JPS62217659A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS62217659A
JPS62217659A JP6122886A JP6122886A JPS62217659A JP S62217659 A JPS62217659 A JP S62217659A JP 6122886 A JP6122886 A JP 6122886A JP 6122886 A JP6122886 A JP 6122886A JP S62217659 A JPS62217659 A JP S62217659A
Authority
JP
Japan
Prior art keywords
emitter
silicon
type
polycrystalline silicon
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6122886A
Other languages
Japanese (ja)
Inventor
Yasuo Nara
安雄 奈良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6122886A priority Critical patent/JPS62217659A/en
Publication of JPS62217659A publication Critical patent/JPS62217659A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To improve the current amplification factor of the titled semiconductor device by a method wherein an SiC layer is formed on the interface of the polycrystalline silicon and the single crystal silicon of an emitter region. CONSTITUTION:An N<+> buried layer 9 is formed on a P-type silicon 8, and N<-> silicon which will be formed into a collector region is epitaxially grown. An N<+> layer 14 to be used to lead out a collector, a P-layer 11 which becomes a base, and an N<+> layer which becomes an emitter are formed on the P-type silicon 8 by performing an impurity doping. Besides, an SiO2 film 15 to be used for insulation and the protection of substrate surface, the P-type polycrystalline silicon 16 for a base electrode, the N-type polycrystalline silicon 17 for an emitter electrode, and the N-type polycrystalline silicon 19 for a collector electrode are formed respectively. The current amplification factor of the semiconductor device can be increased by the SiC layer 13 which is formed by selectively implanting carbon ions from the surface of the emitter polycrystalline silicon.

Description

【発明の詳細な説明】 〔概  要〕 本発明は、バイポーラトランジスタにおいて、エミッタ
に炭化硅素(8i0)t−用いてt光増幅率を高めるこ
とにより、動作速度の向上を計ったものである。
DETAILED DESCRIPTION OF THE INVENTION [Summary] The present invention aims to improve the operating speed of a bipolar transistor by increasing the optical amplification factor by using silicon carbide (8i0) t- for the emitter.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体装置、特にバイポーラトランジスタに関
する。バイポーラトランジスタは、他の半導体装置と同
様に高速動作が要求される。
The present invention relates to semiconductor devices, particularly bipolar transistors. Bipolar transistors, like other semiconductor devices, are required to operate at high speed.

このため、高速動作に適する大きい電流増幅率を持りパ
イポーラトランジスタが必要とされる。
Therefore, a bipolar transistor with a large current amplification factor suitable for high-speed operation is required.

〔従来の技術〕[Conventional technology]

従来の多結晶ンリコンエミッタを用いたプレーナmnp
nバイポーラトランジスタの断面構造’tsga図に示
す。
Planar mnp using conventional polycrystalline silicon emitter
The cross-sectional structure of an n-bipolar transistor is shown in the TSGA diagram.

図中19はp型の半導体基板であり、20はn現の高濃
度にドーピングされた埋め込み層であり、21はエピタ
平シャル成長されたn型のコレクタ層で4fi、22は
p型のベース領域でおシ、28はn型のエミッタ領域で
あシ、24はコレクタ引き出し用のn型領域で、25は
基板表面を保護する 8i(h膜であり、26はベース
電極のp型多結晶シリコン、27はエミッタ電極のn型
多結晶シリコン、28はコレクタ電極のn型多結晶シリ
コンである。
In the figure, 19 is a p-type semiconductor substrate, 20 is a heavily doped n-type buried layer, 21 is an epitaxially grown n-type collector layer of 4fi, and 22 is a p-type base. 28 is an n-type emitter region, 24 is an n-type region for extracting the collector, 25 is an 8i (h film) that protects the substrate surface, and 26 is a p-type polycrystalline base electrode. 27 is n-type polycrystalline silicon for the emitter electrode, and 28 is n-type polycrystalline silicon for the collector electrode.

さらに、図には示していないが、これら多結晶シリコン
上にはアルミニウムの電極が+fflケられる0 図示のように、従来のパイボーラトランジスタのエミッ
タ部分は、n型多結晶シリコンとn型単結晶シリコンよ
り構成されている。
Furthermore, although not shown in the figure, aluminum electrodes are formed on these polycrystalline silicon layers. Composed of silicon.

〔解決しようとする問題点〕[Problem to be solved]

従来のバイポーラトランジスタは、エミッタ領域が多結
晶シリコンと単結晶シリコンで構成されているために、
エミッタからベースへ電子が注入される時のエネルギー
障壁と、ベースからエミッタへ正孔が注入される時のエ
ネルギー障壁は等しく、不要な正孔のエミッタへの注入
が回避できないため、電流増幅率が向上されず、動作速
度の向上が困難という問題を生じていた。
Conventional bipolar transistors have an emitter region composed of polycrystalline silicon and single-crystalline silicon, so
The energy barrier when electrons are injected from the emitter to the base is equal to the energy barrier when holes are injected from the base to the emitter, and since unnecessary hole injection into the emitter cannot be avoided, the current amplification factor is However, there was a problem in that it was difficult to improve the operating speed.

〔解決するための手段〕[Means to solve]

第1図は本発明によるnpnバイポーラトランジスタの
エミッタ・ベース接合のエネルギーバンド図を模式的に
示したものである。
FIG. 1 schematically shows an energy band diagram of an emitter-base junction of an npn bipolar transistor according to the present invention.

図中1はn型多結晶シリコンであり、2は炭素ケイオン
注入する前はnfi単結晶シリコン。
In the figure, 1 is n-type polycrystalline silicon, and 2 is NFI single crystal silicon before carbon silicon ion implantation.

炭素注入後はn型SiCとなる。3はp型単結晶シリコ
ン、4は伝導帯下端のエネルギーレベル、5はフェルミ
エネルギーのレベル、6は価電子帯上端のエネルギーレ
ベルを示す。7は炭素注入前にn型単結晶シリコンがエ
ミツタ層として存在する時の価電子帯上端のエネルギー
レベルである。
After carbon implantation, it becomes n-type SiC. 3 indicates p-type single crystal silicon, 4 indicates the energy level at the lower end of the conduction band, 5 indicates the Fermi energy level, and 6 indicates the energy level at the upper end of the valence band. 7 is the energy level at the top of the valence band when n-type single crystal silicon exists as an emitter layer before carbon implantation.

本発明は、多結晶シリコン(1)と単結晶シリコン(2
)の界面に炭素ケイオン注入し、単結晶シリコンのn型
層の一部もしくは全部tSiC層とし、エネルギーバン
ドギャップを広げることを特徴とする。
The present invention combines polycrystalline silicon (1) and single crystal silicon (2).
) is characterized by implanting silicon carbon ions into the interface of the single crystal silicon to make part or all of the n-type layer of single crystal silicon into a tSiC layer to widen the energy band gap.

なか、?iX1図においてはn型単結晶シリコンの全部
がSiC層となった場合について示しである。
inside,? The iX1 diagram shows a case where all of the n-type single crystal silicon becomes a SiC layer.

〔作 用〕[For production]

本発明によるバイポーラトランジスタのエミッタ・ベー
ス接合のエミッタ部分は、n型単結晶シリコンの一部あ
るいは全部がシリコンよりエネルギーギャップの大きい
8iCとなっているため、ベース(8)からエミッタ伐
)へ正孔が注入される時のエネルギー障壁は、エミッタ
(2)からベース(8)へ電子が注入される時のエネル
ギー障壁より大きい。このため、エミッタ1!流トべ一
ス電流の比はSiCの存在しなりhQ合より大きくする
ことが可能であり、高い電流増幅率を持つバイポーラト
ランジスタが実現できる◇〔実施例〕 第2図に本発明によるバイポーラトランジスタの断面構
造を示す。以下このfM造について説明する。
In the emitter part of the emitter-base junction of the bipolar transistor according to the present invention, part or all of the n-type single crystal silicon is 8iC, which has a larger energy gap than silicon, so that holes flow from the base (8) to the emitter junction. The energy barrier when electrons are injected is larger than the energy barrier when electrons are injected from the emitter (2) to the base (8). For this reason, emitter 1! The ratio of current to base current can be made larger than the hQ ratio due to the presence of SiC, and a bipolar transistor with a high current amplification factor can be realized. The cross-sectional structure of is shown. This fM structure will be explained below.

基板はP型シリコン8を用い、n十埋め込み層9を形成
し、コレクタ領域となる。n−のシリコン10?!−エ
ピタキシャル成長させる。14はコレクタ引き出し用n
十層、11はベースとなる2層、12はエミッタとなる
n十層で、それぞれ不純物ドーピングによシ形成する。
P-type silicon 8 is used as the substrate, and an n-type buried layer 9 is formed to form a collector region. n- silicon 10? ! -Grow epitaxially. 14 is for collector drawer n
10 layers, 11 are two layers serving as a base, and 12 are n10 layers serving as an emitter, each of which is formed by impurity doping.

15は絶縁用及び基板表面保護用の8!0!である。1
6はベース電極のp型多結晶シリコン。
15 is 8!0 for insulation and substrate surface protection! It is. 1
6 is p-type polycrystalline silicon for the base electrode.

17はエミッタ電極のn型多結晶シリコン。17 is n-type polycrystalline silicon of the emitter electrode.

13はコレクタ電極のn型多結晶シリコンである。1B
はエミッタ多結晶シリコンの表面から選択的にこの部分
だけに炭素をイオン注入することによって形成された8
iC7iJであり、この層の存在によって電流増幅率の
増大がもたらされる。
13 is n-type polycrystalline silicon of the collector electrode. 1B
is formed by selectively implanting carbon ions only in this part of the surface of the emitter polycrystalline silicon.
iC7iJ, and the presence of this layer brings about an increase in current amplification factor.

〔効 果〕〔effect〕

本発明によれば、エミッタ領域の多結晶シリコンと単結
晶シリコンの界面に8iCfrJl形成したので、従来
のトランジスタに比べ、電流増幅率を向上することがで
き、高速動作に適する。
According to the present invention, since 8iCfrJl is formed at the interface between polycrystalline silicon and single crystal silicon in the emitter region, the current amplification factor can be improved compared to conventional transistors, making it suitable for high-speed operation.

また、本発明のバイポーラトランジスタの8iCと単結
晶シリコンとの界面は単結晶シリコンバルク内に形成さ
れるため、8i0112エミフタ上に堆積して製造した
バイポーラトランジスタと比べ、界面阜位密既が減少で
きる。
In addition, since the interface between 8iC and single crystal silicon in the bipolar transistor of the present invention is formed within the single crystal silicon bulk, the interface density can be reduced compared to a bipolar transistor manufactured by depositing it on an 8i0112 emitter. .

このため、ベース電流の界面再結合による成分を減少さ
せることができ、この点にひいても電光増幅率を向上さ
せることが可能である。
Therefore, the component of the base current due to interfacial recombination can be reduced, and in this respect as well, it is possible to improve the lightning amplification factor.

【図面の簡単な説明】 第1図は本発明の原理を説明する図。 第2図は本発明の詳細な説明する図。 第3図は従来例ケ説明する図である。 図に2いて、10はコレクタ領域、 t tハベース領
域、12はエミッタ領域、13は炭化硅素領域、17は
エミッタ電極を示す。 厘理乞説明する霞 ギ1 (¥]
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram illustrating the principle of the present invention. FIG. 2 is a diagram illustrating the present invention in detail. FIG. 3 is a diagram illustrating a conventional example. In the figure, 10 indicates a collector region, tt base region, 12 an emitter region, 13 a silicon carbide region, and 17 an emitter electrode. Kasumigi explaining the request 1 (¥)

Claims (1)

【特許請求の範囲】[Claims] コレクタ領域10とベース領域11とエミッタ領域12
を有し、該エミッタ領域12とエミッタ電極17との界
面に炭化硅素領域13が設けられてなることを特徴とす
る半導体装置。
Collector region 10, base region 11 and emitter region 12
A semiconductor device comprising: a silicon carbide region 13 provided at an interface between the emitter region 12 and an emitter electrode 17.
JP6122886A 1986-03-19 1986-03-19 Semiconductor device Pending JPS62217659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6122886A JPS62217659A (en) 1986-03-19 1986-03-19 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6122886A JPS62217659A (en) 1986-03-19 1986-03-19 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS62217659A true JPS62217659A (en) 1987-09-25

Family

ID=13165147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6122886A Pending JPS62217659A (en) 1986-03-19 1986-03-19 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS62217659A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03218674A (en) * 1989-03-29 1991-09-26 Canon Inc Semiconductor device and photoelectric conversion device provided therewith
CN101872786A (en) * 2010-06-11 2010-10-27 东南大学 Silicon carbide high pressure N-type metal oxide transistor with floating buried layer and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03218674A (en) * 1989-03-29 1991-09-26 Canon Inc Semiconductor device and photoelectric conversion device provided therewith
CN101872786A (en) * 2010-06-11 2010-10-27 东南大学 Silicon carbide high pressure N-type metal oxide transistor with floating buried layer and method

Similar Documents

Publication Publication Date Title
JPH04278545A (en) Semiconductor device and manufacture thereof
JPH05182980A (en) Heterojunction bipolar transistor
JPH03225870A (en) Manufacture of heterojunction bipolar transistor
JPH04196436A (en) Semiconductor device
JPH0665216B2 (en) Semiconductor device
JPS63306660A (en) Hetero junction bipolar transistor
JPS6119171A (en) Vertical npn transistor structure
CN109830528A (en) Germanium silicium HBT device and manufacturing method
JPS62217659A (en) Semiconductor device
JPH01102961A (en) Vertical type semiconductor device having side wall emitter
GB995700A (en) Double epitaxial layer semiconductor structures
JPH0770540B2 (en) Heterojunction bipolar transistor
CN104347402A (en) Manufacturing method of insulated gate bipolar transistor
JP2625879B2 (en) Semiconductor device
US6740560B1 (en) Bipolar transistor and method for producing same
JP2770583B2 (en) Method of manufacturing collector-top heterojunction bipolar transistor
JP3129586B2 (en) Vertical bipolar transistor
JPH0521442A (en) Semiconductor device
JP2004128344A (en) Semiconductor device
JPH0381312B2 (en)
JPH0249432A (en) Heterojunction bipolar transistor
JPH0529332A (en) Heterojunction bipolar transistor and manufacture thereof
JP2631673B2 (en) Semiconductor device and manufacturing method thereof
JP2003059937A (en) Semiconductor device
JP2006179507A (en) Semiconductor device