zone at the running side. CONSTITUTION:While a truck 3 is traveling along a guide zone 1, either one of magnetic sensors 7 senses the magnetism of the zone 1. Thus the sensor 7 is kept on. The truck 3 displays the presence of a discontinuous part 11 if a discontinuous part 11 exists at the zone 1. In case the traveling direction of the truck 3 gets out of the axial line of the zone 1, a magnetic detector 8 which detects the magnetism shifts gradually to one side from the other side and finally it is changed to an OFF state from an ON state. In such a case, the derailment of the truck 3 is decided and displayed.

Description

【発明の詳細な説明】 本発明は誘導帯に沿い無人台車を走行ざUる際に方向が
ずれたような場合に自動的に制御させるようにして誘導
させる無人台車の誘導方法及び装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and device for guiding an unmanned trolley by automatically controlling the direction when the unmanned trolley moves along a guidance zone and the direction shifts. It is.

無人台車とは、台車上に電源を持ら自動的に走行できる
ようにした台車をいい、かかる無人で走行できるように
した装置は、現在、自動Ω庫の周辺設備、生産ラインに
おける物品搬送設備、自動加工ラインにおける搬送−設
備等に数多く使用されており、その特長は、専用の軌条
を持たないことにある。専用の軌条を持たないというこ
とは、工場一般通路を走行できるためフォークリフトや
人間と共用のスペースが使えること、走行ルートの変更
が容易であること、等の点で有利である。
An unmanned trolley is a trolley that has a power source on it and is able to run automatically.The equipment that enables such unmanned running is currently used in peripheral equipment of automatic warehouses and article transport equipment on production lines. It is widely used in conveyance equipment in automatic processing lines, etc., and its feature is that it does not have dedicated rails. The fact that it does not have dedicated rails is advantageous in that it can run on general factory corridors, allowing it to share space with forklifts and people, and that it is easy to change its travel route.

従来、無人台車の走行方式としては、電磁誘導方式、光
学式誘導方式が実用化されている。
Conventionally, electromagnetic induction methods and optical guidance methods have been put into practical use as driving methods for unmanned trolleys.

電磁誘導方式は、第1図に示す如く、走行而aの床に埋
め込んだ誘導線すに電流を流すことによって生ずる誘導
磁界を、台車Cに取り付けた一対の検出器d、dで検出
し、その検出強度が同等となるように走行方向を制御す
ることにより、誘導線に沿い台車を走行させるようにす
るものである。すなわら、走行面aに埋め込まれた誘導
線すに電流を流すと、誘導磁界eが発生し、この誘導磁
界eを一対の検出器d、dで検出しながら走行覆る方式
であり、検出器d、dの中心が誘導線すよりいずれかの
方向へずれると、検出器d、dの検出する強度に差が生
じるので、その差が零となるように台車の走行方向を制
御づ−ることにより台車を誘導線すに沿って走行させる
ことができるようにしである。
As shown in Fig. 1, the electromagnetic induction method uses a pair of detectors d and d attached to a trolley C to detect the induced magnetic field generated by passing an electric current through an induction wire embedded in the floor of a moving vehicle a. By controlling the running direction so that the detection intensities are the same, the trolley is made to run along the guide line. In other words, when a current is passed through the induction wire embedded in the running surface a, an induced magnetic field e is generated. If the centers of detectors d and d shift in either direction from the guide line, a difference will occur in the intensities detected by detectors d and d, so the running direction of the trolley must be controlled so that the difference becomes zero. This allows the bogie to travel along the guide line.

又、この電磁誘導方式では、台車を複雑なルートに従っ
て分岐したり合流させたりする誘導を行ね−けるに当り
、誘導線すに流す電流をルート毎に周波数の異なる交流
とし、その交わる点において次に走行するルートの周波
数を台車に対して地上から送信指令することにより台車
を分岐したり合流させたりJる方式がある。すなわち、
第2図に示す如く、台車CをA点に移動する場合は、分
岐点fにおいて台車Cに対し周波数F1の誘導線b1に
沿い走行づるように指令を与えることにより、台車Cは
誘64!Jb+に従ってA点へ移動することができるよ
うにしCあり、又、誘導線b1を走行している台車を分
岐点9でB点へ移動させる場合は、分岐点gで台車に対
して周波数F2の誘導線に沿って走行するよう指令を与
えれば、台車は誘導線b2に従いB点へと分岐する。各
分岐点における台車への指令信号の伝送方法としては、
地上より無線や光や音波等で信号を送信覆る方式や走行
路面下の1個所に複数のコイルを埋め、各々のコイルの
励磁、非励磁により一定のパターンを表示し、台車がこ
のパターンを検出することにより走行指令とする方式等
がある。そのほか、誘導線の周波数はすべて同一とし、
台車の進行にしたがって順次径路を切替えて台車を誘導
する方式もある。
In addition, in this electromagnetic induction method, in order to guide the bogies by branching and merging along complicated routes, the current flowing through the guide wires is an alternating current with a different frequency for each route, and at the point where they intersect, There is a system in which the frequency of the next route to be traveled is transmitted from the ground to the bogies, thereby causing the bogies to diverge or merge. That is,
As shown in FIG. 2, when moving the trolley C to point A, by giving a command to the trolley C at the branch point f to run along the guide line b1 of the frequency F1, the trolley C can be moved to the point A by 64! Jb+ to move to point A, and if a bogie traveling on guide line b1 is to be moved to point B at branch point 9, the frequency F2 is set for the bogie at branch point g. If a command is given to run along the guide line, the trolley will branch to point B along the guide line b2. The method of transmitting command signals to the trolley at each branch point is as follows:
Signals are transmitted from the ground using radio, light, or sound waves, etc. A hidden method is used, or multiple coils are buried in one place under the running road surface, and each coil is energized or de-energized to display a certain pattern, and the bogie detects this pattern. There is a method of issuing a travel command by doing so. In addition, the frequencies of the guiding wires are all the same,
There is also a method of guiding the cart by sequentially switching routes as the cart advances.

しかしながら、かかる誘導方式では、次の如き問題点が
ある。
However, this guidance method has the following problems.

■ 誘導線すを走行路面下に埋め込む必要があるため、
敷設工事が複雑となり、又、ルートの移設や変更、誘導
線すの断線の発見と修理、等が困難である。
■ Since the guide wire needs to be buried under the running road surface,
The installation work is complicated, and it is difficult to relocate or change the route, discover and repair broken guide lines, etc.

■ 周波数の異なる誘導用電源装置並に電気工事等が必
要で、台車の走行するルートの制御iiu備が複雑であ
る。
■ Induction power supplies with different frequencies and electrical work are required, and the equipment for controlling the route along which the bogie travels is complicated.

■ 走行面aの沈下や急激な振動等により誘導線が断線
する。
■ The guide wire breaks due to subsidence of the running surface a or sudden vibration.

■ 誘導線近くの電導体により磁界が悪影響を受けるた
め、走行路面の構造に制約が多い。
■ Because the magnetic field is adversely affected by conductors near the guide wire, there are many restrictions on the structure of the road surface.

たとえば、鉄筋コンクリート床等では、鉄筋と誘導線は
、成る値以上離す必要があるため、走行面と鉄筋との距
離を必要以上に大きくとる必要がある。
For example, on a reinforced concrete floor, etc., the reinforcing bars and guide wires need to be separated by at least a certain value, so it is necessary to make the distance between the running surface and the reinforcing bars larger than necessary.

■ 誘導磁界の強さには実用上限度があるため、車体と
誘導線の許容ずれ限度が小さい。
■ Since there is a practical upper limit to the strength of the induced magnetic field, the allowable deviation limit between the vehicle body and the guiding wire is small.

次に、光学式誘導方式は、走行面の床面に光反射体を設
置し、台車から発する光をこの光反射体で反射させ、反
射光と台車の相対位置を検出することにより台車を誘導
する方式である。
Next, in the optical guidance method, a light reflector is installed on the floor of the running surface, the light emitted from the bogie is reflected by this light reflector, and the bogie is guided by detecting the relative position of the reflected light and the bogie. This is a method to do so.

すなわち、第3図に示す如く、台車Cの側に設けた光源
りから発した光を走行面a上の反射体iにより反射させ
、その反射光を検出づる受光部jの位置により台車Cと
反射体1の相対関係を検出し、そのずれ最に応じて台車
の走行方向を制御させる方式である。)(は走行車輪で
ある。
That is, as shown in FIG. 3, light emitted from a light source provided on the side of the truck C is reflected by a reflector i on the running surface a, and the position of the light receiving part j that detects the reflected light is used to determine whether the truck C or This method detects the relative relationship of the reflectors 1 and controls the running direction of the truck depending on the deviation. )( is the running wheel.

この方式では、例えば第4図に示す如く、光源りから発
した光を受光部Jの左側部分で検出した場合、台車Cは
反射体iよりも右側へずれたことになるので、そのずれ
量に応じた走行方向修正指令を台車Cに与えるようにし
、台車Cを左側へ寄せるよう軌道修正させる。
In this method, for example, as shown in Fig. 4, when the light emitted from the light source is detected at the left side of the light receiving part J, the cart C is shifted to the right side of the reflector i, so the amount of shift is A running direction correction command is given to the bogie C in accordance with this, and the trajectory is corrected so that the bogie C moves to the left side.

その他の光学式としては、反射体からの反射量を一対の
受光部で検出し、その反射量が同一となるよう位置制御
する方式もある。
Other optical methods include a method in which the amount of reflection from a reflector is detected by a pair of light receiving sections, and the positions are controlled so that the amounts of reflection are the same.

かかる光学式M導方式により、台車Cを複雑なルートに
従って分岐したり合流させたりする場合には、左右分岐
、直進走行にそれぞれ専用の受光部を設ける、管種々の
方式があり、又、各分岐点における台車への指令信号と
しては、地上より無線や光や音波等で信号を送信する方
式や、誘導用反射の付近に別の反射部を設けてその反射
光を前記受光部で受光し、そのパターンを検出すること
により走行指令とする方式等がある。
When the trolley C is branched or merged along a complicated route using such an optical M guiding system, there are various pipe systems in which dedicated light receiving sections are provided for left and right branching and for straight running. As a command signal to the bogie at the branch point, there are methods of transmitting signals from the ground using radio, light, sound waves, etc., or methods of installing another reflecting part near the guiding reflection and receiving the reflected light with the light receiving part. , there is a method in which a driving command is issued by detecting the pattern.

しかし、これらの光学式誘導方式では、次の如き問題点
がある。
However, these optical guidance systems have the following problems.

1) 誘導体へのゴミ等の付着により光の反射が阻害さ
れ易い。
1) Reflection of light is likely to be inhibited by the adhesion of dust, etc. to the derivative.

2) 誘導体表面の損傷により光の反射が阻害され易い
2) Light reflection is likely to be inhibited due to damage to the dielectric surface.

3)走行面の凹凸が多い場合、反射体の設置が困難で設
置されたものでも剥れ易い。
3) If the running surface is uneven, it is difficult to install reflectors and even those that are installed are likely to peel off.

以上のように従来の電磁誘導方式、光学式誘導方式のい
ずれも多くの問題点を有しており、いずれの方式も誘導
体の耐久性、移設性及びその機能の安定性に問題がある
と共に誘導体の設置方法が複雑である。
As mentioned above, both the conventional electromagnetic induction method and the optical induction method have many problems. The installation method is complicated.

又、上記従来のいずれの方式においても、無人台車が誘
導体又は誘導線から外れた場合はすべて脱線として処理
し、台車を停止させる必要がある。
Furthermore, in any of the above-mentioned conventional systems, if the unmanned truck deviates from the guide or the guide line, it must be treated as a derailment and the truck must be stopped.

しかし、誘導体又は誘導線はその設置場所によっては連
続して設置できない場合がある。すなわち、第5図に示
す如く無人台車Cの走行路をレール1等が遮ぎっている
場合は、誘導体又は誘導線すをその部分で断続にしな【
ノれはならない。このような場合、無人台車がこの位置
へ到達する以前に何らかの信号を受りとり、誘導体又は
誘導線の存在しない部分でも走行し・脱線とはならない
ような処理が必要である。
However, depending on the installation location, the guide or the guide wire may not be installed continuously. In other words, as shown in Figure 5, if the running path of the unmanned bogie C is blocked by the rail 1, etc., do not interrupt the guide or the guide line at that part.
There should be no leakage. In such a case, it is necessary for the unmanned trolley to receive some kind of signal before reaching this position, and to run even in areas where there are no guides or guide lines, so that it does not derail.

本発明は、従来方式の問題点に鑑み、かかる問題点を除
去すると共に誘導方式として新しい方式を導入し、機能
の多様化と省力化を図り、又、同時に台車の走行時の誘
導帯の断続部と脱線を判別することにより誘導帯の設置
を簡単にすることを目的としてなしたものである。
In view of the problems of the conventional method, the present invention eliminates these problems and introduces a new method as a guidance method, diversifying the functions and saving labor, and at the same time interrupting the guidance zone when the bogie runs. This was done to simplify the installation of guide strips by distinguishing between derailments and derailments.

以下、本発明の実施例を図面を参照して説明づる。Embodiments of the present invention will be described below with reference to the drawings.

第6図及び第7図に示す如く、無人台車を走行させよう
とする方向へ延びる磁気を帯びた誘導帯1を走行面2に
敷設し、一方、無人台車は、台車3の中央部に左右の走
行駆動輪4を各々独立した走行駆動モータ5により駆動
されるように備え、且つ前後部の左右に従動輪6を備え
ると共に、台車3の下面の前端部及び後端部に、磁気検
出センサー7及び7′を取り付けた構成を有し、更に、
上記磁気検出センサー7.7′と接続せる演算装置9、
該演算装置9で算出された方向のずれ量に基づき走行駆
動モータ5の回転制御を行うよう指令を出す走行駆動制
御装置10、その他バッテリー等を台車3に搭載して、
誘導帯1に沿い無人で方向修正しなが゛ら走行できるよ
うにする。
As shown in FIGS. 6 and 7, a magnetic guide strip 1 extending in the direction in which the unmanned trolley is intended to run is laid on the running surface 2, while the unmanned trolley is placed on the left and right sides of the center of the trolley 3. The trolley 3 is equipped with running drive wheels 4 driven by independent drive motors 5, and left and right driven wheels 6 at the front and rear, and magnetic detection sensors are installed at the front and rear ends of the lower surface of the bogie 3. 7 and 7', and further,
an arithmetic device 9 connected to the magnetic detection sensor 7.7';
A travel drive control device 10 that issues a command to control the rotation of the travel drive motor 5 based on the amount of directional deviation calculated by the arithmetic device 9, and other batteries and the like are mounted on the trolley 3,
The vehicle will be able to run unmanned along Guidance Zone 1 while making direction corrections.

上記磁気検出センサー7.7′は、多数の磁気検出素子
8より構成されており、各磁気検出素子8は一定の磁力
をもつ誘導帯1の磁界11(第8図及び第9図参照)の
強さに反応づるような高さ位置で且つ台車3の左右方向
へ所定のビツヂで配設し、該各磁気検出素子8はそれぞ
れ演算装置9に接続されて演算装置9内で番地として表
示されるようにしてあり、いずれかの磁気検出素子8が
磁気を検出すると当該素子8に対応して番地表示がなさ
れると共に当該表示された番地と基準位置との間の距−
1が演算装置9で台車3のずれ量として算出できるよう
にしである。
The magnetic detection sensor 7.7' is composed of a large number of magnetic detection elements 8, and each magnetic detection element 8 is composed of a magnetic field 11 (see FIGS. 8 and 9) of the induction band 1 having a constant magnetic force. Each magnetic detection element 8 is arranged at a height that responds to the strength and at a predetermined pitch in the left and right direction of the trolley 3, and each magnetic detection element 8 is connected to an arithmetic unit 9 and displayed as an address within the arithmetic unit 9. When any magnetic detection element 8 detects magnetism, an address is displayed corresponding to the element 8, and the distance between the displayed address and the reference position is displayed.
1 can be calculated by the arithmetic unit 9 as the amount of shift of the cart 3.

今、磁気検出センサー7,7′の中央部が誘導帯1の中
心に一致している状態を基準とりると、各磁気検出素子
8のうち、磁気検出レン(J−7゜7′の中心部にある
N個の磁気検出素子8が磁気を検出し、これが演算装置
9内で中心部の番地として表示される限り、演算装置9
ではずれ量が零として計算されるため、検出セン4ノー
7.7′の中央と誘導帯1の中心が一致した状態で台車
3は走行させられる。゛ 台車3が走行中に、たとえば、右側へずれたとづると、
第9図に示す如く台車3に設けた磁気検出センυ−7,
7’の中央Cより左側に位置する複数の磁気検出素子8
が誘導帯1の磁気を検出することになる。今、磁気検出
センサー7.7′の中央Cから磁気を感知している第0
1番目の磁気検出素子8までの距離を11、同じく第n
2M目の磁気検出素子8までの距離を12とすると、磁
気検出センサー7,7′の中央Cから誘で表わされ、こ
の距1111iLが誘導帯1からのずれ量となる。
Now, if we take as a reference the state in which the center of the magnetic detection sensors 7, 7' coincides with the center of the induction band 1, the center of the magnetic detection lens (J-7°7') of each magnetic detection element 8 is taken as a reference. As long as the N magnetic detection elements 8 in the center detect magnetism and this is displayed as the address of the center in the arithmetic device 9, the arithmetic device 9
Since the amount of deviation is calculated as zero, the bogie 3 is run with the center of the detection sensor 4 no. 7.7' and the center of the guide band 1 aligned. For example, if the trolley 3 shifts to the right while it is running,
As shown in FIG. 9, the magnetic detection sensor υ-7 installed on the trolley 3,
A plurality of magnetic detection elements 8 located on the left side of center C of 7'
will detect the magnetism of the induction band 1. Now, the 0th sensor is sensing magnetism from the center C of the magnetic detection sensor 7.7'.
The distance to the first magnetic detection element 8 is set to 11, and the distance to the first magnetic detection element 8 is set to 11.
If the distance to the 2Mth magnetic detection element 8 is 12, it is expressed by the distance from the center C of the magnetic detection sensors 7, 7', and this distance 1111iL is the amount of deviation from the induction band 1.

上記第n1番目から第02番目までの磁気検出素子8が
磁気を検出していることにより、演算装@9では上記第
n1番目から第n2番目の/、+1!2 番地表示がなされると共に上記し= 2 の計算が行わ
れて磁気検出センサー7.7′の中央Cを基準としたと
きの右又は左への実際のずれ量が求められる。ずれ量が
求められると、そのずれ蟻が零となるような制御指令が
走行駆動制御装置10から走行駆動モータ5へ送られ、
左右の駆動輪4の回転を制御して台車のlj向制御を行
う。
Since the magnetic detection elements 8 from the n1st to the 02nd detect magnetism, the arithmetic unit @9 displays the addresses /, +1!2 of the n1th to n2th, and the above 2 is calculated to determine the actual amount of shift to the right or left when the center C of the magnetic detection sensor 7.7' is used as a reference. When the deviation amount is determined, a control command is sent from the travel drive control device 10 to the travel drive motor 5 so that the deviation becomes zero,
The lj direction control of the truck is performed by controlling the rotation of the left and right drive wheels 4.

上記走行駆動モータ5からは走行駆動制御装置10や演
算装置9へ信号がフィードバックされ、ずれ量が零にな
るまで方向制御が行われ、台車3の磁気検出センサー7
.7′の中央が誘導帯1の中心と一致するよう台車3が
自動的に誘導される。
Signals are fed back from the travel drive motor 5 to the travel drive control device 10 and the arithmetic unit 9, direction control is performed until the amount of deviation becomes zero, and the magnetic detection sensor 7 of the bogie 3
.. The bogie 3 is automatically guided so that the center of the guide band 7' coincides with the center of the guide band 1.

次に、本発明の装置では、誘導帯1が断続の場合と、台
車が誘導帯1から゛脱線する場合を判別し、自動的に台
車の走行継続、走行停止を行うことができる。すなわち
、台車3が誘導帯1に沿い走行している間は磁気検出セ
ンサー7のいずれかの磁気検出素子8が誘導帯1の磁気
を感知しており、該センサー7はONの状態にある。今
、第11図に示す如く、誘導帯1に不連続部11がある
場合に、台車3が当該不連続部11に差しかかり磁気検
出センサー7の検出素子8のすべてがOFFになると、
不連続部11の存在を表示するものとする。一方、第1
2図に示ず如く、台車3の走行方向が誘導帯1の軸線か
らずれて行き脱線する場合は、磁気を検出する磁気検出
素子8が逐次一方から他方へずれて行き最後にONの状
態からOFFの状態になる。したがって、このONの状
態が逐次ずれて行き最後にOFFになれば台車が脱線し
た場合として表示づるものとする。この台車が脱線した
場合と前記誘導帯1が不連続の場合とを予め演算装置9
の制御プログラムに組み込んでおき 且つ誘導帯1が不
連続の場合が判別されると台車に直進せよという指令が
発せられ、又、脱線が判別されると台車を停止させるよ
う指令が発せられるようにしておく。これにより誘導帯
1を断続に設置しても台車の走行が可能であり、又、台
車の脱線が検出されると台車を停止させることができる
。この方式によると、誘導路の途中に誘導帯1が設置で
きない部分があっても信管支障なく台車を誘導すること
ができ、且つ誘導帯の設置間隔を広げることにより誘導
帯の設置を筒中にすることができる。
Next, the device of the present invention can determine whether the guide band 1 is intermittent or if the bogie is derailed from the guide band 1, and can automatically continue or stop the bogie. That is, while the truck 3 is traveling along the guide strip 1, any of the magnetic detection elements 8 of the magnetic detection sensor 7 is sensing the magnetism of the guide strip 1, and the sensor 7 is in an ON state. Now, as shown in FIG. 11, when there is a discontinuous part 11 in the guide band 1, when the trolley 3 approaches the discontinuous part 11 and all the detection elements 8 of the magnetic detection sensor 7 turn OFF,
The presence of the discontinuous portion 11 shall be displayed. On the other hand, the first
As shown in Figure 2, when the running direction of the bogie 3 deviates from the axis of the guide band 1 and derails, the magnetic detection element 8 that detects magnetism sequentially deviates from one side to the other and finally changes from the ON state. It will be in the OFF state. Therefore, if the ON state gradually shifts and finally becomes OFF, it will be displayed as a case where the bogie has derailed. A calculation device 9 determines in advance the case where the bogie derails and the case where the guide zone 1 is discontinuous.
In addition, when it is determined that the guide band 1 is discontinuous, a command is issued to the bogie to go straight, and when a derailment is determined, a command is issued to stop the bogie. I'll keep it. This allows the bogie to run even if the guide band 1 is installed intermittently, and also allows the bogie to be stopped when derailment of the bogie is detected. According to this method, even if there is a part of the taxiway where the guide strip 1 cannot be installed, the bogie can be guided without any fuse problems, and by widening the installation interval of the guide strips, the guide strips can be installed in the cylinder. be able to.

なお、本発明は上述した実施例のみに限定されるもので
はなく、たとえば、誘導帯1を走行面に直接設置する方
式のほかに、走行面に凹部を設けその中へ設置してもよ
く、又、第13図に示す如く床材12と床13との門に
薄い誘導帯14を設置してもよく、その他、誘導帯の外
見や寿命等により種々の設置方式を採用できることは勿
論のことである。
It should be noted that the present invention is not limited to the above-mentioned embodiments. For example, in addition to the method in which the guide band 1 is installed directly on the running surface, a recess may be provided in the running surface and the guide band 1 may be installed therein. Furthermore, as shown in FIG. 13, a thin guide strip 14 may be installed at the gate between the flooring 12 and the floor 13, and it goes without saying that various installation methods can be adopted depending on the appearance and lifespan of the guide strip. It is.

以上述べた如く本発明によれば、台車に多数の磁気検出
素子をもったセン゛ザーを取り(=Jけ、台車が走行路
側の磁気誘導帯に沿い走行でさるようにしであるので、
次の如き優れた効果を余し得る。
As described above, according to the present invention, a sensor having a large number of magnetic detection elements is installed on the bogie (=J), so that the bogie runs along the magnetic induction zone on the running road side.
The following excellent effects can be achieved.

(i)  誘導帯の設置や移設が簡単である。(i) Installation and relocation of the guide belt is easy.

1)  誘導帯の設置面下に存在する磁性体の彩管を受
けない。
1) Do not receive the magnetic tube that exists under the installation surface of the induction belt.

(ロ) 誘導帯表面に損傷が生じても磁気が存在Jる限
り誘導に悪影響を与えない。
(b) Even if the surface of the induction band is damaged, it will not adversely affect induction as long as magnetism exists.

Ovl  誘導帯の幅に関係なく誘導帯中心からのずれ
量を検出することができて自動的に方向制御を行うこと
ができ、機能の多様化と省力化を図ることができる。
Ovl The amount of deviation from the center of the guide band can be detected regardless of the width of the guide band, and direction control can be performed automatically, making it possible to diversify functions and save labor.

(へ) 誘導帯の不連続と台車の脱線を判別することが
でき、脱線の場合は直ちに台車を停止できて安全である
(F) It is possible to distinguish between discontinuity of the guide strip and derailment of the bogie, and in the case of derailment, the bogie can be stopped immediately, making it safe.

lyD  誘導帯の不連続部でも台車を走行させること
ができるため、誘導帯の設置ができない部分でも台車を
走行させることができる。
lyD Since the bogie can be run even in discontinuous areas of the guide strip, the bogie can be run even in areas where the guide strip cannot be installed.

に) 上記(Oから誘導帯の断続ピッチを広げることが
でき、誘導帯の設置が筒中となる。
) From the above (O), the intermittent pitch of the guide band can be widened, and the guide band can be installed inside the cylinder.

@ 誘導帯の損傷により磁気が不連続になった場合でも
台車を誘導することができる。
@ The trolley can be guided even if the magnetic field becomes discontinuous due to damage to the guidance band.

O→ 磁気検出素子のピッチを小さくすることにより走
行時のずれ精度を高めることができる。
O→ By reducing the pitch of the magnetic detection elements, it is possible to improve the deviation accuracy during running.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第5図は従来方式の概略図、第6図は本発明
の一実施例を示す平面図、第7は第6図の側面図、第8
図は磁気検出センサーと誘導帯の組み合せ関係を示す正
面図、第9図は誘導帯に対し磁気検出センサーの位置が
横にずれた状態を示す正面図、第10図は本発明の装置
のブロック図、第11図は誘導帯が不連続の場合を示す
平面図、第12図は台車が脱線する状態を示す平面図、
第13図は誘導帯の設置の他の例を示す正面図である。 1・・・誘導帯、3・・・台車、4・・・走行駆動輪、
7.7′・・・磁気検出センサー、8・・・磁気検出素
子、9・・・演算装置、1o・・・走行駆動制御装置。 特  許  出  願  人 石川島播磨重工業株式会社 特許出願人代理人 第1図 第3図 第4図 第5図
1 to 5 are schematic diagrams of the conventional system, FIG. 6 is a plan view showing an embodiment of the present invention, FIG. 7 is a side view of FIG. 6, and FIG.
The figure is a front view showing the combination of the magnetic detection sensor and the induction band, Figure 9 is a front view showing the position of the magnetic detection sensor shifted laterally with respect to the induction band, and Figure 10 is a block diagram of the device of the present invention. Fig. 11 is a plan view showing the case where the guide band is discontinuous, Fig. 12 is a plan view showing the state where the bogie derails,
FIG. 13 is a front view showing another example of the installation of the guide band. 1... Guidance belt, 3... Trolley, 4... Running drive wheel,
7.7'... Magnetic detection sensor, 8... Magnetic detection element, 9... Arithmetic device, 1o... Travel drive control device. Patent Application Person Ishikawajima Harima Heavy Industries Co., Ltd. Patent Applicant Agent Figure 1 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 1)誘導帯に沿い台車を走行させる無人台車の誘導方法
において、台車に設けた磁気検出センサーで誘導帯の磁
気を検出しながら台車を走行させ、誘導帯に対する台車
のずれや誘導帯の不連続部を判別して自動的に台車を誘
導させることを特徴とする無人台車の誘導方法。 2)多数の磁気検出素子を配設させた磁気検出センサー
を台車に取り付けると共に、該台車に、上記各磁気検出
素子を番地として表示でき且つ該表示された番地と基準
の番地間の距離を台車のずれ量として演算したり、ある
いは上記各磁気検出素子の0N−OFFで脱線か誘導帯
の断続かの判別を行う演算装置と、該演算装置からの値
にもとづき台車の駆動部を制御する装置を、備え、走行
路側の誘導帯に磁性体を用いてなることを特徴とする無
人台車の誘導装置。
[Claims] 1) In a method for guiding an unmanned trolley in which the trolley is run along a guide zone, the trolley is run while detecting the magnetism of the guide strip with a magnetic detection sensor provided on the trolley, and the shift of the trolley with respect to the guide strip is detected. A method for guiding an unmanned trolley, characterized in that the trolley is automatically guided by determining discontinuities in a guide zone or a discontinuous part of a guide zone. 2) A magnetic detection sensor in which a large number of magnetic detection elements are arranged is attached to a trolley, and each of the magnetic detection elements can be displayed as an address on the trolley, and the distance between the displayed address and a reference address can be measured on the trolley. an arithmetic device that calculates the amount of deviation of the magnetic field or determines whether it is a derailment or a discontinuation of the guide band by turning ON/OFF each of the magnetic detection elements, and a device that controls the drive unit of the bogie based on the value from the arithmetic device. What is claimed is: 1. A guidance device for an unmanned bogie, characterized in that the guidance device includes the following, and uses a magnetic material in the guidance band on the side of the traveling road.
JP58078012A 1983-04-30 1983-04-30 Method and device for guidance of unmanned truck Pending JPS59202512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58078012A JPS59202512A (en) 1983-04-30 1983-04-30 Method and device for guidance of unmanned truck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58078012A JPS59202512A (en) 1983-04-30 1983-04-30 Method and device for guidance of unmanned truck

Publications (1)

Publication Number Publication Date
JPS59202512A true JPS59202512A (en) 1984-11-16

Family

ID=13649872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58078012A Pending JPS59202512A (en) 1983-04-30 1983-04-30 Method and device for guidance of unmanned truck

Country Status (1)

Country Link
JP (1) JPS59202512A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008123321A (en) * 2006-11-14 2008-05-29 Murata Mach Ltd Magnetically guided traveling vehicle system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52105481A (en) * 1976-03-01 1977-09-03 Hitachi Ltd Apparatus for detecting derailment and stoppage of vehicle
JPS5311487B2 (en) * 1975-03-22 1978-04-21
JPS53126683A (en) * 1977-04-13 1978-11-06 Hitachi Ltd Steering system for unmanned vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5311487B2 (en) * 1975-03-22 1978-04-21
JPS52105481A (en) * 1976-03-01 1977-09-03 Hitachi Ltd Apparatus for detecting derailment and stoppage of vehicle
JPS53126683A (en) * 1977-04-13 1978-11-06 Hitachi Ltd Steering system for unmanned vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008123321A (en) * 2006-11-14 2008-05-29 Murata Mach Ltd Magnetically guided traveling vehicle system
JP4543435B2 (en) * 2006-11-14 2010-09-15 村田機械株式会社 Magnetic induction vehicle system

Similar Documents

Publication Publication Date Title
US5000279A (en) Unmanned vehicle guide system
EP1166250B1 (en) Loop sensing apparatus for traffic detection
JPS6345609A (en) Drive guiding device for unmanned vehicle
JPH036522B2 (en)
JPS59214918A (en) Method and apparatus for guiding unmanned track
JPS59202512A (en) Method and device for guidance of unmanned truck
JPH036521B2 (en)
JPS59202515A (en) Method and device for guidance of unmanned truck
JPS59202513A (en) Method and device for guidance of unmanned truck
JPS60105016A (en) Method and device for guiding unmanned truck
JPH056688B2 (en)
JPS59229625A (en) Method and apparatus for guiding unmanned truck
JPS59202516A (en) Method and device for guidance of unmanned truck
JPS60107113A (en) Guiding method of unmanned track
JPS60193023A (en) Guide device for unmanned truck
JPS59112314A (en) Unmanned lift truck
JPS6336311A (en) Guidance equipment for optical guidance type moving car
JPS61110210A (en) Guiding path and running system of unmanned carrier car
JP2002108452A (en) Travel controller of unmanned vehicle
JPS62140106A (en) Dive control equipment for traveling vehicle
JPS61244660A (en) Travelling control facility for transfer car
JPS62185504A (en) Speed controller for moving body
JPH0674120B2 (en) Selective guidance system for unmanned vehicles
JPH02294805A (en) Operation controller for unmanned vehicle
JPS62175813A (en) Method for guiding curved route of unmanned vehicle