JPS63202962A - Bipolar transistor and manufacture thereof - Google Patents

Bipolar transistor and manufacture thereof

Info

Publication number
JPS63202962A
JPS63202962A JP62034962A JP3496287A JPS63202962A JP S63202962 A JPS63202962 A JP S63202962A JP 62034962 A JP62034962 A JP 62034962A JP 3496287 A JP3496287 A JP 3496287A JP S63202962 A JPS63202962 A JP S63202962A
Authority
JP
Japan
Prior art keywords
region
layer
conductivity type
collector
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62034962A
Other languages
Japanese (ja)
Inventor
Tsunenori Yamauchi
経則 山内
Hiromichi Ichikawa
宏道 市川
Yuji Furumura
雄二 古村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62034962A priority Critical patent/JPS63202962A/en
Publication of JPS63202962A publication Critical patent/JPS63202962A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve a current amplification factor, by applying one conductivity type silicon carbide (SiC) layer to an emitter region, applying the other conductivity type semiconductor layer to a base region, and applying one conductivity type region to a collector region. CONSTITUTION:A p-Si layer 2 serving as a base region is stacked on an n-SiC layer 1A serving as an emitter region. From the surface of the p-Si layer 2, n-type impurity is introduced, and a plurality of n<+> Si regions 3 as collector regions are formed. Similarly, p-type impurity is introduced and a p<+> Si region 4 as a base contact region is formed. In the p-Si layer 2, n-type impurity is introduced so as to reach the n-SiC layer 1A, and an n<+> Si region 5 is formed as a collector contact region. Apertures are made in an SiO2 layer grown on the substrate, and collector electrodes C1-C3 and a base electrode B are formed on the p<+> Si region 4 and on the n<+> Si region 5, respectively. By applying beta-SiC to a wide-gap emitter layer, the current amplification factor beta of a multi- collector bipolar transistor can be improved.

Description

【発明の詳細な説明】 〔概要〕 珪素(Si)等の在来の半導体層でコレクタ層とベース
層を形成し、その上に該半導体層より禁制帯幅(ギャッ
プ)の大きい(E9=2.2 eV)炭化珪素(SiC
)層を形成し、この層をエミッタとしたワイドギャップ
エミッタのバイポーラトランジスタは、高利得、高電力
用素子として用いるられている。そこで、I2L集積回
路に用いられるマルチコレクタのバイポーラトランジス
タは低βであるため、ワイドギャップエミッタを採用し
た新規構造と製造方法を提起し、高利得を得る。
[Detailed Description of the Invention] [Summary] A collector layer and a base layer are formed using a conventional semiconductor layer such as silicon (Si), and a layer having a forbidden band width (gap) larger than that of the semiconductor layer (E9=2) is formed on top of the collector layer and base layer. .2 eV) Silicon carbide (SiC
) layer and using this layer as an emitter, a wide-gap emitter bipolar transistor is used as a high-gain, high-power device. Therefore, since the multi-collector bipolar transistor used in I2L integrated circuits has a low β, we propose a new structure and manufacturing method that employs a wide gap emitter to obtain high gain.

〔産業上の利用分野〕[Industrial application field]

本発明はSiCをワイドギャップエミッタとして用いた
マルチコレクタのバイポーラトランジスタおよび製造方
法に関する。
The present invention relates to a multi-collector bipolar transistor using SiC as a wide gap emitter and a manufacturing method.

次期高速バイポーラ大規模集積回路(VLSI)用素子
としてヘテロ接合バイポーラトランジスタ01BT)が
検討されている。
A heterojunction bipolar transistor (01BT) is being considered as a device for the next generation of high-speed bipolar large-scale integrated circuits (VLSI).

118Tは通常のホモ接合バイポーラトランジスタに比
べ、エミッタを高濃度にドープしなくてもエミッタ注入
効率を十分大きくできる。
Compared to ordinary homojunction bipolar transistors, 118T can sufficiently increase emitter injection efficiency without doping the emitter to a high concentration.

通常のHBTは混晶半導体を用い、各層の混晶比を変え
ることにより、ギャップを制御して形成しているか、混
晶HBTは最高使用温度がSiより低く、従って大電力
用には適さなかった。
Ordinary HBTs use a mixed crystal semiconductor and are formed by controlling the gap by changing the mix crystal ratio of each layer, or the maximum operating temperature of mixed crystal HBTs is lower than that of Si, so they are not suitable for high power applications. Ta.

これに対して、在来の珪素(St)素子のエミッタを高
温に耐えるSiCで形成したワイドギャップエミッタト
ランジスタがある。
On the other hand, there is a wide gap emitter transistor in which the emitter of a conventional silicon (St) element is made of SiC that can withstand high temperatures.

ワイドギャップエミッタの主な利点は、エミッタ注入効
率を上げ、ベース抵抗を下げることができることである
The main advantages of wide-gap emitters are that they can increase emitter injection efficiency and lower base resistance.

〔従来の技術〕[Conventional technology]

第4図は従来例によるマルチコレクタのバイポーラトラ
ンジスタの断面図である。
FIG. 4 is a sectional view of a conventional multi-collector bipolar transistor.

図において、エミッタ領域となるn−3i基板1上に、
ベース領域となるp−5i層2がエピタキシャル成長さ
れる。
In the figure, on the n-3i substrate 1 which becomes the emitter region,
A p-5i layer 2 serving as a base region is epitaxially grown.

p−3i層2の表面よりn型不純物を拡散して、コレク
タ領域として複数のn ’ −S i 領域3と、p型
不純物を拡散して、ベースコンタクト領域としてp”−
5i領域4が形成される。
N-type impurities are diffused from the surface of the p-3i layer 2 to form a plurality of n'-S i regions 3 as collector regions, and p-type impurities are diffused to form p''-S i regions 3 as base contact regions.
5i region 4 is formed.

p−3i層2に、n−3i基板1にとどくようにn型不
純物を拡散して、コレクタコンタクト領域としてn ”
 −S i 1iJj域5が形成される。
An n-type impurity is diffused into the p-3i layer 2 so as to reach the n-3i substrate 1 to form an n-type impurity as a collector contact region.
-S i 1iJj region 5 is formed.

基板上に成長した二酸化珪素(SiO□)層6を開口し
、n”−3i領域3上には、それぞれコレクタ電極C1
、C2、C3が、p”−3t領域4上にはベース電極B
、n・−3i?iJj域5上にはコレクタ電極Cが形成
される。
The silicon dioxide (SiO□) layer 6 grown on the substrate is opened, and a collector electrode C1 is formed on each n''-3i region 3.
, C2, and C3, the base electrode B is on the p''-3t region 4.
, n・-3i? A collector electrode C is formed on the iJj region 5.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上の構造のマルチコレクタのバイポーラトランジスタ
では電流増幅率βが2〜5程度しか得られなかった。
In the multi-collector bipolar transistor having the above structure, a current amplification factor β of only about 2 to 5 can be obtained.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点の解決は、一導電型炭化珪素層上に他導電型
半導体層が積層され、かつ該他導電型半導体層の表面に
複数の一導電型領域が形成されてなり、該一導電型炭化
珪素層をエミッタ領域、該他導電型半導体層をベース領
域、該一導電型領域をコレクタ領域とするバイポーラト
ランジスタおよび 一導電型炭化珪素層と、一導電型多結晶珪素層とを順次
他導電型半導体基板上に成長し、該他導電型半導体基板
を薄膜化して他導電型半導体層とし、該他導電型半導体
層の表面に複数の一導電型領域および他導電型領域を形
成する工程を含むバイポーラトランジスタの製造方法に
より達成される。
The above problem can be solved by laminating a semiconductor layer of another conductivity type on a silicon carbide layer of one conductivity type, and forming a plurality of regions of one conductivity type on the surface of the semiconductor layer of another conductivity type. A bipolar transistor in which the silicon carbide layer is an emitter region, the other conductivity type semiconductor layer is a base region, and the one conductivity type region is a collector region; a semiconductor layer of the other conductivity type, forming a semiconductor layer of the other conductivity type by thinning the semiconductor substrate of the other conductivity type, and forming a plurality of regions of one conductivity type and regions of the other conductivity type on the surface of the semiconductor layer of the other conductivity type. This is achieved by a method of manufacturing a bipolar transistor including.

〔作用〕[Effect]

本発明はワイドギヤツブエミツタ層としてβ−5iCを
用い、素子特性を改善する。
The present invention uses β-5iC as a wide gear tube emitter layer to improve device characteristics.

SiCは六方晶系等のα−3iCと、立方晶系のβ−3
iCとがあるが、ワイドギャップエミツタ層形成にはS
iと同一品系のβ−3iCを用いる。
SiC consists of hexagonal system α-3iC and cubic system β-3
iC, but S is used for wide gap emitter layer formation.
β-3iC, which is the same product as i, is used.

SiCの結晶成長は、一般に高温成長を必要とし困難で
あるが、本出願人により単結晶SiCを1000゛C程
度で、約200Paの減圧下で気相成長する技術を開発
した。
Crystal growth of SiC generally requires high-temperature growth and is difficult, but the applicant has developed a technique for growing single-crystal SiC in a vapor phase at about 1000°C and under a reduced pressure of about 200 Pa.

また、本出願人により単結晶SiCのホール(Hall
)易動度はSiと同程度、あるいはそれ以上の値をもち
、また、SiC/Stへテロ接合の整流比が大きく、拡
散電流は主として接合を流れることを実験的に確かめた
In addition, the applicant has also developed a single-crystal SiC hall (Hall).
) It was experimentally confirmed that the mobility is the same as or higher than that of Si, and that the rectification ratio of the SiC/St heterojunction is large, and that the diffusion current mainly flows through the junction.

これらの結果より、単結晶β−3iCエミツタバイポー
ラトランジスタは高いエミッタ効率をもち、換言すれば
低ベース抵抗をもち、VLSI用の高速バイポーラトラ
ンジスタとして適していることが分かった。
From these results, it was found that the single crystal β-3iC emitter bipolar transistor has high emitter efficiency, in other words, low base resistance, and is suitable as a high-speed bipolar transistor for VLSI.

第3図はSiCワイドエミッタバイポーラトランジスタ
のエネルギハンド構造図である。
FIG. 3 is a diagram showing the energy hand structure of a SiC wide emitter bipolar transistor.

図において、Ec、EV、EFはそれぞれ伝導帯の下端
、価電子帯の上端、フェルミ準位を示し、黒丸で示され
る電子と白丸で示される正孔の流れを矢印で表す。
In the figure, Ec, EV, and EF indicate the lower end of the conduction band, the upper end of the valence band, and the Fermi level, respectively, and the flow of electrons indicated by black circles and holes indicated by white circles are indicated by arrows.

エミッタ領域がワイドギャップであるため生ずる障壁に
より、正孔のエミッタへの注入が起こり難い様子を模式
的に矢印で示している。
The arrows schematically show how holes are difficult to be injected into the emitter due to the barrier caused by the wide gap in the emitter region.

その結果、ベース電流を低下させ、エミッタの注入効率
が増加する。
As a result, the base current is reduced and the emitter injection efficiency is increased.

本発明は上記のワイドエミッタをマルチコレクタトラン
ジスタに適合できる構造を提起し、高利得化をはかった
ものである。
The present invention proposes a structure in which the above-mentioned wide emitter can be adapted to a multi-collector transistor, and aims to increase the gain.

〔実施例〕〔Example〕

第1図は本発明によるマルチコレクタのバイポーラトラ
ンジスタの断面図である。
FIG. 1 is a cross-sectional view of a multi-collector bipolar transistor according to the present invention.

図はnpn  トランジスタの例をを示す。The figure shows an example of an npn transistor.

図において、エミッタ領域となるn−5iCJilA上
に、ベース領域となるp−3i層2が積層される。
In the figure, a p-3i layer 2, which will become a base region, is laminated on an n-5i CJILA, which will become an emitter region.

p−5i層2の表面よりn型不純物を導入して、コレク
タ領域として複数のn”−3i領域3と、n型不純物を
導入して、ベースコンタクト領域としてp+−3t領域
4が形成される。
N-type impurities are introduced from the surface of the p-5i layer 2 to form a plurality of n''-3i regions 3 as collector regions, and n-type impurities are introduced to form p+-3t regions 4 as base contact regions. .

p−5i層2に、n−5i(:層IAにとどくようにn
型不純物を導入して、コレクタコンタクト領域としてn
”−3t領域5が形成される。
p-5i layer 2, n-5i (: n so as to reach layer IA)
type impurities are introduced to form the collector contact region.
”-3t region 5 is formed.

基板上に成長したSi03層6を開口し、n”−3i領
域3上には、それぞれコレクタ電極CI、C2、C3が
、p”−3i領域4上にはベース電極Bが、n”−5i
領域5上にはコレクタ電極Cが形成される。
The Si03 layer 6 grown on the substrate is opened, collector electrodes CI, C2, and C3 are placed on the n''-3i region 3, base electrode B is placed on the p''-3i region 4, and a base electrode B is placed on the n''-5i region 4.
A collector electrode C is formed on the region 5.

第2図(1)、(2)は本発明によるマルチコレクタの
バイポーラトランジスタの製造工程を説明する断面図で
ある。
FIGS. 2(1) and 2(2) are cross-sectional views illustrating the manufacturing process of a multi-collector bipolar transistor according to the present invention.

第2図(1)において、硼素(B)を5E17〜5B1
8cm−3ドープしたp−3i基板2′上に、減圧化学
気相成長(LPGVD)法により厚さ0.3μmのn−
3iC層1八と、通常のCVD法により高濃度のn型で
、十分に厚い多結晶珪素(ポリSi)層7を順次成長す
る。
In Figure 2 (1), boron (B) is 5E17 to 5B1
On the 8cm-3 doped p-3i substrate 2', a 0.3 μm thick n-
A 3iC layer 18 and a sufficiently thick polycrystalline silicon (poly-Si) layer 7 of high concentration n-type are successively grown by the usual CVD method.

β−5iCのLPCVD条件は、ソースガスとして三塩
化シラン(SiHCL+)とプロパン(C311o)、
キャリアガスとして水素(+12)を用い、これらを2
00Paに凍圧し、1000°Cで熱分解して行う。
The LPCVD conditions for β-5iC include trichlorosilane (SiHCL+) and propane (C311o) as source gases.
Using hydrogen (+12) as a carrier gas, these
Freeze pressure is applied to 00 Pa and thermal decomposition is performed at 1000°C.

なお、n−5iC層IAは成長時、または成長後イオン
注入により燐(P)をlB17〜IE18cm−’ドー
プしてn型にする。
Note that the n-5iC layer IA is doped with phosphorus (P) at lB17 to IE18 cm-' during growth or by ion implantation after growth to make it n-type.

第2図(2)において、研磨、およびエツチングにより
p−5i基板2′を厚さ0.5〜1.0 pmのp−5
i層2に形成する。
In FIG. 2 (2), the p-5i substrate 2' is polished and etched to form a p-5i substrate 2' with a thickness of 0.5 to 1.0 pm.
Formed in i-layer 2.

つぎに、レジス1〜パターンをマスクしたイオン注入、
または拡散によりPをIE17〜IE18cm−3ドー
プしてp−3i層2に深さ0.3〜0.5 pmのn’
−5i領域3と、n−3iC層IAにとどく深さにn’
−5i領域5を形成する。
Next, resist 1 ~ ion implantation masking the pattern,
Alternatively, by doping P with IE17 to IE18 cm-3, the p-3i layer 2 is doped with n' to a depth of 0.3 to 0.5 pm.
-5i region 3 and n' at a depth reaching the n-3iC layer IA.
-5i region 5 is formed.

つぎに、つぎにp−3i層2上全面に厚さ4000人の
SiO□層6を成長し、この層を開口して、n“−5i
領域3上には、それぞれコレクタ電極CいC2、C3が
、p+−5i領域4上にはベース電極Bが、n ” −
S i 領域5上にはコレクタ電極Cが形成される。
Next, a SiO□ layer 6 with a thickness of 4000 layers is grown on the entire surface of the p-3i layer 2, and this layer is opened to form an n"-5i
Collector electrodes C2 and C3 are on region 3, base electrode B is on p+-5i region 4, and n''-
A collector electrode C is formed on the S i region 5 .

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように本発明によれば、マルチコレ
クタのバイポーラトランジスタの電流増幅率βは従来2
〜5程度しか得られなかったが、これの10〜100倍
にすることができる。
As explained in detail above, according to the present invention, the current amplification factor β of the multi-collector bipolar transistor is 2
Although only about ~5 was obtained, it can be increased by 10 to 100 times.

さらに、通常のβ−5iCワイドギヤツプエミツタハイ
ポーラトランジスタのもつつぎのような効果が得られる
Furthermore, an effect similar to that of a normal β-5iC wide gap emitter high polar transistor can be obtained.

すなわち、ワイドギヤツブエミッタの作用により、動作
電流を低下させることが可能である。
That is, the action of the wide gear tube emitter makes it possible to reduce the operating current.

また、動作電流の低下によりアルミニウム(AI)配線
中を流れる電流密度を低減できる。
In addition, the current density flowing through the aluminum (AI) wiring can be reduced by lowering the operating current.

従って、A1層を薄くでき、基板表面の段差が小さくな
るため、層間絶縁層に対する要求が緩和され、高集積化
に適する。
Therefore, the A1 layer can be made thinner and the step difference on the substrate surface can be reduced, so that the requirements for the interlayer insulating layer are relaxed and it is suitable for high integration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるマルチコレクタのバイポーラトラ
ンジスタの断面図、 第2図(1)、(2)は本発明によるマルチコレクタの
バイポーラトランジスタの製造工程を説明する断面図、 第3図はSiCワイドギャノプエミソタハイボーラトラ
ンジスタのエネルギバンド構造図、第4図は従来例によ
るマルチコレクタのバイポーラトランジスタの断面図で
ある。 図において、 1は一導電型炭化珪素層でn−5iC層梼(エミッタ領
域)、 2は他導電型半導体層でp−5i層 (ベース領域)、 3は一導電型領域でn”−3t領域 (コレクタ領域)、 4はベースコンタクト領域でp′″−5i領域5はコレ
クタコンタクト領域でn”−3i領域、6はSiO□層
、 7はポリSt層
Fig. 1 is a cross-sectional view of a multi-collector bipolar transistor according to the present invention, Fig. 2 (1) and (2) are cross-sectional views explaining the manufacturing process of a multi-collector bipolar transistor according to the present invention, and Fig. 3 is a SiC wide FIG. 4 is a cross-sectional view of a conventional multi-collector bipolar transistor. In the figure, 1 is a silicon carbide layer of one conductivity type, which is an n-5iC layer (emitter region), 2 is a semiconductor layer of another conductivity type, which is a p-5i layer (base region), and 3 is a semiconductor layer of one conductivity type, which is an n''-3T layer. region (collector region), 4 is a base contact region, p'''-5i region 5 is a collector contact region, n''-3i region, 6 is a SiO□ layer, 7 is a polySt layer

Claims (2)

【特許請求の範囲】[Claims] (1)一導電型炭化珪素層上に他導電型半導体層が積層
され、かつ該他導電型半導体層の表面に複数の一導電型
領域が形成されてなり、 該一導電型炭化珪素層をエミッタ領域、該他導電型半導
体層をベース領域、該一導電型領域をコレクタ領域とす
ることを特徴とするバイポーラトランジスタ。
(1) A semiconductor layer of another conductivity type is laminated on a silicon carbide layer of one conductivity type, and a plurality of regions of one conductivity type are formed on the surface of the semiconductor layer of one conductivity type, and the silicon carbide layer of one conductivity type is laminated. A bipolar transistor comprising an emitter region, a semiconductor layer of another conductivity type as a base region, and a region of one conductivity type as a collector region.
(2)一導電型炭化珪素層と、一導電型多結晶珪素層と
を他導電型半導体基板上に順次成長し、該他導電型半導
体基板を薄膜化して他導電型半導体層とし、該他導電型
半導体層の表面に複数の一導電型領域および他導電型領
域を形成する工程を含むことを特徴とするバイポーラト
ランジスタの製造方法。
(2) A silicon carbide layer of one conductivity type and a polycrystalline silicon layer of one conductivity type are sequentially grown on a semiconductor substrate of another conductivity type, and the semiconductor substrate of the other conductivity type is thinned to form a semiconductor layer of the other conductivity type; A method for manufacturing a bipolar transistor, comprising the step of forming a plurality of regions of one conductivity type and regions of another conductivity type on a surface of a conductivity type semiconductor layer.
JP62034962A 1987-02-18 1987-02-18 Bipolar transistor and manufacture thereof Pending JPS63202962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62034962A JPS63202962A (en) 1987-02-18 1987-02-18 Bipolar transistor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62034962A JPS63202962A (en) 1987-02-18 1987-02-18 Bipolar transistor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS63202962A true JPS63202962A (en) 1988-08-22

Family

ID=12428771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62034962A Pending JPS63202962A (en) 1987-02-18 1987-02-18 Bipolar transistor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS63202962A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004516655A (en) * 2000-12-11 2004-06-03 クリー インコーポレイテッド Method of making self-aligned bipolar junction transistor in silicon carbide and device made thereby

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004516655A (en) * 2000-12-11 2004-06-03 クリー インコーポレイテッド Method of making self-aligned bipolar junction transistor in silicon carbide and device made thereby

Similar Documents

Publication Publication Date Title
JPH08306700A (en) Semiconductor device and its manufacture
JP2611640B2 (en) Heterojunction bipolar transistor
JPH0590285A (en) Heterojunction bipolar transistor and manufacture thereof
JPH0770540B2 (en) Heterojunction bipolar transistor
JPS63202962A (en) Bipolar transistor and manufacture thereof
JP2625879B2 (en) Semiconductor device
JP2003151985A (en) Semiconductor device and manufacturing method thereof
JPH01143355A (en) Manufacture of hetero junction bipolar transistor
JPH0529332A (en) Heterojunction bipolar transistor and manufacture thereof
JP2817210B2 (en) Method for manufacturing semiconductor device
JPS62163370A (en) Hetero bipolar transistor
JPH03125476A (en) Hetero junction bipolar transistor
JP2888652B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JP2004079631A (en) Vertical junction field effect transistor and its manufacturing method
JPH02152239A (en) Manufacture of semiconductor device
JPS6041269A (en) Semiconductor device
JPH05114602A (en) Lateral bipolar transistor
JPH01186669A (en) Manufacture of semiconductor device
JPS62217659A (en) Semiconductor device
JPS6152583B2 (en)
JPH0462931A (en) Semiconductor device
JPH05121428A (en) Heterojunction bipolar transistor
JP2006179507A (en) Semiconductor device
JPH05291278A (en) Semiconductor device and manufacture thereof
JPS62211951A (en) Hetero-junction vertical type bipolar transistor device and manufacture thereof