JPH0340841B2 - - Google Patents

Info

Publication number
JPH0340841B2
JPH0340841B2 JP59048323A JP4832384A JPH0340841B2 JP H0340841 B2 JPH0340841 B2 JP H0340841B2 JP 59048323 A JP59048323 A JP 59048323A JP 4832384 A JP4832384 A JP 4832384A JP H0340841 B2 JPH0340841 B2 JP H0340841B2
Authority
JP
Japan
Prior art keywords
bogie
band
trolley
center
running
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59048323A
Other languages
Japanese (ja)
Other versions
JPS60193023A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP59048323A priority Critical patent/JPS60193023A/en
Publication of JPS60193023A publication Critical patent/JPS60193023A/en
Publication of JPH0340841B2 publication Critical patent/JPH0340841B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • G05D1/0263Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means using magnetic strips

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Discharge Of Articles From Conveyors (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は誘導帯に沿い無人台車を走行させる際
に方向がずれたような場合に自動的に制御させる
ようにして誘導させる無人台車の誘導装置に関す
るものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to the guidance of an unmanned trolley by automatically controlling the direction when the unmanned trolley moves along a guidance zone when the direction shifts. It is related to the device.

無人台車とは、台車上に電源を持ち自動的に走
行できるようにした台車をいい、かかる無人で走
行できるようにした装置は、現在、自動倉庫の周
辺設備、生産ラインにおける物品搬送設備、自動
加工ラインにおける搬送設備等に数多く使用され
ており、その特徴は、専用の軌条を持たないこと
にある。専用の軌条を持たないということは、工
場一般通路を走行できるためフオークリフトや人
間と共用のスペースが使えること、走行ルートの
変更が容易であること、等の点で有利である。
An unmanned trolley refers to a trolley that has a power source on it and is able to run automatically.Currently, devices that enable unmanned running are used in peripheral equipment of automated warehouses, goods transport equipment on production lines, and automated trolleys. It is widely used in transportation equipment in processing lines, etc., and its feature is that it does not have dedicated rails. The fact that it does not have dedicated rails is advantageous in that it can run on general factory corridors, allowing it to use space shared with forklifts and people, and that it is easy to change its running route.

[従来技術] 従来、無人台車の走行方式としては、電磁誘導
方式、光学的誘導方式が実用化されている。
[Prior Art] Conventionally, electromagnetic induction methods and optical guidance methods have been put into practical use as driving methods for unmanned trolleys.

電磁誘導方式は、第1図に示す如く、走行面a
の床に埋め込んだ誘導線bに電流を流すことによ
つて生ずる誘導磁界を、台車cに取り付けた一対
の検出器d,dで検出し、その検出強度が同等と
なるように走行方向を制御することにより、誘導
線に沿い台車を走行させるようにするものであ
る。すなわち、走行面aに埋め込まれた誘導線b
に電流を流すと、誘導磁界eが発生し、この誘導
磁界eを一対の検出器d,dで検出しながら走行
する方式であり、検出器d,dの中心が誘導線b
よりいずれかの方向へずれると、検出器d,dの
検出する強度に差が生じるので、その差が零とな
るように台車の走行方向を制御することにより台
車を誘導線bに沿つて走行させることができるよ
うにしてある。
In the electromagnetic induction method, as shown in Fig. 1, the running surface a
A pair of detectors d and d attached to the trolley c detect the induced magnetic field generated by passing a current through the guiding wire b embedded in the floor of the trolley c, and the running direction is controlled so that the detected strength is the same. This allows the trolley to run along the guide line. That is, the guide line b embedded in the running surface a
When a current is passed through, an induced magnetic field e is generated, and the system runs while detecting this induced magnetic field e with a pair of detectors d and d, and the center of the detectors d and
If it deviates in either direction, there will be a difference in the intensity detected by the detectors d and d, so by controlling the running direction of the cart so that the difference becomes zero, the cart can be moved along the guide line b. It is designed so that you can do it.

しかしながら、かかる誘導方式では、次の如き
問題点がある。
However, this guidance method has the following problems.

誘導線bを走行路面下に埋め込む必要がある
ため、敷設工事が複雑となり、又、ルートの移
設や変更、誘導線bの断線の発見と修理、等が
困難である。
Since the guide wire b needs to be buried under the running road surface, the installation work is complicated, and it is also difficult to relocate or change the route, discover and repair breaks in the guide wire b, and so on.

走行面aの沈下や急激な振動等により誘導線
が断線する。
The guide wire breaks due to subsidence of the running surface a, sudden vibration, etc.

誘導線近くの電導体により磁界が悪影響を受
けるため、走行路面の構造に制約が多い。たと
えば、鉄筋コンクリート床等では、鉄筋と誘導
線は、或る値以上離す必要があるため、走行面
と鉄筋との距離を必要以上に大きくとる必要が
ある。
Because the magnetic field is adversely affected by electrical conductors near the guide wire, there are many restrictions on the structure of the road surface. For example, on a reinforced concrete floor, etc., the reinforcing bars and guide wires need to be separated by a certain value or more, so it is necessary to make the distance between the running surface and the reinforcing bars larger than necessary.

誘導磁界の強さには実用上限度があるため、
車体と誘導線の許容ずれ限度が小さい。
Since there is a practical upper limit to the strength of the induced magnetic field,
The allowable deviation limit between the vehicle body and the guide wire is small.

次に、光学式誘導方式は、走行面の床面に光反
射体を設置し、台車から発する光をこの光反射体
で反射させ、反射光と台車の相対位置を検出する
ことにより台車を誘導する方式である。
Next, in the optical guidance method, a light reflector is installed on the floor of the running surface, the light emitted from the bogie is reflected by this light reflector, and the bogie is guided by detecting the relative position of the reflected light and the bogie. This is a method to do so.

すなわち、第2図に示す如く、台車cの側に設
けた光源hから発した光を走行面a上の反射体i
により反射させ、その反射光を検出する受光部j
の位置により台車cと反射体iの相対関係を検出
し、そのずれ量に応じて台車の走行方向を制御さ
せる方式である。kは走行車輪である。
That is, as shown in FIG.
light receiving section j that detects the reflected light.
This method detects the relative relationship between the truck c and the reflector i based on the position of the reflector i, and controls the running direction of the truck according to the amount of deviation. k is a running wheel.

この方式では、例えば第3図に示す如く、光源
hから発した光を受光部jの左側部分で検出した
場合、台車cは反射体iよりも右側へずれたこと
になるので、そのずれ量に応じた走行方向修正指
令を台車cに与えるようにし、台車cを左側へ寄
せるよう軌道修正させる。
In this method, as shown in Fig. 3, for example, when the light emitted from the light source h is detected at the left side of the light receiving part j, the cart c has shifted to the right side of the reflector i, so the amount of shift is A running direction correction command is given to the bogie c in accordance with this, and the trajectory is corrected so that the bogie c moves to the left side.

その他の光学式としては、反射体からの反射量
を一対の受光部で検出し、その反射量が同一とな
るよう位置制御する方式もある。
Other optical methods include a method in which the amount of reflection from a reflector is detected by a pair of light receiving sections, and the positions are controlled so that the amounts of reflection are the same.

しかし、これらの光学的誘導方式では、次の如
き問題点がある。
However, these optical guidance methods have the following problems.

(1) 誘導体へのゴミ等の付着により光の反射が阻
害され易い。
(1) Light reflection is likely to be inhibited by dust etc. adhering to the derivative.

(2) 誘導体表面の損傷により光の反射が阻害され
易い。
(2) Light reflection is easily inhibited by damage to the dielectric surface.

(3) 走行面の凹凸が多い場合、反射体の設置が困
難で設置されたものでも剥れ易い。
(3) If the running surface is uneven, it is difficult to install reflectors and even those that are installed are likely to peel off.

以上のように従来の電磁誘導方式、光学式誘導
方式のいずれも多くの問題点を有しており、いず
れの方式も誘導体の耐久性、移設性及びその機能
の安定性に問題があると共に誘導体の設置方法が
複雑である。
As mentioned above, both the conventional electromagnetic induction method and the optical induction method have many problems. The installation method is complicated.

そこで最近、第4図乃至第6図に示す如く、無
人台車を走行させようとする方向へ延びる磁気を
帯びた誘導帯1を走行面2に敷設し、一方、無人
台車は、台車3の中央部に左右の走行駆動輪4を
各独立した走行駆動モータ5により駆動されるよ
うに備え、且つ前後部の左右に従動輪6を備える
と共に、台車3の下面の前端部及び後端部に、磁
気検出センサー7及び7′を取り付けた構成を有
し、更に、上記磁気検出センサー7,7′と接続
せる演算装置、該演算装置で算出された方向のず
れ量に基づき走行駆動モータ5の回転制御を行う
よう指令を出す走行駆動制御装置、その他バツテ
リー等を台車3に搭載して、誘導帯1に沿い無人
で方向修正しながら走行できるようにした無人台
車の誘導装置が考え出されている。
Therefore, recently, as shown in FIGS. 4 to 6, a magnetic guiding band 1 extending in the direction in which the unmanned trolley is intended to run has been laid on the running surface 2. It is equipped with left and right traveling drive wheels 4 driven by independent traveling drive motors 5, and equipped with left and right driven wheels 6 at the front and rear. It has a configuration in which magnetic detection sensors 7 and 7' are attached, and further includes a calculation device connected to the magnetic detection sensors 7 and 7', and a rotation of the travel drive motor 5 based on the amount of directional deviation calculated by the calculation device. An unmanned trolley guidance system has been devised in which a traveling drive control device that issues commands to perform control, other batteries, etc. are mounted on the trolley 3, and the unmanned trolley can travel along the guidance zone 1 while correcting direction. .

斯かる装置においては、磁気検出センサー7,
7′は、多数の磁気検出素子8より構成されてお
り、各磁気検出素子8は一定の磁力をもつ誘導帯
1の磁界9の強さに反応するような高さ位置で且
つ台車3の左右方向へ所定のピツチで配設され、
該各磁気検出素子8はそれぞれ演算装置に接続さ
れて演算装置内で番地として表示されるようにし
てあり、いずれかの磁気検出素子8が磁気を検出
すると当該素子8に対応して番地表示がなされる
と共に当該表示された番地と基準位置との間の距
離が演算装置でずれ量として算出され、そのずれ
量が零となるような制御指令が走行駆動制御装置
から走行駆動モータ5へ送られ、左右の駆動輪4
の回転を制御して台車3の方向制御が行われるも
のである。
In such a device, a magnetic detection sensor 7,
7' is composed of a large number of magnetic detection elements 8, and each magnetic detection element 8 is located at a height position that responds to the strength of the magnetic field 9 of the induction band 1 having a constant magnetic force, and on the left and right sides of the trolley 3. arranged at a predetermined pitch in the direction,
Each magnetic detection element 8 is connected to a computing device and displayed as an address within the computing device, and when any magnetic detection element 8 detects magnetism, an address is displayed corresponding to that element 8. At the same time, the distance between the displayed address and the reference position is calculated as the amount of deviation by the arithmetic unit, and a control command is sent from the travel drive control device to the travel drive motor 5 so that the amount of difference becomes zero. , left and right drive wheels 4
The direction of the truck 3 is controlled by controlling the rotation of the truck.

しかしながら、斯かる最近考え出された装置に
あつては、 (i) 磁気検出センサーには、多数の磁気検出素子
を並べる必要があるため高価である。
However, such recently devised devices are expensive because (i) the magnetic detection sensor requires a large number of magnetic detection elements to be lined up;

(ii) 磁気検出センサーと発磁体である誘導帯との
ギヤツプは最大50mm程度しかとれないので、感
度的に問題がある。
(ii) Since the gap between the magnetic detection sensor and the induction band, which is a magnet, can only be about 50 mm at most, there is a problem with sensitivity.

(iii) 磁気検出センサーの出力が、各磁気検出素子
のON−OFF信号であるため、誘導制御操作端
であるDCモータの制御方式(アナログ方式)
と対応させるためには、信号変換(D/A変
換)が必要であり、回路が複雑化する。
(iii) Since the output of the magnetic detection sensor is the ON-OFF signal of each magnetic detection element, the control method of the DC motor (analog method) which is the induction control operation end
In order to correspond to this, signal conversion (D/A conversion) is required, which complicates the circuit.

等の問題点を有していた。It had the following problems.

[発明の目的] 本発明は斯かる実情に鑑み、コスト低減、誘導
性能の改善を図つた無人台車の誘導装置を提供す
ることを目的としている。
[Object of the Invention] In view of the above-mentioned circumstances, an object of the present invention is to provide a guidance device for an unmanned bogie that is capable of reducing costs and improving guidance performance.

[発明の構成] 本発明の無人台車の誘導装置は、走行面上に台
車の走行方向に沿つて磁性体からなる誘導帯を取
り付け、強磁性体を導体とするセンシングコイル
を中央が粗で両端が密となるように形成してなる
誘導帯センサーを前記台車の幅方向に取り付け、
誘導帯センサーからの信号により台車のずれを検
出するデイテクターを備え、且つ該デイテクター
からの出力に基づいて台車の駆動系に制御信号を
送る制御装置を有するものである。
[Structure of the Invention] The guidance device for an unmanned trolley of the present invention has an induction band made of a magnetic material installed on a running surface along the running direction of the trolley, and a sensing coil made of a ferromagnetic material with a rough center and a rough guide band at both ends. Attaching a guide band sensor formed in a dense manner in the width direction of the trolley,
The vehicle is equipped with a detector that detects displacement of the truck based on the signal from the guide band sensor, and has a control device that sends a control signal to the drive system of the truck based on the output from the detector.

[実施例] 以下、図面を参照して本発明の実施例を説明す
る。
[Example] Hereinafter, an example of the present invention will be described with reference to the drawings.

第7図乃至第10図に示す如く、無人台車を走
行させようとする方向へ延びる発磁体である誘導
帯10を走行面2に敷設し、一方、台車3の下面
の前端部及び後端部には、パーマロイ等の強磁性
体を導体とするセンシングコイル11を利用した
誘導帯センサー12,12′を取付け、該誘導体
センサー12,12′に接続したデイテクター1
3と、該デイテクター13にて演算された値を基
に台車3のずれ量を求めそのずれ量に対応して走
行駆動モータ5の回転制御を行うよう指令を出す
ステアリング制御装置14と、その他バツテリー
等を台車3に搭載して、誘導帯10に沿い無人で
方向修正しながら走行し得るよう構成する。15
はDCモータドライブユニツトである。
As shown in FIGS. 7 to 10, a guide band 10, which is a magnetic body extending in the direction in which the unmanned trolley is intended to travel, is laid on the running surface 2, while the front and rear ends of the lower surface of the unmanned trolley 3 are is equipped with an inductive band sensor 12, 12' using a sensing coil 11 whose conductor is a ferromagnetic material such as permalloy, and a detector 1 connected to the inductive sensor 12, 12'.
3, a steering control device 14 which calculates the amount of deviation of the trolley 3 based on the value calculated by the detector 13 and issues a command to control the rotation of the traveling drive motor 5 in accordance with the amount of deviation, and other batteries. etc. are mounted on a trolley 3, and the vehicle is constructed so that it can run unmanned along a guide zone 10 while correcting the direction. 15
is a DC motor drive unit.

又、前記デイテクター13において、OSはセ
ンシングコイル11に励振電流を流すべくその中
央部に接続した高周波発振器、D1はセンシング
コイル11の一端側に接続したダイオード、D2
は同じく他端側に接続したダイオード、16はブ
リツジ回路である。尚センシングコイル11は、
中央部で粗に、又両端部で密になるようジグザグ
に折曲げ形成してある。
Further, in the detector 13, OS is a high frequency oscillator connected to the center of the sensing coil 11 in order to send an excitation current through it, D1 is a diode connected to one end of the sensing coil 11, and D2 is
is a diode similarly connected to the other end, and 16 is a bridge circuit. The sensing coil 11 is
It is bent in a zigzag pattern so that it is roughly folded in the center and densely folded in both ends.

今、誘導帯センサー12,12′の中央部、即
ちセンシングコイル11の中央部が誘導帯10の
中心に一致している状態を基準とすると、ブリツ
ジ回路16はバランスし出力は零であるため、誘
導帯センサー12,12′の中央と誘導帯10の
中心が一致した状態で台車3は走行させられる。
Now, based on the state in which the center of the induction band sensors 12, 12', that is, the center of the sensing coil 11 coincides with the center of the induction band 10, the bridge circuit 16 is balanced and the output is zero. The bogie 3 is run with the center of the guide band sensors 12, 12' aligned with the center of the guide band 10.

台車3が走行中に、左右にずれたりすると、誘
導帯10の磁気の影響を受け、センシングコイル
11の影響を受けた側の導線部の電流が増え、ブ
リツジ回路16のバランスが崩れるため出力値が
変化する。センシングコイル11は、中心部は粗
く、両端に近付くほど密になつているため、第1
1図に示すように、センシングコイル11の中心
と誘導体10の中心がずれるに従い出力値も大き
く変化する。そのため、そのずれ量が零となるよ
うな制御指令がステアリング制御装置14からド
ライブユニツト15を介し走行駆動モータ5へ送
られ、左右の駆動輪4の回転を制御して台車3の
方向制御が行われる。走行駆動モータ5からはス
テアリング制御装置14へ信号がフイードバツク
され、ずれ量が零になるまで方向制御が行われ、
台車3の誘導体センサー12,12′の中央が誘
導帯10の中心と一致するよう台車3が自動的に
誘導される。
If the trolley 3 shifts left or right while it is running, it will be affected by the magnetism of the induction band 10, and the current in the conductor on the side affected by the sensing coil 11 will increase, causing the bridge circuit 16 to become unbalanced, resulting in an output value. changes. The sensing coil 11 is rough in the center and becomes denser as it approaches both ends.
As shown in FIG. 1, as the center of the sensing coil 11 and the center of the inductor 10 shift, the output value also changes greatly. Therefore, a control command that makes the amount of deviation zero is sent from the steering control device 14 to the travel drive motor 5 via the drive unit 15, and the rotation of the left and right drive wheels 4 is controlled to control the direction of the bogie 3. be exposed. A signal is fed back from the travel drive motor 5 to the steering control device 14, and direction control is performed until the amount of deviation becomes zero.
The truck 3 is automatically guided so that the center of the inductive sensors 12, 12' of the truck 3 coincides with the center of the guide band 10.

尚、誘導帯10の極性(N、S)により、デイ
テクター13のダイオードD1,D2の方向を変え
る切換回路を付加して極性切替を行えば、進路変
更を行うことができる。
Note that the course can be changed by adding a switching circuit that changes the direction of the diodes D 1 and D 2 of the detector 13 to change the polarity depending on the polarity (N, S) of the inductive band 10.

上記において、誘導帯10としては、0.8mm程
度の薄い磁気テープを床面に貼付するだけでよ
く、床の加工工事が不要であり、第4図乃至第6
図で示した誘導帯11に比しても幅が狭い。又、
誘導体センサー12,12′としては、1mm〓以下
の強磁性導体を折曲げてアクリルやプラスチツク
等の非磁性体の板に貼付するだけでよく、極めて
薄く形成できる。従つて、直進用、左折用、右折
用等目的別のセンサーをひとまとめに作ることが
できる。更に、誘導体センサー12,12′は強
磁性導体から形成してあるため、誘導帯10の磁
場の方向と誘導体センサー12,12′の電流の
方向との成す角の微小な変化によつてもセンシン
グコイル11の抵抗値が鋭敏に変化されるので
(本発明のように高周波電流を用いている場合に
は表皮効果によりセンシングコイル11の表面に
電流が集中しているためより一層抵抗値が鋭敏に
変化される)、感度が高く、第4図乃至第6図で
示した方式に比し、誘導帯10との間のギヤツプ
を大きく(約2倍)とれる。
In the above, as the induction band 10, it is sufficient to simply attach a thin magnetic tape of about 0.8 mm to the floor surface, and no floor processing work is required.
The width is narrower than the guide band 11 shown in the figure. or,
The inductive sensors 12, 12' can be made extremely thin by simply bending a ferromagnetic conductor of 1 mm or less and attaching it to a non-magnetic plate such as acrylic or plastic. Therefore, sensors for different purposes such as for going straight, for left turns, and for right turns can be made all at once. Furthermore, since the inductive sensors 12 and 12' are made of ferromagnetic conductors, sensing can be performed even by minute changes in the angle formed between the direction of the magnetic field of the inductive band 10 and the direction of the current in the inductive sensors 12 and 12'. Since the resistance value of the coil 11 changes sharply (when a high frequency current is used as in the present invention, the current is concentrated on the surface of the sensing coil 11 due to the skin effect, so the resistance value changes even more sharply). The sensitivity is high, and the gap between the guide band 10 and the guide band 10 can be made larger (approximately twice as large) as compared to the systems shown in FIGS. 4 to 6.

尚、前記実施例においては、センシングコイル
11をジグザグ状に折曲げ形成したが、例えば第
12図に示す如く櫛状に折曲げたり、第13図に
示す如くサインカーブのように折曲げて振幅を変
えるようにしてもよい。
In the above embodiment, the sensing coil 11 is formed by bending in a zigzag shape, but for example, the sensing coil 11 may be bent into a comb shape as shown in FIG. may be changed.

[発明の効果] 以上説明したように本発明の無人台車の誘導装
置によれば、 () 誘導帯としては、磁気テープの如き幅狭の
ものを単に床面に貼付するだけでよいので、床
加工工事が不要でありコスト的にも有利とな
る。
[Effects of the Invention] As explained above, according to the guidance device for an unmanned trolley of the present invention, () it is sufficient to simply attach a narrow material such as magnetic tape to the floor as the guidance band; No machining work is required, which is advantageous in terms of cost.

() センサー、デイテクター共に簡単な構造で
あり、安価で信頼性が高い。
() Both the sensor and detector have a simple structure, are inexpensive and highly reliable.

() 誘導帯センサーの出力値が中央では弱く、
両端では強くなるため、台車のずれが小さいと
きにはずれを戻そうとする制御の作用が弱くな
り、台車のずれが大きくなつたときにずれを戻
そうとする制御の作用が強くなるので、台車を
安定して誘導させることができる。
() The output value of the induction band sensor is weak in the center,
The force increases at both ends, so when the misalignment of the bogie is small, the control effect that tries to return the misalignment becomes weak, and when the misalignment of the bogie becomes large, the control effect that tries to return the misalignment becomes stronger. It can be stably guided.

() センサー感度が高いため、誘導帯との間の
ギヤツプを大きくとれる。
() Since the sensor sensitivity is high, a large gap can be created between the sensor and the induction band.

等の優れた効果を奏し得る。It can produce excellent effects such as

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図は従来方式の概略図、第4図
は最近考え出された装置の平面図、第5図は第4
図の側面図、第6図は磁気センサーと誘導帯の組
合せ関係を示す正面図、第7図は本発明の装置の
平面図、第8図は第7図の側面図、第9図は本発
明の装置のブロツク図、第10図は誘導帯センサ
ーとその制御系の説明図、第11図はデイテクタ
ーの出力と変位との関係を示す図、第12図及び
第13図は夫々誘導帯センサーの他の例図であ
る。 3は台車、4は走行駆動輪、10は誘導帯、1
1はセンシングコイル、12,12′は誘導体セ
ンサー、13はデイテクター、14はステアリン
グ制御装置、16はブリツジ回路を示す。
Figures 1 to 3 are schematic diagrams of the conventional system, Figure 4 is a plan view of a recently devised device, and Figure 5 is the fourth
6 is a front view showing the combination of the magnetic sensor and the induction band, FIG. 7 is a plan view of the device of the present invention, FIG. 8 is a side view of FIG. A block diagram of the device of the invention, FIG. 10 is an explanatory diagram of the inductive band sensor and its control system, FIG. 11 is a diagram showing the relationship between the output and displacement of the detector, and FIGS. 12 and 13 are the inductive band sensor, respectively. It is another example figure of. 3 is a bogie, 4 is a driving wheel, 10 is a guide band, 1
1 is a sensing coil, 12 and 12' are inductive sensors, 13 is a detector, 14 is a steering control device, and 16 is a bridge circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 走行面上に台車の走行方向に沿つて磁性体か
らなる誘導帯を取り付け、強磁性体を導体とする
センシングコイルを中央が粗で両端が密となるよ
うに形成してなる誘導帯センサーを前記台車の幅
方向に取り付け、誘導帯センサーからの信号によ
り台車のずれを検出するデイテクターを備え、且
つ該デイテクターからの出力に基づいて台車の駆
動系に制御信号を送る制御装置を有することを特
徴とする無人台車の誘導装置。
1 An inductive band sensor is made by attaching an inductive band made of a magnetic material on the running surface along the running direction of the bogie, and forming a sensing coil with a ferromagnetic material as a conductor so that it is coarse in the center and dense at both ends. The present invention is characterized by having a detector installed in the width direction of the bogie to detect displacement of the bogie based on a signal from a guide band sensor, and a control device that sends a control signal to the drive system of the bogie based on the output from the detector. A guidance device for unmanned trolleys.
JP59048323A 1984-03-14 1984-03-14 Guide device for unmanned truck Granted JPS60193023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59048323A JPS60193023A (en) 1984-03-14 1984-03-14 Guide device for unmanned truck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59048323A JPS60193023A (en) 1984-03-14 1984-03-14 Guide device for unmanned truck

Publications (2)

Publication Number Publication Date
JPS60193023A JPS60193023A (en) 1985-10-01
JPH0340841B2 true JPH0340841B2 (en) 1991-06-20

Family

ID=12800199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59048323A Granted JPS60193023A (en) 1984-03-14 1984-03-14 Guide device for unmanned truck

Country Status (1)

Country Link
JP (1) JPS60193023A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0652486B2 (en) * 1986-02-08 1994-07-06 株式会社マコメ研究所 Unmanned vehicle guidance system

Also Published As

Publication number Publication date
JPS60193023A (en) 1985-10-01

Similar Documents

Publication Publication Date Title
US5000279A (en) Unmanned vehicle guide system
US4742283A (en) Guidance system for inductively coupled electric vehicles
EP0614134A1 (en) Automated guided vehicle wire guidance apparatus
JPH036522B2 (en)
JPH035607B2 (en)
JPH0340841B2 (en)
JPH056688B2 (en)
JPH036521B2 (en)
JPH036524B2 (en)
JPS59202513A (en) Method and device for guidance of unmanned truck
JPH0370802B2 (en)
JPS62111306A (en) S-shaped traveling carrier car
JPH0749522Y2 (en) Guidance signal detector for unmanned vehicles
JPS60107113A (en) Guiding method of unmanned track
JPS59229625A (en) Method and apparatus for guiding unmanned truck
JPS59117612A (en) Guiding path of wagon
JPS61224009A (en) Automatic steering device of unmanned car
JPH0359444B2 (en)
JP2580672Y2 (en) Guideway device for electromagnetically guided vehicles
JPS63115207A (en) Traveling guide device for unattended vehicle
JPS59202516A (en) Method and device for guidance of unmanned truck
JP2576518B2 (en) Automated guided vehicle guidance
JP2841079B2 (en) Course deviation detection device for unmanned vehicles
JPS59202512A (en) Method and device for guidance of unmanned truck
JPH0527830A (en) Guiding/stopping method for unmanned carriage